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SEMIHOLONOMIC JETS AND INDUCED MODULES IN
CARTAN GEOMETRY CALCULUS

Jan Slovák and Vladimír Souček

Abstract. The famous Erlangen Programme was coined by Felix Klein in
1872 as an algebraic approach allowing to incorporate fixed symmetry groups
as the core ingredient for geometric analysis, seeing the chosen symmetries as
intrinsic invariance of all objects and tools. This idea was broadened essentially
by Elie Cartan in the beginning of the last century, and we may consider
(curved) geometries as modelled over certain (flat) Klein’s models.

The aim of this short survey is to explain carefully the basic concepts
and algebraic tools built over several recent decades. We focus on the direct
link between the jets of sections of homogeneous bundles and the associated
induced modules, allowing us to understand the overall structure of invariant
linear differential operators in purely algebraic terms. This allows us to extend
essential parts of the concepts and procedures to the curved cases.

These notes go back to much earlier collaborative works of the authors, in
particular with A. Cap and M.G. Eastwood, cf. [10, 15]. The reader may also see it
as an extension of the recent notes [29] focusing on the tractor calculi and BGG
machinery from a quite different perspective.

Linearized physical theories can be often viewed as complexes of linear differential
operators (and the laws of Physics are then modeled as the equality of kernels
and ranges of such operators), cf. [6, 12] and the references therein. The expected
symmetries of the theory enforce the operators to commute with them, thus, such
operators have to be invariant.

Our aim is to explain concepts allowing to discuss invariant linear differential
operators effectively. In the homogeneous case, this will become a very algebraic
story, which we then (partially) extend to the curved geometries. The main ideas
for that can be traced back to [2, 13, 15]. In large extent, we adopt the language
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and notation from [15]. We believe that the reader will enjoy the power of the
Cartan connections on our journey.

If necessary, more background on functorial geometric constructions, Klein geo-
metries, and Cartan geometries can be found in [9, 20, 26], while the representation
theory can be checked with [31]. We shall work in the category of smooth finite
dimensional manifolds here.

1. The algebraic story of the Klein geometries

1.1. Klein geometries and homogenous bundles. A Klein geometry is a ma-
nifold M with a transitive smooth action of a Lie group G. Choosing a point O ∈M ,
there is the isotropy subgroup H of this point and the identification M = G/H. Up
to a choice of the origin O, all Klein geometries are such homogeneous spaces G/H.
At the infinitesimal level, the quotient of the Lie algebras g/h clearly is naturally
identified with the tangent space TOM at the origin.

Notice that G→ G/H is a principal H-bundle, and G comes equipped with the
Maurer-Cartan form ω ∈ Ω1(G, g), the prototype of Cartan connections.

Next, consider any linear representation E of H and the associated bundle
E = G ×H E, i.e., the classes of the equivalence relations on G × E given by
(u, v) ∼ (u·h, h−1·v) for all h ∈ H. The tangent and cotangent bundles TM and
T ∗M are nice examples with the H-modules g/h and (g/h)∗, and notice how the
Maurer-Cartan form provides the identifications.

In the special case when E happens to be a G-module (and we consider the
restriction of the action to H ⊂ G), we may identify the class represented by (u, v)
with the couple (u·H,u·v). Indeed, taking another representative leads to

((u·h)·H, (u·h)·(h−1·v)) = (u·H,u·v) .
Thus, we have verified that E is the trivial bundle E = M × E over M = G/H for
all G-modules E.

On the other hand, homogeneous (vector) bundles over a Klein geometry M are
the bundles with well defined G-actions by (vector) bundle morphisms. Clearly,
for each such bundle, the restriction of the action to the isotropy group and the
fiber over O provides the H-module E and the original homogeneous bundle is
then identified with E = G×H E. Moreover, H-module morphisms lead to vector
bundle morphisms between the homogenous bundles in the obvious way.

In other words, for each Klein geometry M = G/H, we have constructed a
functor from the category of H-modules to the category of homogenous bundles
over M = G/H with the obvious action on morphisms.

Extending G → G/H to the principle G-bundle G̃ = G ×H G → G/H, the
Maurer-Cartan form ω uniquely extends to a principal connection form ω̃ on G̃.

Finally, for G-modules T we can further identify T as the associated space
T = G̃×G T ' M × T and we see that there is the induced linear connection ∇
on all such bundles T . These very special homogenous bundles are called tractor
bundles.1

1These special bundles were traced back to Tracy Thomas, who introduced them when
searching for generalizations of tensor bundles suitable for conformal Riemannian geometry, see
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1.2. Sections of homogenous bundles and jet bundles. A global version of
writing sections σ ∈ Γ(E) of homogeneous bundles in coordinates views the sections
as functions σ̃ : G→ E (by abuse of notation, later we shall use the same letter σ
for both), which have to be H-equivariant, i.e., σ̃(u·h) = h−1·σ̃(u). Indeed, such
a function defines the section σ with its values σ(u·H) represented by (u, σ̃(u)).
Obviously, this is a well defined bijection between Γ(E) and C∞(G,E)H .

The (left) G-action `g on the homogeneous bundles induces, of course, the action
on the sections: (g·σ)(u·H) = `g ◦ σ ◦ `g−1(u·H), which means that in the other
picture, the action is g·σ = σ ◦ `g−1 , which again produces H-equivariant functions
on G.

Next, let us have a look at the jet-prolongations JkE of our homogenous bundles
E = G×HE. The G-action on sections projects to the G-action on JkE , so that they
are again homogenous bundles and let us call the standard fiber JkE = (JkE)O
over the origin O the k-jet prolongation of the H-module E.

There is the straightforward observation:

1.3. Proposition. The invariant linear differential operators D : Γ(E)→ Γ(F), of
order at most k, are in bijective correspondence with the H-module homomorphisms
JkE→ F.

Proof. Clearly, evaluating the values of an invariant differential operator D at the
origin O, D(σ)(O) depends on the k-jet jkOσ only. By restricting the invariance to
H ⊂ G, we obtain the requested module homomorphism by the linearity of D.

Vice versa, linear differential operators of order at most k coincide with mor-
phisms between the homogeneous vector bundles JkE and F , and those are in
bijection with the module homomorphisms. �

Although the latter observation looks promising, JkE is a horrible representation
of H, even if E was nice, e.g., irreducible. Thus, in general, we can hardly find
and discuss the operators easily this way. Exceptionally, the case k = 1 might be
discussed directly for large classes of Klein geometries, cf. [28].

1.4. Induced modules. A better way to understand invariant linear differential
operators was suggested very long ago, see e.g., [19, 21], and the references therein.
The point is that understanding embeddings of nice modules into complicated ones
might be much easier than looking for morphisms in the original direction. Thus
we look at the dual picture.

The elements X of the Lie algebra g are identified with the left invariant vector
fields ω−1(X) ∈ X (G). Differentiating the H-equivariant functions σ : G → E in
the direction of X ∈ g in the unit e ∈ G corresponds to derivatives of the sections.
More precisely, if X ∈ h, then (X·σ)(u) = −X·(σ(u)) by the equivariance and,
thus, the genuine differential parts are in the quotient g/h, thus corresponding to
derivatives of the sections in directions in TOM .

[1]. In private communication with M.G. Eastwood, the authors of this note heard that the name
tractor illustrates the fact that traction comes after tension, and also the similarity with the
name of the first inventor.
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Now, consider a “word” X1X2 . . . Xk of elements in g and the corresponding
differential operator σ 7→ ω−1(X1) ◦ ω−1(X2) ◦ · · · ◦ ω−1(Xk)·σ(e) on the functions.

We may consider this operation as defined on the tensor algebra T (g) and
obviously the entire ideal in T (g) generated by the expressionsX⊗Y−Y⊗X−[X,Y ],
with X,Y ∈ g and [X,Y ] their Lie bracket, must act trivially.

The resulting quotient (left and right) g-module U(g) = T (g)/〈X ⊗ Y − Y ⊗
X − [X,Y ]〉 is called the universal enveloping algebra of the Lie algebra g.

We would like to understand the linear forms on the jet modules JkE. So far we
differentiate functions also in the vertical directions, and our values are in E. Thus
we should consider the tensor product

V (E) = U(g)⊗U(h) E∗ .
The space V (E) clearly enjoys the structure of a (g, H)-module (and (U(g), H)-mo-
dule), and it is called the induced module for the H-module E.

1.5. Proposition. The induced module V (E) is the space of all linear forms on
J∞E which factor through some JkE, i.e., depend on finite number of derivatives.

Proof. The claim follows from the construction of V (E) and the fact that choosing
a complementary vector subspace to h in g, we can decompose all letters in our
words X1 . . . Xk above and, by the equalities enforced by living in the quotient by
the ideal, we may “bubble” the letters in h to the very right. Once there, they act
algebraically and, thus, tensorizing over U(h) we remove just all redundancies.

The reader might consult [31] for more details. �

Obviously, E∗ injects into V (E) and generates this g-module. Now, we may enjoy
a small but extremely important miracle:

1.6. Theorem (Frobenius reciprocity). For all finite dimensional representations
E and F of H, there are the canonical isomorphisms

HomH(F∗, V (E)) = Hom(U(g),H)(V (F), V (E)) .

