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Preface

The Conference on Differential Equations and Their Applications (EQUA-
DIFF 9) was held in Brno, August 25–29, 1997. It was organized by the Masaryk
University, Brno in cooperation with Mathematical Institute of the Czech Academy
of Sciences, Technical University Brno, Union of Czech Mathematicians and Physi-
cists, Union of Slovak Mathematicians and Physicists and other Czech scientific
institutions with support of the International Mathematical Union. EQUADIFF 9
was attended by 269 participants from 32 countries and more than 50 accompa-
nying persons and other guests.

This volume contains 20 papers by invited speakers in the conference. Together
with this issue the following EQUADIFF 9 publications have been prepared:

• Proceedings of EQUADIFF 9 containing 12 survey papers mainly by the ple-
nary speakers published by the Electronic Publishing House in both electronic
and hard copy forms.
• CD ROM containing, in electronic form, a special EQUADIFF 9 issue of

Archivum mathematicum, the Proceedings and 31 other papers submitted by
the participants of the conference as well as other conference material (e.g.
Abstracts, List of participants, and Program) — available to any participant
of EQUADIFF 9.

This EQUADIFF 9 special issue of Archivum mathematicum is dedicated to
Professor Frantǐsek Neuman, Chairman of the Conference, on the occasion of
his sixtieth birthday. Professor Neuman obtained the Bolzano medal, an honor
awarded to distinguished scientists by the Presidium of the Czech Academy of
Sciences. Detailed information concerning the achievements of Professor Neuman
as well as a list of his scientific publications can be found in the paper by O. Došlý
“Sixty years of Professor Frantǐsek Neuman”, published in Mathematica Bohemica
123 (1998), No. 1, 101–107 and in Czechoslovak Mathematical Journal 48 (1998),
No. 1, 177–183.

The printed version is identical to the electronic one on CD ROM in spite of
slight changes in the usual Archivum mathematicum style. Our aim was to harness
the possibilities of new computer technologies, and for this reason all EQUADIFF 9
publications on CD ROM were prepared in hypertext PDF form.

We would like to thank Professor Jaromı́r Kuben, who made this CD ROM a
reality. We would also like to thank Professor Zuzana Došlá for her help during
the preparation of this publication.

Brno, April 1998 Editors

http://www.muni.cz
http://www.muni.cz
http://www.math.cas.cz
http://www.vutbr.cz
http://elib.zib-berlin.de/IMU
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Miroslav Bartušek (Masaryk University Brno)

Higher Order Nonlinear Limit-Point/Limit-Circle Problem . . . . . . . . . . . . . . . . 13
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Abstract. Sufficient conditions are given under which the nonlinear n-th
order differential equation with quasiderivatives has oscillatory solutions.
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1 Introduction

Consider a nonlinear differential equation

y[n] = f(t, y[0], . . . , y[n−1]) in D, (1.bar)

where n ≥ 3, R+ = [0,∞), R = (−∞,∞), D = R+×Rn, y[i] is the ith quasideriva-
tive of y defined by

y[0] = y, y[i] =
1

ai(t)

(
y[i−1]

)′
, i = 1, 2, . . . , n− 1, y[n] =

(
y[n−1]

)′
, (2.bar)

the functions ai : R+ → (0,∞) are continuous, f : D → R fulfills the local
Carathéodory conditions and

f(t, x1, . . . , xn)x1 ≤ 0, f(t, 0, x2, . . . , xn) = 0 in D . (3.bar)
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Let y : [0, b) → R, b ≤ ∞ be continuous, have the quasi-derivatives up to the
order n − 1 and let y[n−1] be absolutely continuous. Then y is called a solution
of (1.bar) if (1.bar) is valid for almost all t ∈ [0, b) and either b = ∞ or b < ∞ and

lim sup
t→b−

n−1∑
i=0

|y[i](t)| = ∞. It is called proper if b = ∞ and supτ≤t<∞ |y(t)| > 0

holds for an arbitrary number τ ∈ R+. A proper solution is called oscillatory if
there exists a sequence of its zeros tending to ∞.

Notation 1. Let t0 ∈ R+, an, b ∈ C0(R+). Put

an+i(t) = ai(t), i ∈ {1, . . . , n − 1 }, I0(t, t0; as, b) ≡ 1,

Ik(t, t0; as, b) =
∫ t

t0

as(τs)
∫ τs

t0

as+1(τs+1) · · ·
∫ τs+k−3

t0

as+k−2(τs+k−2) ×

×
∫ τs+k−2

t0

b(τs+k−1) dτs+k−1 . . . dτs ,

J(t, t0; as) =
∫ t

t0

as(τs)
∫ ∞
τs

as+1(τs+1)In−2(τs+1, τs; as+2, an+s−1)dτs+1dτs.

We will assume the following hypotheses (not all simultaneously):

(H1): Let a1
a2
∈ C1(R+) for n = 3; let a2 ∈ C1(R+), aj ∈ C2(R+), j = 1, 3 for

n = 4; let an index l ∈ {1, 2, . . . , n − 4} exist such that a′l+j ∈ Lloc(R+),
j = 1, 2 are locally bounded from bellow a.e. on R+ for n > 4.

(H2): Let b ∈ Lloc(R+) and g ∈ C0(R+) exist such that g(x) > 0 for x > 0,∫∞
1

dt
g(t) =∞ and

|f(t, x1, . . . , xn)| ≤ b(t)g
( n∑
i=1

|xi|
)

on D .