Proof. If we are given a homomorphism Φ ∈ Hom(U(g),H)(V (F), V (E)), we simply
define ϕ : F∗ → V (E) by restriction.

On the other hand, having a ϕ ∈ HomH(F∗, V (E)), we first define for all x ∈ U(g)
and v ∈ F∗,

Φ(x⊗ v) = x⊗U(h) ϕ(v) ,
which extends linearly, if well defined. To check this, notice that for all X ∈ h and
v ∈ F∗,

Φ(X ⊗ v − 1⊗X·v) = X ⊗ ϕ(v)− 1⊗ ϕ(X·v) = X ⊗ ϕ(v)− 1⊗X·ϕ(v) ,
which completes the proof. �

2. The translation principle

2.1. Parabolic Klein models. In the rest of the paper, we shall restrict to a large
class of geometries modelled over the Klein geometries G/P with G semisimple
and P ⊂ G parabolic. Let us recall that P is called parabolic if it contains a Borel
subgroup in G.
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We expect the reader knows the elements of the structure theory of the semisimple
Lie groups, the root spaces, the Weyl group, etc. Consult [31] or [9, Chapter 2] if
necessary.

At the level of Lie algebras, the parabolic subalgebras are those which contain
a Borel subalgebra. The choices of all parabolic subalgebras p ⊂ g correspond to
graded decompositions of the semisimple Lie algebras

(1) g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk = g− ⊕ p .

Thus, the Lie brackets satisfy [gi, gj ] ⊂ gi+j , and p = g0 ⊕ p+ = g0 ⊕ g1 ⊕ · · · ⊕ gk
is the decomposition of the parabolic subalgebra p into the reductive Levi quotient
l = g0 and the nilradical p+. There is also the subalgebra g− = g−k ⊕ · · · ⊕ g−1
complementary to p, which is the dual to p+ with respect to the Cartan-Killing
form on g.

For a given semisimple g, the above gradings with isomorphic parabolic subal-
gebras p ⊂ g are given uniquely, up to conjugation in g. They are also uniquely
determined by the grading elements E, i.e., E with the property [E,X] = jX for
all X ∈ gj . Obviously, E is in the center of g0, which is identified with l = p/p+.

The closed Lie subgroups P ⊂ G are parabolic if and only if their algebras
p = LieP are parabolic.

If G is a complex semisimple Lie group, then there is a nice geometric description:
P ⊂ G is parabolic if and only if G/P is a compact manifold (and then it is a
compact Kähler projective variety), see e.g., [32, Section 1.2]. In the real setting,
the so called generalized flag varieties G/P with parabolic P are always compact,
too.

We talk about |k|-graded Klein models G/P . For the complex semisimple
algebras, the Borel subalgebras are generated by Cartan subalgebras in g and all
simple positive co-roots αi in g. The parabolic subalgebras p then correspond to
the subsets of the co-roots αi, for which −αi do not belong to p. In the language
of the Dynkin diagrams, this can be nicely encoded by crossing the nodes related
to negative simple co-roots in g−.

In the real situation, p ⊂ g is parabolic, if the same holds true for the complexi-
fication. The classification is more subtle here, but it can be nicely encoded by the
Satake diagrams with crossed nodes being allowed only for the white ones, and
if one of the nodes joined by an arrow is crossed, then the other one has to be
crossed, too (see [9, Chapter 2] for detailed discussion).

The induced modules V (E) are called (generalized) Verma modules and they
enjoy a very rich and well understood structure theory, see e.g., [3, 4, 22].

We shall present a brief selection of tools and results from this theory, preparing
our approach to invariant differential operators on curved geometries.

A panopticum of examples of geometries modelled on parabolic Klein geometries
can be found in [9, Chapter 4], including projective, conformal Riemannian, CR,
and many others. Similarly to the survey [29], we shall focus on a few |1|-graded
examples here.

We shall see that the invariant linear operators appear in isomorphic patterns
and the de Rham complex of differential operators on the algebra of differential
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forms (decomposed into irreducible components) is a prototype of all of them. We
shall try to explain the general approach in a "learning by doing" way and we go
through one line of examples of the geometries and patterns only.

2.2. Grassmannian examples. Let us work with the real split forms of the type
A algebras, i.e., g = sl(n,R). There the |1|-graded cases correspond to choices of
just one crossed node, say the pth one, and g−1 = Rq ⊗ (Rp)∗, with p + q = n.
The Klein geometries are the so-called (p, q)-Grassmannians, i.e., the spaces of
p-planes through origin in Rp+q. The structure of the graded g is nicely seen in the
blockwise scheme of all trace-free matrices X ∈ g:

g '
(

0 0
g−1 0

)
⊕ z⊕

(
sl(p,R) 0

0 sl(q,R)

)
⊕
(

0 g1
0 0

)
,

where z is the one-dimensional center of the Levi factor g0 (generated by the grading
element E), while the rest of g0 is its semisimple part. Obviously, the grading
element is built of constant multiples of identity matrices in the diagonal blocks,
adjusted depending on p and q.

The case p = 1 provides the projective spaces RPn−1. We shall always assume
1 ≤ p ≤ q. In the small dimensions and in the language of the Dynkin diagrams,
the 2-dimensional projective space is drawn as × • , while our Klein geometries
of, (2, 2), (2, 3), and (3, 3) Grassmannians are encoded as

• × • • × • • • • × • •

Notice, that sl(4,C) = so(6,C) and this explains how the case of (2, 2)-Grassmann-
ians corresponds to the Roger Penrose’s complexified model of the Universe (i.e.,
the four-dimensional conformal Riemannian geometry of the Minkowski space, but
in the complexified form).

As well known, all representations of a semisimple Lie algebra are completely
reducible and the irreducible ones can be all built from the so called fundamental
weights, which form a base of the dual of the Cartan subalgebra in g, and we
can encode them by writing one over the respective node in the Dynkin diagram
and zeros on the rest. All irreducible representations are then given by the linear
combinations of the fundamental ones with non-negative integral coefficients. These
so-called dominant weights provide us with the (homogeneous) irreducible tractor
bundles, i.e., those homogeneous vector bundles defined by irreducible G-modules.

2.3. The completely reducible homogenous bundles. Let us continue with
our Grassmannian example. All irreducible p-modules are obtained as (outer)
tensor products of irreducible representations of the two semisimple components
in g0, together with the action of the center, and the trivial action of g1. The
simplest nontrivial modules include those with trivial actions of the center and the
second g0 component, thus, defined by irreducible actions of sl(p,R). The standard
representation Rp leads to the homogenous bundle EA, while its dual defines the
homogenous bundle EA. Similarly, if only the sl(q,R) component acts nontrivially,
the standard representation will give rise to the homogenous bundle EA′ , and its
dual will be EA′ . The tangent bundle EA′A and cotangent bundle EAA′ come from
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the tensor products of these bundles. Notice, this is exactly the Penrose’s abstract
index notation with the spinor indices, extended to general Grassmannians. Finally,
the one-dimensional modules Λp(Rp) ' Λq(Rq∗) are coming from actions of the
center z only. We call such bundles the weight bundles E [w], and we adopt the usual
normalization taking

E [AB...C] = E [−1] = E[A′B′...C′]
E[AB...C] = E [1] = E [A′B′...C′] ,

where we put p indices on the left and q indices on the right, and [ ] or ( )
on indices mean antisymmetrization or symmetrization, respectively. The general
weight bundles with integral weights are the tensor powers E [w] = E [1]w for positive
w and E [w] = E [−1]−w for negative ones. With some care, we may extend this to
real weights w.

It is easy to encode the irreducible p modules by weights of the entire g. Indeed,
the highest weights of such p-modules are those integral linear combinations of the
fundamental weights of g (recall the fundamental weights correspond to exterior
forms ΛkRp+q, k = 1, . . . , p+q−1), whose coefficients must by non-negative, except
the one over the crossed node. The coefficients over the uncrossed nodes encode
the representations of the two semisimple components in g0, while the coefficient
over the crossed node completes the information about the action of the center z.
We call such weights p-dominant.

In our case, all our irreducible homogeneous vector bundles live in the tensor
bundles EA...BC′...D′E...FG′...H′ ⊗ E [w] which we usually write as EA...BC′...D′E...FG′...H′ [w], and there is
a straightforward algorithm, how to compute the action of the grading element on
the corresponding modules.2

First, we adopt another encoding for the weights. Writing ei for the diagonal
matrix with just one 1 entry at the ith place and zero otherwise, the dual basis to the
fundamental weights corresponds to ei−ei+1 and we may replace the (n−1)-tuples
(α1, . . . , αn−1) of integers by n-tuples (a1, . . . , an), so that αi = ai − ai+1, and
we indicate the p+ q blockwise structure by adding a vertical bar at the proper
place. Requesting the dominant weights to be non-negative integral then means
a1 ≥ a2 ≥ · · · ≥ an, while for p-dominant weights we request this for the first
p-tuple and last q-tuple separately. Of course, these longer vectors are unique for
the weights, up to a common constant only. Thus, we usually normalize the choice,
e.g., we may request an = 0.

Next, we write down the p-dominant weights corresponding to enough p-modules
with known action of E (e.g., g and the fundamental representations of the two
semisimple components of g0), and compute which linear formula provides the right
action of E on them. In our three examples displayed above, the grading elements

2In general, the action of the grading element of a parabolic subalgebra p in semisimple g

is computed as the (sum of) scalar product(s) of the lines in the inverse Cartan matrix of g

corresponding to the crossed nodes, with the coefficients of the highest weight (in the expression
via the fundamental weights), cf. [9, Section 3.2.12].
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act on the modules determined by the coefficients ai by the constants:
(2) 1

2 (a1+a2−a3−a4) 3
5 (a1+a2)− 2

5 (a3+a4+a5) 1
2 (a1+a2+a3−a4−a5−a6)

clearly independent of our normalization.
Moreover, there is the so-called lowest weight ρ being the sum of all the funda-

mental ones (i.e., with coefficient one over each node). For good reasons which we
shall see below, we shall add ρ to our weights when encoding them. Thus the trivial
representation will be written as ((n− 1) (n− 2) . . . (n− p) | (n− p− 1) . . . 0).
In particular, in our three examples we get the three vectors

(3 2 | 1 0) (4 3 | 2 1 0) (5 4 3 | 2 1 0) .
Using the same formulae for the action of the center will simply add the constant
1
2pq corresponding to the action on the lowest weight.

The n-tuples for g-dominant weights in this encoding satisfy a1 > a2 > · · · >
an−1 > an = 0. The p-dominant ones request only a1 > a2 > · · · > ap and
ap+1 > · · · > an.

2.4. Homomorphisms between Verma modules. We continue working with
semisimple g and parabolic p. Consider two p-modules E, F and the corresponding
homogeneous bundles E and F (we shall not care about the choice of the Lie groups
now).

As obvious from Propositions 1.3 and 1.5, and Theorem 1.6, all invariant
linear differential operators Γ(E)→ Γ(F) are uniquely defined by (U(g), P )-homo-
morphisms Φ: V (F)→ V (E).

The Verma modules V (E) are always equipped by an obvious filtration
R ⊂ (R⊕ E∗) = V1(E) ⊂ V2(E) ⊂ · · · ⊂ V (E) .

Since F∗ is finite dimensional, its image under Φ is contained in Vk(E) for some
integer k > 0. The least k with this property is called the order of the morphism
Φ. Clearly, this corresponds to the differential order of the corresponding linear
differential operator.

We may also translate the concept of the symbol into this dual setup. By virtue
of the Poincaré-Birkhoff-Witt theorem, the grading corresponding to the filtration
is gr(V (E)) = gr(U(g−)) ⊗U(p) E∗ = S(g−) ⊗R E∗, (see e.g. [9, Section 2.1.10]).
Thus V (E) = S(g−)⊗R E∗ as a g0-module. In particular, there are the short exact
sequences
(3) 0→ Vk−1(E)→ Vk(E)→ Skg− ⊗R E∗ → 0 .

Now, the symbol of a homomorphism Φ: V (F)→ V (E) is defined as
σ(Φ) : F∗ → Vk(E)→ Vk(E)/Vk−1(E) = Sk(g−)⊗R E∗ ,

where k is the order of Φ.
The center of the universal enveloping algebra U(g) is quite well understood

for all semisimple algebras g. For each Verma module V (E), the restriction of
the action to this center is called the infinitesimal character of V (E). Clearly,
the infinitesimal characters of V (F) and V (E) must coincide if there should be a
non-zero homomorphism between them.
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Now, another miracle comes: By the famous Harish-Chandra theorem, two
Verma modules V (E) and V (F) have got the same infinitesimal character if and
only if their highest weights appear in the same orbit of the affine action of the
Weyl group on the space of weights.

Here, the Weyl group is generated by all reflections defined by the simple roots,
and the affine action is this very action applied to the sums of the weights with
the lowest weight ρ.

In our Grassmannian examples, all the elements of the Weyl group act just by
the permutations of the coefficients in the n-tuple representing the weight. Thus,
for our special cases (we add the 2-dimensional projective space), we are getting
the following patterns of all p-dominant weights in the affine orbit of the trivial
representation. Notice, we organize the columns by decreasing constant of the
action of the grading element, and the order of the homomorphisms between the
modules in the neighboring columns is always 1.

In fact the columns are giving the decompositions of Λj(T ∗M) into irreducible
components and the arrows correspond to the restrictions and decompositions of
the exterior differential d. Of course, as homomorphisms of the Verma modules,
they go in the opposite directions.

(4) (2|10) (1|20)oo (0|21)oo

(5) (32|10) (21|30)

||yyy
(10|32)

||yyy
(31|20)

bbEEE
(20|31)

bbEEE

||yyy
(30|21)

bbEEE

(6) (43|210) (32|410)

||yyy
(21|430)

||yyy
(10|432)

||yyy
(42|310)

bbEEE
(31|420)

bbEEE

||yyy
(20|431)

bbEEE

||yyy
(41|320)

bbEEE
(30|421)

bbEEE

||yyy
(40|321)

bbEEE

(7) (432|510)

xxpppppp (431|520)
vv

���������
(421|530)

vv

���������
(321|540)

vv

(532|410)

xxpppppp (320|541)

ffNNNNNN

xxpppppp

(543|210) (542|310)
vv

(531|420)

xxpppppp

ffNNNNNN
(521|430)

vv
(430|521)

^^=======

���������
(420|531)

vv

^^=======

���������
(310|542)

ffNNNNNN

xxpppppp (210|543)
vv

(541|320)

ffNNNNNN
(410|532)

ffNNNNNN

xxpppppp

(540|321)

ffNNNNNN
(530|421)

vv

^^=======
(520|431)

vv

^^=======
(510|432)

vv

There are algorithms discovering all non-zero homomorphisms in such patterns,
cf. [3, 4]. There are no other non-zero homomorphisms for the de Rham complex on
the 2-dimensional projective space in (4). In (5), the central diamond (the square



200 J. SLOVÁK AND V. SOUČEK

of arrows) displays two non-zero compositions, which equal each other up to sign
(as expected, since the whole pattern must be the de Rham complex of operators).
Moreover, there is the special homomorphism of fourth order joining the most right
and most left modules. This corresponds to the Paneitz operator, whose symbol
is the square of the Laplacian, see [15]. All other compositions of morphisms not
mentioned above are zero.

In (6) and (7), the situation is the same with all the diamonds there. In (6),
there are additionally two fourth order homomorphisms joining the modules in
the first line. In (7), there are six such fourth order morphisms, but also two quite
different ones – a morphism of order nine joining the most right and most left
modules, and one of order seven joining their neighbors. We shall not go into details
of this example here, there is the work in progress, [27], covering this case in detail.

Notice that the decompositions of the spaces of exterior forms Λk((Rp)∗ ⊗ Rq)
are easily understood by mimicking every symmetrization in ⊗k(Rp)∗ by identical
antisymmetrization in ⊗k(Rq), and vice versa. This is very nicely encoded by means
of the so called Young symmetrizers and Young diagrams. The pattern (7) is drawn
in this language in [9, Section 3.2.17].

Actually, another good way to understand the Grassmannians is to identify the
operators coming from the lower dimensional ones (corresponding to forgetting
some of the nodes in the Dynkin diagrams). The following diagram rewrites (7) this
way, and completes all the long arrows (not seen in the de Rham complex directly).
Viewing it as a 3-dimensional picture, we can clearly see the parts corresponding
to the (2, 3), (2, 2), and (1, 2) Grassmannians there. Some of these are indicated by
colors (we write only the first half of the weight encodings, which determines the
rest):

(8) (210|)

��

Z`acdeeffgghhiijkklmnp
u

�

��

��

(321|)

��

��

(310|)

��xxqqqqqqqqq

��

Z`ceffghiijjkllmnoprs
z

	

(432|)

��

(421|)

xxqqqqqqqqq

��

(320|)

ffMMMMMMMMM

��

��

(410|)
xx

xxqqqqqqqqq

��
(543|) (532|)

xxqqqqqqqqq (431|)

ffMMMMMMMMM

��

(521|)

xxqqqqqqqqq
xx

(420|)

ffMMMMMMMMM

��xxqqqqqqqqq (510|)

xxqqqqqqqqq
xx

(542|)

ffMMMMMMMMM
(531|)

ffMMMMMMMMM

xxqqqqqqqqq (430|)

��

ffMMMMMMMMM
(520|)

ffMMMMMMMMM

xxqqqqqqqqq

(541|)

ffMMMMMMMMM
(530|)

ffMMMMMMMMM

xxqqqqqqqqq

(540|)

ffMMMMMMMMM

Notice, how the higher dimensional cases inherit the exceptional ‘long’ opera-
tors, while adding some new ones, too. See [27] for more details about non-zero
compositions of arrows in (8).
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2.5. Translation principle idea. Let us come back to the general theory. The
homomorphisms between Verma modules appear with striking regularity. This fact
is a consequence of another quite straightforward observation:

Suppose W is a G-module (and P -module by restriction), and E a P -module.
Then we may view U(g)⊗ E∗ ⊗W∗, as a g-module, in two different ways:

X(x⊗ e⊗ w) = Xx⊗ e⊗ w
X(x⊗ e⊗ w) = Xx⊗ e⊗ w + x⊗ e⊗Xw ,

for all X ∈ g, x ∈ U(g), e ∈ E∗, and w ∈ W∗. The first one descends to the
g-module (and also (U(g), P )-module) structure on V (E ⊗W), while the second
one yields the structure of V (E)⊗W∗.

Clearly, there is the unique (U(g), P )-module homomorphism ϕ between the
above modules, defined as identity on 1 ⊗ e ⊗ w. An easy check reveals that ϕ
descends to the isomorphism
(9) V (E⊗W) = V (E)⊗W∗.

Next, an arbitrary non-trivial irreducible G-module W is never an irreducible
P -module. On the contrary, the g0-orbit of the action containing the highest weight
vector of W forms the p-irreducible component Wα on which the grading element
acts by the biggest scalar α, and the entire W enjoys a composition series
(10) W = Wα−` + Wα−`+1 + · · ·+ Wα

where the labeling reflects the scalar action by the grading element, and the ‘right
ends’ Wj = Wj + · · ·+ Wα form p-submodules, i.e., we get the filtration
(11) Wα = Wα ⊂Wα−1 ⊂ · · · ⊂Wα−` = W ,

with Wj = Wj/Wj+1. As a g0-module, the composition series is a direct sum of
submodules Wj and each of them further decomposes into g0-irreducible submodules
Wj,k. The composition series (1) of the adjoint representation on g is a good
example.

Now, consider an irreducible p-module E, and the module W as before. Then
we arrive at the composition series

E⊗W = E⊗Wα−` + · · ·+ E⊗Wα,

and each E⊗Wi splits into direct sum of irreducible g0-modules Ei,j .
Finally, assume that one of the many modules E′ = Ei,j has got a distinct

infinitesimal character then all the other modules in the above decomposition.
Then the injection V (E′) → V (E ⊗W) is defined by its image being the joint
eigenspace of the infinitesimal character of V (E′). Consequently, there is the
complementary subspace defined as the generalized eigenspaces of all the other
infinitesimal characters there.

Thus, under the latter assumption, V (E′) canonically splits off the V (E⊗W) =
V (E)⊗W∗ as a direct summand.

Now we are ready to tell the translation idea: If Φ : V (F)→ V (E) is a non-trivial
(U(g), P )-module homomorphism (so in particular, the Verma modules share the
same infinitesimal character), then in view of (9), and assuming further that both
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V (E′) and V (F′) enjoy the same and unique infinitesimal character in V (E⊗W)
and V (F⊗W), respectively, we obtain the composed homomorphism

(12) V (F′)→ V (F⊗W) = V (F)⊗W ∗ → V (E)⊗W∗ = V (E⊗W)→ V (E′) .

We talk about twisting the homomorphism Φ by tensoring it with the identity on
g-module W∗.

A difficult question remains, how to recognize whether the translated morphism
V (F′)→ V (E′) is nontrivial.

2.6. The Jantzen-Zuckermann translation principle. Before we explain why
the shapes of the de Rham complexes in (4)–(7) happen to be the general patterns
for all infinitesimal characters, let us focus on the action of the Weyl group Wg on
the weights.

For each p-dominant weight α, there is exactly one s ∈Wg such that α+ ρ =
s·(λ + ρ) for a uniquely defined g-dominant weight λ + ρ, i.e., λ + ρ sits in the
closed dominant Weyl chamber. If λ itself is g-dominant, then we say that the
infinitesimal character ξα is regular. If λ+ ρ sits in a wall (or intersection of several
walls) of the dominant chamber, we call ξα singular (or more precisely k-singular,
if sitting on intersection of k walls).

Starting with a g-dominant λ, we obtain the so called Hasse diagram of the orbit
of the subgroup Wp of those s ∈Wg with the affine action producing p-dominant
weights. This Hasse diagram is independent of the chosen dominant weight λ, see
[9, Section 3.2.18] for recipes how to get it. If λ is not dominant, but λ+ ρ is, then
still the affine action of Wp produces some p-dominant weights on its orbit, which
all appear with 2k repetitions, if the infinitesimal character is k-singular.

The length of s is defined as the least number of simple reflections composed to
built s. Looking at our de Rham patterns, the lengths of such s is the number of
transpositions of neighbors in the permutation of the numbers and this also labels
the columns there (e.g., going from zero to nine in (7)).

For a moment, let us come back to the regular infinitesimal characters and let
us write Eα or Wµ for the modules with p or g-dominant highest weights α or µ,
respectively. Following [5, 33], we define two functors on U(g)-modules, which split
into direct sums of components with respect to the infinitesimal characters. These
include our (generalized) Verma modules. We shall write pλ for the projection of
such modules to the component with the infinitesimal character ξλ. Consider two
g-dominant weights λ, µ, and define the translation functors

ϕλλ+µ = pλ+µ ◦ (−⊗Wµ) ◦ pλ(13)

ψλ+µ
λ = pλ ◦ (−⊗ (Wµ)∗) ◦ pλ+µ(14)

where the action on morphisms is given by twisting by the identity in the tensor
product.

Actually, the same construction works if µ is g-dominant, while λ is a p-dominant
weight with a singular infinitesimal character. We say that the weights λ and λ′

are equi-singular if their singular character is represented by a weight on the same
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(intersection of) wall(s) of the dominant Weyl chamber. In particular, all weights
with regular infinitesimal character are considered equi-singular in this sense.

2.7. Theorem. Consider a g-dominant weight µ and a p-dominant weight λ such
that λ+ ρ is in the closed dominant Weyl chamber.
(1) The functor ψλ+µ

λ is left adjoint to ϕλλ+µ.
(2) If the weights λ and λ+ µ are equi-singular, then

ψλ+µ
λ (V (Es·(λ+µ))) = V (Es·λ), ϕλλ+µ(V (Es·λ)) = V (Es·(λ+µ)) ,

whenever s·λ is p-dominant.

Proof. Since Wµ is finite dimensional, there is the tautological isomorphism for
all p-modules E and F,

(15) Hom(U(g),P )(V (F)⊗ (Wµ)∗, V (E)) = Hom(U(g),P )(V (F), V (E)⊗Wµ) .

As we know, only the summand pλ(V (Es·(λ+µ)) ⊗ (Wµ)∗) can contribute to
Hom(U(g),P )(V (Es·(λ+µ))⊗(Wµ)∗, V (Es′·λ) and similarly only pλ+µ(V (Es′·λ)⊗Wµ)
can contribute to Hom(U(g),P )(V (Es·(λ+µ)), V (Es′·λ)⊗Wµ). Thus, we have arrived
at the requested natural equivalence

Hom(U(g),P )
(
ψλ+µ
λ

(
V (Es·(λ+µ))

)
, V (Es′·λ)

)
' Hom(U(g),P )

(
V (Es·(λ+µ)), ϕλλ+µ

(
V (Es′·λ)

))
.

The second claim is more difficult to prove. We present a quick sketch only.
As shown in [33], for equi-singular λ and λ+ µ, the functors ψµ+λ

λ and ϕλλ+µ are
mutually inverse natural equivalences. Clearly, the p-dominant weights λ and λ+µ
appear at the same position in the Hasse diagram, the infinitesimal character is
shared by the entire Hasse diagram, and thus pλ is identity on every V (Es·λ). Next,
as discussed above, the tensor product V (Es·λ⊗Wµ) (as a g0-module) decomposes,

V (Es·λ ⊗Wµ) = U(g−)⊗ ((Es·λ)∗ ⊗Wµ) = U(g−)⊗ (⊕kj=1Wνj ) = ⊕kj=1V (Wνj ) .

The weights νj in the sum appear with multiplicities which can be computed
explicitly, e.g., by means of the Klimyk formula. Finally, the projection pλ+µ selects
only those with the infinitesimal character ξµ+λ.

Summarizing, the value of ϕλλ+µ on a generalized Verma module is a sum of
generalized Verma modules. Swapping Wµ and λ with (Wµ)∗ and λ+ µ, we get
the same claim for ψλ+µ

λ . Now, we know that ψλ+µ
λ ◦ ϕλλ+µ is naturally equivalent

to identity and, thus, the values can always consist of one Verma module only.
Certainly, ν = s·(λ+ µ) appears among the weights νj , and it must appear with
multiplicity one. As a result,

ϕλλ+µ(V (Es·λ)) = V (Es·(λ+µ)) .

Similarly, we understand the functor ψλ+µ
λ , replacing µ by −µ and λ by µ+ λ. �
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2.8. Back to examples. As a direct consequence of the theorem we understand
that the de Rham pattern is copied for each g-dominant weight, with all non-trivial
morphisms at exactly the same positions. The order of the morphisms is easily
computed as the difference of the actions of the grading element, i.e., using the
formula (2) (possibly working with the weights λ+ ρ, since constant changes do
not matter).

To see a 1-singular example, take the p-dominant weight λ = (21|10) as the left
most weight in the pattern (5) (remember, the notation is describing rather λ+ ρ,
which sits in the wall of the dominant chamber), and apply the same permutations
as in (5) again. We arrive at (weights which are not p-dominant are replaced by
crosses)
(16) (21|10) × (10|21)

yyyyyy

(21|10)

EEE
EEE

(10|21)ee

×
where the dotted homomorphism corresponds to the second order composition in
the central diamond in the de Rham pattern, and it corresponds to the conformally
invariant Laplacian, i.e., the Yamabe operator, on densities with the right weights.

By the results of Enright and Shelton, [16], there are bijective correspondences
between the patterns for singular infinitesimal characters and patterns for regular
characters in lower dimensional geometries, we shall not go into details here. For
example, the pattern in (16) coincides with the regular one for one-dimensional
projective geometry. There, the de Rham consists of one morphism only, exactly as
seen in (16).

Similarly, the only 2-singular pattern for the (2, 2) Grassmannian will consists
of four equal p-dominant weights and there are no no-trivial morphisms there. All
the 2-singular patterns for the (3, 3) Grassmannian will be again of the same shape
as the one-dimensional projective de Rham (there will be two groups of four equal
p-dominant weights, with one non-trivial homomorphism between them).

Actually, our aim is to extend this algebraic translations to the realm of curved
Cartan geometries in the next section. For this endeavor, the crucial observation
in [15] was, that actually the above considerations allow for translations based on
many other weights of Wµ than the highest and lowest ones. We formulate this
observation as two propositions:
2.9. Proposition (Proposition 9 in [15]). Suppose that V (E) and V (F) have
the same infinitesimal character. Suppose that V (E′) and V (F′) have the same
infinitesimal character. Let W be a finite-dimensional irreducible representation of
G and suppose that
• V (F′) occurs in the composition series for V (F⊗W) and has distinct infini-

tesimal character from all other factors;
• V (E′) occurs in the composition series for V (E⊗W) and has distinct infini-

tesimal character from all other factors.
It follows that V (F) occurs in the composition series for V (F′⊗W∗) and that V (E)
occurs in the composition series for V (E′ ⊗W∗). We suppose further that
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• all other composition factors of V (F′ ⊗ W∗) have infinitesimal character
distinct from V (F);
• all other composition factors of V (E′ ⊗ W∗) have infinitesimal character

distinct from V (E).
Then translation gives an isomorphism

Hom(U(g),P )(V (F), V (E)) ' Hom(U(g),P )(V (F′), V (E′))

whose inverse is given by translation using W∗.

Proof. Straightforward, using the tautological isomorphisms (15) and the above
argumentation. �

Actually, sometimes there are also one-way translations producing non-trivial
homomorphisms in the less singular patterns from the more singular ones. For
example, in the case of the (2, 2) Grassmannian, we might start with the identity
morphism in the only 2-singular pattern, produce the morphism corresponding to
the first order Dirac operator on the basic spinors (which is in the other 1-singular
pattern there), as well as the second order morphism from (16). But, the 4th-order
morphism corresponding to the Paneitz operator in the de Rham pattern cannot
be translated from anything else.

Such one-way translations are based on the following extension of the previous
proposition. Recall, there is the scalar action of the grading element on irreducible
p-modules E. We write α(E) for this constant, now.

Notice, that the difference of these scalars determines the order of the prospective
homomorphisms.

2.10. Proposition. Let Φ: V (E)→ V (F) be a nontrivial homomorphism of Verma
modules, and let W be an irreducible finite dimensional G-module.

Suppose that there are irreducible p-modules E1,E2,F1,F2 such that:
(i) E⊗W = E1 ⊕ E2 ⊕ E′; F⊗W = F1 ⊕ F2 ⊕ F′;
(ii) Verma modules V (E1), V (E2), V (F1), V (F2) have the same infinitesimal cha-
racter;
(iii) all pieces in the composition series for V (E′), V (F′) have different infinitesimal
characters. from those in (ii);
(iv) The actions of the grading element satisfy α(E1) < α(E2), α(F1) > α(F2) and
V (F) splits off from V (F1 ⊗W∗).
If there is no nontrivial homomorphism from V (E2) to V (F1), then the translated
homomorphism

Φ̂ : V (E1)→ V (E⊗W)→ V (F⊗W)→ V (F1)

is nontrivial.

Proof. Our assumptions imply that V (E1) embeds to V (E⊗W) and V (F⊗W)
projects to V (F1). Hence the translated homomorphism Φ̂ is well defined. V (F)
splits off from V (F1 ⊗W∗), hence the composition

V (E) Φ→ V (F)→ V (F1 ⊗W∗)
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is nontrivial. Based on (15), this is equivalent to the fact that

V (E⊗W) Φ⊗IdW∗−→ V (F⊗W)→ V (F1)
is nontrivial.

From (iii) it follows that V (E⊗W) = V (E1 ⊕ E2)⊕ V (E′). Using (ii) and (iii),
it is clear that also the composition

V (E1 ⊕ E2) Φ⊗IdW∗−→ V (F⊗W)→ V (F1)
is nontrivial.

In case that the composition V (E1)→ V (E1⊕E2)→ V (F)→ V (F⊗W)→ V (F1)
would be trivial, it follows that there is a nontrivial homomorphism V (E2) to V (F1),
which is a contradiction. �

3. The curved translation principle

3.1. Cartan connections. Finally, we come to the curved Cartan geometries,
modeled over the Klein’s homogeneous spaces G/H. This concept generalizes the
affine connections on manifolds M , realized as the sum of soldering forms and
principle connections on the linear frame bundle on M , i.e., the bundles of frames of
TM . The affine Rn, as the homogeneous space Aff(n,R)/GL(n,R) is the relevant
Klein model for the affine connections.

The reader may find all the relevant background on Cartan connections in [9,
Section 1.5] or [26].
Definition. Let G be a (finite dimensional) Lie group, H its closed subgroup. A
Cartan connection of type G/H is a principal fiber bundle G →M with structure
group H, equipped by a 1-form ω ∈ Ω1(G, g), satisfying all the properties of the
Maurer-Cartan form on G, which make sense:
(i) The one-form ω is H-equivariant, i.e., (rh)∗ω = Ad(h−1) ◦ ω for all h ∈ H.
(ii) The one-form ω reproduces fundamental vector fields on G, i.e., ω(ζX(u)) =
ω−1(X)(u), for all u ∈ G, X ∈ h, ζX(u) = ∂

∂t |t=0u· exp tX.
(iii) The one-form ω is an absolute parallelism, i.e., ω(u) : TuG → g is a linear
isomorphism.

The morphisms between the Cartan connections ω and ω′ on principal bundles
G and G′, with the same structural group H, are principle fiber bundle morphisms
ϕ : G → G′ (over the identity on the group H), satisfying ϕ∗ω′ = ω.

The group of automorphisms of a given Cartan connection of type G/H is always
a finite dimensional Lie group whose Lie algebra is a subalgebra in g. In particular,
its dimension is bounded by the dimension of G, see [9, Section 1.5.11].

In practice, the geometries are mostly defined by some simpler infinitesimal
data, for example a G-structure, i.e., reduction of the structure group GL(n,R)
of the linear frame bundle to a closed subgroup G. Riemannian manifolds and
conformal Riemannian manifolds are typical examples. The (normalized) natural
Cartan connection is then a result of a construction (a so called prolongation). The
theory and many examples of important Cartan geometries are discussed in great
detail in [9, Chapters 1, 4, and 5].



SEMIHOLONOMIC JETS AND INDUCED MODULES 207

The existence of the automorphisms is closely related to the curvature of the
Cartan connection ω, the two-form K ∈ Ω2(G; g), K = dω + 1

2 [ω, ω].
Of course, the Maurer-Cartan equations say that K = 0 if ω is the Maurer-Cartan

form on the Lie group G.
There is the well known theorem that the Cartan geometry is locally isomorphic

to its Klein’s model, if and only if K vanishes, see [9, Section 1.5.2].

3.2. Natural bundles. The construction of the homogeneous bundles E from
the H-modules E = EO from 1.1, extends directly to a functor on the category
of principal bundles and their morphisms, by the very same construction of the
associated bundles. We shall now write E for the functor mapping the principal
bundles G →M to the associated bundle G ×H E→M , with the obvious action
on morphisms.

Any H-module homomorphism provides a natural transformation of the corres-
ponding functors.

Notice that exactly as in 1.2, the sections of the natural bundles are identified
with the H-equivariant functions in C∞(G,E).

The most classical examples of Cartan connections are the affine connection
on a manifolds. Due to the reductive structure of the Klein’s model (i.e., G is the
affine group in dimension n, H = GL(n,R) and the horizontal directions Rn form
an H-submodule), the natural vector bundles are essentially only components of
tensor bundles over the underlying manifolds. The Cartan connection then splits
as θ + γ, the soldering form and the linear connection form, while its curvature
K = T +R splits naturally into the torsion and curvature of the affine connection.
Finally, there is the well known Schouten’s reduction theorems saying that all
invariant differential operators are in this setting obtained via covariant derivatives
of the arguments, the curvature and torsion, and invariant algebraic operations
(see [20, Chapter 28]).

We should also recall that viewing the sections of natural bundles as functions
in C∞(G,E)GL(n,R), the covariant derivative with respect to an affine connection
is simply given by differentiating in the direction of the constant fields ω−1(X)
for X ∈ Rn (notice, at a fixed frame u in the linear frame bundle G of the base
manifold M , X is then identified with a tangent vector on M).

For general Cartan geometries, the existence of natural covariant derivatives
on natural bundles is a subtle, but completely algebraic, question with answers
completely inherited from the Klein’s models, see [9, Section 1.5.6]. The Riemannian
geometry (with the three different possible homogeneous models - the Euclidean, hy-
perbolic and spherical spaceforms) is a special example of a geometry with reductive
model ensuring the unique normalized connection, the Levi Civita connection.

Just in the case of G-modules, i.e., dealing with tractor bundles, there is always
the natural linear connection induced by the Cartan connection itself on all of
them. This follows from exactly the same arguments as in 1.1, see also [9, Section
1.5.7].

The adjoint tractor bundle A = G×H g provides an extremely important example.
The short exact sequence of H-modules 0→ h→ g→ g/h→ 0 gives rise to short
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exact sequence of natural bundles
0→ G ×H h→ A→ TM → 0.

A straightforward check reveals that the curvature of the Cartan connection
descends to a two-form in Ω2(M ;A). See [9, Section 1.5.7] for further properties
and details.

3.3. Grassmannian geometries. The Cartan geometries modeled over the (m,n)-
Grassmannians are examples of G-structures defined by the reduction of the struc-
ture group S(GL(m,R) × GL(n,R)) ⊂ GL(m + n,R), as explained in 2.2. We
call them almost Grassmannian geometries and they are equivalently defined by
identifying TM with tensor product of the two auxiliary vector bundles EM and
F ∗M of dimensions m and n, respectively, together with the identification of the
top degree forms on E and F ∗, again as discussed in 2.2.

As before, we may assume m ≤ n. The projective geometries correspond to
m = 1 and the Cartan curvature has got values in p, i.e., there is no torsion. If
m = n = 2, we deal with the split signature conformal Riemannian geometries in
dimension 4, and there are two curvature components there (again no torsion).

If m = 2 < n, then there is one torsion and one curvature there and the
geometries without the torsion are higher dimensional analogues of the self-adjoint
4-dimensional conformal structures. Dealing with the quaternionic real form of the
same complexified algebras we arrive at the (almost) quaternionic geometries.

If 2 < m ≤ n, the almost Grassmannian geometries come with two torsion
components. The special cases of m = n are of special interest, since they are
another promising generalization of the 4-dimensional conformal geometries.

In all the above cases, the identification of the top degree forms on EM and
FM implies that the classical results from the tensorial invariant calculus may be
employed for the two sets of abstract indices describing fields in EA...BC′...D′E...FG′...H′ [w].

3.4. Invariant operators and jet prolongations. In the Klein’s world of geo-
metric analysis, the invariant operators can be viewed as natural transformations
between the relevant jet prolongations of the homogeneous bundles. This does
not make sense now, because the existence of curvature excludes or reduces the
existence of (auto)morphisms of the Cartan geometries.

It seems there are two options to move forward: either to exploit the concept of
the so called gauge-natural operators, see [20, Chapter 12], i.e., we would work over
the category of principal bundles and gauge-natural bundles, and add the Cartan
connection ω to the arguments of the operators, or we rather seek ways, how to
extend the operators at the Klein’s model to the general cases.

In the first case, we mostly drastically reduce the choice of the natural bundles.
Thus, we shall focus on the second approach only.

Perhaps the first idea should be to exploit the equivalence between the invariant
linear operators and H-module morphisms shown in Proposition 1.3. This happens
to be a bit tricky, though.

Fortunately, we may mimic the idea of expressing the directional derivatives via
the actions of the constant fields ω−1(X) on the H-equivariant functions. Indeed,
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for each Cartan connection ω we obtain the so called fundamental derivative Dω,
which is an operation

(17) C∞(G,E)H 3 σ 7→ Dω(σ) = (X 7→ ω−1(X)·σ) ∈ C∞(G, g∗ ⊗ E)H ,

for all X ∈ g. Thus, the fundamental derivative is a natural differential operation
mapping sections of E to sections of A∗ ⊗E , which may be iterated. See [9, Section
1.5.8] for details and further properties.

Of course, there is a lot of redundancy there, since the derivatives in the directions
of ω−1(X), with X ∈ h, act algebraically. Let us look at the situation at the level
of H-modules. The value of the fundamental derivative Dωσ, together with the
value σ, can be understood as a couple (v, ϕ) ∈ E⊕ g∗ ⊗ E. The action of h ∈ h is

h·(v, ϕ) =
(
h·v,X 7→ h·ϕ(Adh−1 X)

)
.

Comparing this with the natural action on the first jet prolongation J1E, we can
see that actually J1E is naturally embedded in E ⊕ g∗ ⊗ E as the H-submodule
consisting of couples (v, ϕ) with ϕ(Z) = −Z·v, for all Z ∈ h (which perfectly
mimics the fact that Dωσ(Z) = −Z·σ for such Z).

Thus, the fundamental derivative provides the universal first jet prolongation of
sections. If we choose a complementary subspace g− identified with the quotient
g/h, we can restrict Dω to g−. Then, exactly as for the Klein’s model, we arrive at

J1E ' G × J1E ,

and the universal differential operator σ 7→ j1σ defined by the restriction of the
fundamental derivative to g−.

In particular, we have verified that each H-module homomorphism defining an
invariant first order linear operator on the Klein’s model G/H directly extends to
an invariant linear differential operator on the category of Cartan connections of
the type G/H.

3.5. Higher order jets. We might repeat the argumentation from the previous
paragraph and find the second order prolongation module

J2E = E + ((g/h)∗ ⊗ E) + (S2(g/h)∗ ⊗ E)

naturally embedded in the module

E⊕ (g∗ ⊗ E)⊕ (g∗ ⊗ g∗ ⊗ E)

via the iterated action of the fundamental derivative (notice, the first module is
given as composition series, while the second one is a direct sum). Thus, we arrived
again at the identification J2E = G ×H J2E for all H-modules E. Now, every
second order invariant (linear) operator on the Klein’s model G/H corresponds to
a h-module homomorphism Φ on the relevant jet prolongations J2E. Thus, each
such operator extends to an invariant operator between the corresponding natural
bundles in the entire category of Cartan connections of this type, by exploiting the
iterated fundamental derivative and using the same Φ.
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However, this fails for orders bigger than two. The reason is explained in [9,
Section 1.5.10] – the iterated fundamental derivative Dω always defines and injective
universal operator

JrE → ⊕rj=0S
jA∗ ⊗ E ,

but for r ≥ 3, JrE is not naturally identified with the associated bundle G ×H JrE.
We may iterate J1(. . . J1(J1E)), and although this involves unnecessary redun-

dancies, these can be removed by the following well known categorical construction.

Definition. The semiholonomic jets J̄rE are inductively defined as the equalizer
of all the natural projections J1(J̄r−1E)→ J̄r−1E , starting with J̄1E = J1E .

For every H-module E, we define its semiholonomic jet prolongation as the
H-module J̄r(G×HE)O, i.e., the fiber over origin of the semiholonomic prolongation
of E over M = G/H.

By the very construction, J̄rE ' G ×H J̄r, and the iterated fundamental deriva-
tives define the universal differential operator E → J̄rE .

In particular, J̄2E is the equalizer of the two natural projections appearing
as the value of the functor J1 on the projection J1E → E , and the projection
J1(J1E)→ J1E .

The modules defining the semiholonomic jet prolongations as natural bundles
are

J̄rE = E + (g/h)∗ ⊗ E + · · ·+⊗r(g/h)∗ ⊗ E
which is a composition series (the right ends are H-submodules) with quite wild
action of H.

Obviously we have got a one-way analogy of the Proposition 1.3:

Proposition. Each non-zero H-module homomorphism Φ: J̄kE → F defines
invariant linear differential operators D : Γ(E)→ Γ(F) of order at most k.

Notice that the opposite implication fails in general because the image of the
universal operator E → J̄kE is an algebraic subvariety in the target and there are
counterexamples of operators defined by a morphism on the image of the universal
operator (restricted to the fiber over the origin in the model), but not extending to
a genuine H-module morphism on the entire J̄kE. We shall comment more on this
phenomenon later.

3.6. Semiholonomic induced modules. Exactly as in the Klein’s model case,
we better look at the dual picture. Here we follow [15], where the basic concepts
were defined first. Although only the conformal Riemannian structures and the
relevant operators and (semiholonomic) Verma modules were discussed in [15],
many steps can be employed in general, without any modification.

As we have seen, the role of the left invariant vector fields are for Cartan
geometries played by the constant vector fields ω−1(X) ∈ X (G), X ∈ g. Dif-
ferentiating the H-equivariant functions σ : G → E in the direction of ω−1(X)
yields the fundamental derivative of the sections. More precisely, if X ∈ h, then
(ω−1(X)·σ)(u) = −X·(σ(u)) by the equivariance and, thus, the genuine differential



SEMIHOLONOMIC JETS AND INDUCED MODULES 211

parts are again in the quotient g/h, thus corresponding to derivatives of the sections
in directions in TOM .

Next, consider again a ‘word’ X1X2 . . . Xk of elements in g and the corresponding
differential operator σ 7→ ω−1(X1) ◦ω−1(X2) ◦ · · · ◦ω−1(Xk)·σ(u) on the functions,
evaluated in a frame u ∈ G.

We may consider this operation as defined on the tensor algebra T (g) and again,
there is the ideal I in T (g) generated by the expressions X ⊗ Y − Y ⊗X − [X,Y ],
with X,Y ∈ g, but at least one of them in h, which acts trivially. This is the
consequence of the fact, that the curvature of the Cartan connection ω vanishes if
one of the arguments is vertical.

The resulting quotient (left and right) g-module Ū(g) = T (g)/I is called the
semiholonomic universal enveloping algebra of the Lie algebra g.

Next we want to understand the linear forms in the dual of the semiholonomic
jet modules (J̄kE)∗. Exactly as with the induced modules, we differentiate functions
also in the vertical directions, and our values are in E. Thus we consider the tensor
product

V̄ (E) = Ū(g)⊗U(h) E∗.
The space V̄ (E) clearly enjoys the structure of a (g, H)-module (and (Ū(g), H)-mo-
dule), and it is called the semiholonomic induced module for the H-module E.

3.7. Proposition. The induced module V̄ (E) is the space of all linear forms on
J̄∞E which factor through some J̄kE, i.e., depend on finite number of derivatives.
There is the natural surjection V̄ (E)→ V (E).

Proof. As in the induced modules case, the claim follows from the construction
of V̄ (E) and the fact that choosing a complementary vector subspace to h in g,
we can decompose all letters in our words X1 . . . Xk above and, by the equalities
enforced by living in the quotient by the ideal, we may “bubble” the letters in h to
the very right. Once there, they act algebraically and, thus, tensorizing over U(h)
we remove just all redundancies. �

Obviously again, E∗ injects into V̄ (E), generates this g-module, and there is the
natural filtration

E∗ = V̄0(E) ⊂ V̄1(E) ⊂ · · · ⊂ V̄k(E) ⊂ · · · ⊂ V̄ (E)
inherited from the filtration on T (g).

Next, assume that there is a fixed complementary subalgebra g− ' g/h to h ⊂ g.
Then the Poincaré-Birkhoff-Witt procedure reveals that the graded semiholonomic
universal algebra equals gr Ū(g) = T (g−) as vector space, while the graded semiho-
lonomic induced module V̄ is then, as a vector space, isomorphic to Ū(g−)⊗R E∗.
Moreover, there is the the following commutative diagram of short exact sequences:

(18) 0 // V̄k−1(E) //

��

V̄k(E) //

��

⊗k(g/h)⊗ E∗ //

��

0

0 // Vk−1(E) // Vk(E) // Sk(g/h)⊗ E∗ // 0

where the most right vertical arrow is given by the symmetrization.
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Next, notice the Frobenius reciprocity 1.6 works without any change in the
proof.

3.8. Proposition (Frobenius reciprocity, [15]). For all finite dimensional repre-
sentations E and F of H, there are the canonical isomorphisms

HomH(F∗, V̄ (E)) = Hom(Ū(g),H)(V̄ (F), V̄ (E)) .

Proof. If we are given a homomorphism Φ ∈ Hom(Ū(g),H)(V̄ (F), V̄ (E)), we define
ϕ : F∗ → V̄ (E) by restriction.

On the other hand, having a ϕ ∈ HomH(F∗, V̄ (E)), we define for all x ∈ Ū(g)
and v ∈ F∗,

Φ(x⊗ v) = x⊗Ū(h) ϕ(v),
which extends linearly, if well defined. This is again checked by noticing that for
all X ∈ h and v ∈ F∗,

Φ(X ⊗ v − 1⊗X·v) = X ⊗ ϕ(v)− 1⊗ ϕ(X·v) = X ⊗ ϕ(v)− 1⊗X·ϕ(v) ,

which completes the proof. �

3.9. Lifting homomorphisms. Let us restrict ourselves to the parabolic geome-
tries, i.e., semisimple Lie groups G with parabolic subalgebras P , the generalized
Verma modules, and their semiholonomic versions.

While the homomorphisms between the generalized Verma modules,

Hom(U(g),H)(V (F), V (E))

are often very well understood, very little is known about the spaces

Hom(Ū(g),H)(V̄ (F), V̄ (E))

which we are interested in, now.
The strategy proposed in [15] is to discuss the possible liftings of the existing

homomorphisms V (F) → V (E) to morphisms V̄ (F) → V̄ (E) with respect to the
canonical projection. Moreover, due to the Frobenius reciprocity, this is equivalent
to the search for the dashed H-module morphisms in the following commutative
diagram:

(19) V̄ (E)

��
F∗

55kkkkkkk // V (E)

In turn, for irreducible modules E, F, this is equivalent to finding a highest weight
vector in V̄ (E) covering the relevant highest weight vector in V (E).

Next, recall from 2.4 that the order of homomorphism Φ : V (F)→ V (E) is the
lowest k such that Φ maps F∗ into Vk(E). The order of homomorphisms Φ between
the semiholonomic Verma modules is defined in the same way.

Then, again following the Klein’s model case, the symbol of Φ is

σ(Φ) : F∗ → V̄k(E)→ V̄k(E)/V̄k−1(E) = ⊗k(g−)⊗ E∗.
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3.10. Proposition ([15]). A homomorphism V (F)→ V (E) of order at most two
always lifts to a homomorphism V̄ (F)→ V̄ (E).

Proof. The claim is equivalent to the existence of an H-equivariant splitting of
the canonical projection V̄2(E)→ V2(E). Following [15], we define such a splitting
by identity on V1E = V̄1E, and we determine it completely by mapping

V2(E) 3 XY e 7→ 1
2(XY + Y X + [X,Y ])e ∈ V̄2(E)

for all e ∈ E∗, X,Y ∈ g. Checking its equivariance is straightforward. �

This simple proposition implies again that all first and second order linear
invariant operators extend canonically from the Klein’s models to the entire category
of the corresponding Cartan geometries.

Let us now restrict to |1|-graded parabolic geometries, which is the case with all
our examples. Then our definition of symbol is compatible with the homogeneities
in terms of the actions of the grading elements E in g0. Here we also enjoy the
following proposition. In general, we could also think about the finer filtering of
the induced modules governed by the action of E, as we are doing in the filtering
of the g-modules when viewed as p-modules.

3.11. Proposition ([15]). For all |1|-graded parabolic geometries and irreducible
P -modules E, F, the homomorphisms V (F)→ V (E), or V̄ (F)→ V̄ (E), are deter-
mined by their symbols.

If the homomorphism Φ̄ of the semiholonomic Verma modules covers Φ, then
the symbol of Φ is obtained by symmetrization of the symbol of Φ̄.

The order of the homomorphism is given as the difference of the actions of the
grading element E ∈ g0 on F and E.

Proof. The existence of the grading element in g0 defining the grading of g
shows that the highest weight vector determining a kth order operator must sit in
⊗k(g/p)⊗ E∗. Since F∗ generates both V (F) and V̄ (F), the homomorphisms are
uniquely determined by the embeddings F∗.

The next claim is obvious from the commutative diagram (18).
The final observation is clear since we deal with |1|-graded geometries, so the

degree k of Sk(g−)⊗ E must be just the mentioned difference. �

3.12. Curved translation principle. We are going to show, that the translation
principle extends to some extent from the homogeneous case to the general curved
Cartan geometries. The main idea (introduced in [15]) is to show, that many
translations of morphisms Φ : V (F)→ V (E) which can be covered by Φ̄ : V̄ (F)→
V̄ (E) lead to results which again can be covered.

A special case of the invariant operators are the so called splitting operators used
in (12). There, the embeddings V (F′)→ V (F⊗W) and projections V (E⊗W)→
V (E′) are morphisms, whose orders are given by the relevant position of the dashed
modules in the filtration of W. Thus, if the difference from the top or bottom,
respectively, is at most two, we can be sure that the necessary splitting will exist
in the semiholonomic version as well.



214 J. SLOVÁK AND V. SOUČEK

In the semiholonomic case, we either can assume that the filtration of W is of
length at most two, or we can restrict ourselves only to submodules which are at
most two steps from the highest component in the filtration for the embeddings,
and at most two steps from the bottom for the projections.

Then, we can cover the translation from the Klein’s model in the curved case as
seen in the next diagram:

V̄ (F′) //

��

D̄′

++g d c b b a a ` ` ` _ _ _ ^ ^ ^ ] ] \ \ [ Z W
V̄ (F⊗W)

��

V̄ (F)⊗W∗

��

D̄⊗1// V̄ (E)⊗W∗

��

V̄ (E⊗W) //

��

V̄ (E′)

��
V (F′) //

D′

33W Z [ \ \ ] ] ^ ^ ^ _ _ _ ` ` ` a a b b c d g
V (F⊗W) V (F)⊗W∗ D⊗1// V (E)⊗W∗ V (E⊗W) // V (E′)

Summarizing, all homomorphism of Verma modules which can be obtained from
1st or 2nd order morphisms by means of translation described in propositions 2.9
and 2.10, using only splitting operators of order at most two, admit the covering
by homomorphisms of semiholonomic Verma modules. Moreover, the symbols of
the covered homomorphisms are obtained by symmetrizations of symbols of those
covering ones.

3.13. Non-existence. The (non)existence of homomorphisms of semiholonomic
Verma modules can be sometimes seen directly from the semiholonomic jet module
picture, as discussed in 3.5.

In general, the action of g1 on J̄kE is horrible, but the restriction of this action
to ⊗k−1g∗− ⊗E ⊂ J̄kE is relatively simple. For all Z ∈ g1, ϕ ∈ ⊗k−1g∗− ⊗E ⊂ J̄kE,
and X1, . . . , Xk ∈ g−1 we obtain

(20)

(Z·ϕ)(X1, . . . , Xk) =
k∑
i=1

(
[Xi, Z]·ϕ(X1, . . .

∧ , Xk)

−
i−1∑
j=1

ϕ(X1, . . .
∧ , [[Xi, Z], Xj ], . . . , Xk)

)
where the wedges indicate the relevant omission of arguments.

Now, if there is a p-homomorphism Φ: J̄kE→ F, and both E and F are irredu-
cible, then Φ must vanish on the image of the p+ action. This simple observation
led to complete description of all first order operators in [28], for all parabolic
geometries.

The first step was very simple there: fixing the action of the semisimple part
of g0, and leaving the so called weight (i.e., the action of the center z ⊂ g0) free,
the above condition restricted to the action g1 on E ⊂ J̄1E reveals that only the
derivatives in the direction of the smallest distributions corresponding to g−1 are
feasible and it provides one linear constraint on the weight. Then we can show that
the operators exist for all such weights.
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In the one graded case, this recovers the earlier known fact from conformal
Riemannian geometry, that fixing the action of the semisimple part of g0 for E and
F, then each invariant projection of g1 ⊗ E to F yields an invariant operator for a
unique weight of E, cf. [17].

The same approach gets very much more complicated for higher orders. We shall
illustrate the procedures on our simplest (2, 2)-Grassmannian example, which will
conclude our survey.

3.14. 4-dimensional conformal geometries. As exploited in [15], all fundamen-
tal representations W in the conformal Riemannian geometry, i.e., for the algebra
so(n+ 1, 1), are of length at most two and so we obtain no restriction when using
them in order to move from the trivial representation to any other one.

A particular case is our (2, 2)-Grassmannian example. Dealing with the de Rham
pattern for the regular infinitesimal characters there (see (5) and notice it contains
only operators of order one or their nontrivial compositions, except the mysterious
fourth order Paneitz operator not depicted there), we immediately see, that the
pattern remains the same for all regular characters. In particular, this shows that
our description of all Verma module homomorphisms for the regular infinitesimal
characters in the paragraph after (5) extend to the curved 4-dimensional conformal
geometries, except the Paneitz operator. Let us discuss this closer now.

We shall use the usual Penrose abstract index notation, as started in subsection
2.3. Thus let write X = XA′

A , Y = Y A
′

A ∈ g−1, Z = ZAA′ ∈ g1, and consider the
trivial representation with weight w.

We shall first recover the second order Yamabe operator from (16). Then we
need to compute the action of Z on ϕ = ϕAA′ ∈ g∗−1[w]. In this case, (20) becomes:

(Z·ϕ)(X,Y ) = [X,Z]·ϕ(Y ) + [Y, Z]·ϕ(X)− ϕ([X,Z], Y )
and, since we deal with trivial representation of the semisimple part of g0,

[X,Z]·ϕ(Y ) = wZ(X)ϕ(Y ) .
Indeed, the grading element E acts on XA by 1/2, thus it acts on X[A,B] by 1, as
anticipated, while the central part, i.e., the coefficient at the grading element is
obtained by the evaluation.

Writing down the action of g1 on the densities with weight w by means of the
abstract indices, we arrive at ϕ([[−, Z],−])ABA′B′ = ϕBA′Z

A
B′ + ϕAB′Z

B
A′ , and so the

action gets the following shape:
(21) ZAA′ ·uBB′ = wZAA′u

B
B′ + wZBB′u

A
A′ − uBA′ZAB′ − uAB′ZBA′ .

The potential second order operator valued again in densities is obtained by
antisymmetrization in both upper and lower indices. The condition that the
morphism must vanish on the entire image of the action says

2(w + 1)Z [A
[A′u

B]
B′] = 0

and thus we obtain the value w = −1 as the right weight for the densities. This
homomorphism yields the famous Yamabe operator, the conformally invariant
version of the Laplace operator. Such natural operators can be expressed by a
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universal formula in terms of any of the metrics in the conformal class, and notice
that even in the case of the flat conformal sphere S4, the Yamabe operator involves
additional lower order correction term to the Laplacian in the symbol. The reader
can find a detailed explanation of such phenomena for all parabolic geometries in
[8].

3.15. The Paneitz operator. In principle, we should be able to continue along
the same line of arguments, look at image of the action of g1 on ⊗3g1 inside J̄4(E)
for the trivial module E = R. But such an endeavor gets pretty complicated.

Thus, it is time to switch to the dual picture. In the holonomic Verma modules,
we are looking for the singular vectors with trivial weight, in the module induced
by the top-rank exterior forms F, and we seek for them in the top layer of V4(F).
Recall that we identify g−1 with the matrices with 2 rows and columns, and let us
write them as (y11, y12, y21, y22).

A direct check reveals that the relevant singular vector for the Yamabe operator
is the determinant y11y22 − y12y21, understood as an element in S2(g−1)⊗R (with
the right density weight). In our fourth order case, the only singular vector of the
right trivial weight is the square of the determinant (up to constant multiple, of
course). The computations are tedious but straightforward, and they can be nicely
done, e.g., using Maple.

The situation gets much more complicated in the curved Cartan’s worlds. We
want to cover the known singular vector. Since the yij ’s do not commute any more,
we have to modify the formula for the determinant appropriately. As with the jets,
we simply consider complete antisymmetrizations of both upper and lower indices.
This gives us more terms than in the symmetric case:

(22) 1
2(y11y22 − y21y12 − y12y21 + y22y11)

and taking the second power, we obtain 16 terms (instead of 4 in the holonomic
case).

Now, the crucial observation is that there are actually three independent options
how to perform the two antisymmetrizations over 4 indices - we choose the first
couple and then continue with the remaining one. We have to consider their linear
combinations with the sum of coefficients equal to one, in order to cover the
symmetric singular vector. These are the only g0-highest weight vectors which
project onto the fixed symmetric singular vector.

Next, as a matter of fact (again quite straightforwardly computed, e.g., in Maple)
the action of the generator z21 of g1 is nontrivial and identical on all three of the
options for the second power of determinant. Thus this action will never vanish on
any of our coverings of the symmetric singular vector.

This shows that there cannot be any semiholonomic Verma module homomor-
phism providing the Paneitz operator.

3.16. Final remarks. Analogous result was proved for all the longest operators
in the de Rham pattern in conformal geometries of all even dimensions n ≥ 4 in
[15]. The semiholonomic Verma module technique was first developed there.
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Notice that actually there are the very exceptional invariant operators extending
the flat ones in the de Rham even in the curved case. This can happen due to the
fact that the image of the universal semiholonomic jet operator is an algebraic
subvariety in the total jet module, thanks to the Bianchi and Ricci identities for
Cartan connections and their differential consequences.

E.g., in the case of the original Paneitz operator, we simply use the same formula
as in the flat case and the restriction of the corresponding g0-module homomorphism
to the image of the universal jet operator happens to be equivariant.

All the other operators in the (2, 2)-Grassmannian pattern, singular or regular
can be obtained from the most simple ones: first order Dirac and first order exterior
differential. At the same time, all the fundamental G-representations are coming
with filtrations of length two or one, so we can directly use Jantzen-Zuckermann
procedure to get all patterns also in the curved case (except the longest arrows).
In higher conformal dimensions, the Propositions 2.9, 2.10 were necessary to built
all the other long arrows between the forms in the de Rham, see [15].

The fourth order generalized Paneitz operators for the quaternionic-like geo-
metries are studied in detail in [23, 24]. Again, in the de Rham, there are still
invariant operators extending the flat case, but they need a much more careful
approach, cf. [23, 24].

The case of the (3, 3)-Grassmannians is discussed in great detail in the parallel
paper by the same authors, [27].
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