(H3): Let constants t̄ ∈ R+, K ≥ 0, 0 ≤ λ ≤ 1 and functions an ∈ Lloc(R+) and
g ∈ C0(R+) exist such that an ≥ 0, g(x) > 0 for x > 0, g(x) = xλ for
x ≥ K,

an(t)g(| x1 |) ≤ | f(t, x1, . . . , xn) | on R+ ×Rn, (4.bar)

∫ ∞
0

a1(t)dt =∞, (5.bar)

and

In−s(∞, t̄; as+1, ds) =∞, s = 1, 2, . . . , n− 1, (6.bar)



On Existence of Oscillatory Solutions 3

where ds(t) = an(t) [Is(t, t̄; a1, as)]
λ.

Further, let in case λ = 1 for s = 1, 2, . . . , n− 1 either

lim inf
t→∞

e−J(t,t̄;as)

∫ t

t̄

as(τ)e−In(τ,t̄;as+1,as)dτ = 0 (7.bar)

or

In−1(∞, t̄; as+1, an+s−1) =∞ (8.bar)

hold.
(H4): Let the hypothesis (H3) holds with K = 0, λ ∈ [0, 1) and with the exception

of (5.bar) and let, moreover,

In(∞, 0; a1, an) =∞. (9.bar)

A great effort has been devoted to the study of oscillatory solutions of Eq. (1.bar)
in the canonical form, i.e if∫ ∞

0

ai(t)dt =∞, i = 1, 2, . . . , n− 1. (10.bar)

Definition 2. Eq. (1.bar) is said to have Property A if every proper solution y is
oscillatory for n even, and it is either oscillatory, or

lim
t→∞

y[i](t) = 0, i = 0, . . . , n− 1

holds eventually on R+ if n is odd.

Chanturia [5] proved the following theorem.

Theorem A ([5]). Let f(t, t1, . . . , xn) ≡ f̄(t, x1), f̄ ∈ C(R+ ×R), (1) have Prop-
erty A. Let (10) and

|f̄(t, x1)| ≤ b(t)|x1| on R+ ×R

be valid where b ∈ C0(R+). Then (1) has an oscillatory solution.

Sufficient conditions, under the validity of which, (1.bar) has Property A were
studied e.g. in [5], [7]. Generalizations of Th. A are stated in [3] and in [6] (for
n = 3). Apart from other things∫ ∞

0

a1(t)dt =
∫ ∞

0

a2(t)dt =∞ (11.bar)

is supposed instead of (10.bar).

In some applications of Eq. (1.bar) the conditions (10.bar) and (11.bar) are not fulfilled.
Although every Eq. (1.bar) can be transformed into the canonical form by sequence of
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transformations preserving oscillations (see [8]) it is difficult to realize them. E.g.
consider the third order differential equation

y′′′ + q(t)y′ + r(t)g(y) = 0, (12.bar)

where q ∈ C0 (R+), r ∈ Lloc (R+), g ∈ C0 (R), r ≤ 0 on R+,
g(x)x > 0 for x 6= 0.

Let h be a positive solution on [T,∞), T ∈ R+ of the equation

h′′ + q(t)h = 0 (13.bar)

Then (12.bar) is equivalent with (see [4])(
h2

(
1
h
y′
)′)′

+ rhg(y) = 0 (14.bar)

on [T,∞), where

y[1] =
y′

h
, y[2] = h2

(
y[1]
)′
.

If we define h(t) ≡ h(T ) on [0, T ], then (14.bar) is defined on R+ ×R3 and it has the
form (1.bar) with

a1 = h, a2 =
1
h2
, f(t, x1, x2, x3) ≡ −r(t)h(t)g(x1) (15.bar)

and (3.bar) holds.
If e.g. q(t) ≤ const. < 0, then it is clear that (10) and (11) for n = 3 are not valid.

Our main goal is to prove the existence of oscillatory solutions of (1.bar) without the
validity of either (10.bar) or (11.bar) and to apply the results to Eq. (12.bar).

2 Main results

In this section, a special set of oscillatory solutions will be investigated. Consider
the Cauchy initial conditions:

l ∈ {0, 1, . . . , n− 1}, σ ∈ {−1, 1},
σ y[i](0) > 0 for i = 0, 1, . . . , l − 1,

≤ 0 for i = l,

> 0 for i = l + 1, . . . , n− 1.

(16.bar)

We will show that a solution y of (1.bar), fulfilling (16.bar) is oscillatory under some
assumptions posed on f and ai.

Theorem 3. Let (H1) and (H2) be valid. Then every solution y of (1.bar) satisfying
(16.bar) is proper.
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Proof. See [2, Lemmas 4 and 9]. ut

Theorem 4. Let (H3) be valid. Then every proper solution y of (1.bar) satisfying
(16.bar) is oscillatory.

Proof. It follows from [2, Lemma 2] that every proper solution y satisfying (16.bar)
is either oscillatory or nonoscillatory, s ∈ {0, 1, . . . , n− 1} and T exists such that
T ≥ max(t̄, 1) ,

y[j](t)y[s](t) ≥ 0 for j = 0, 1, . . . , s,
≤ 0 for j = s+ 1, . . . , n,

y[m](t) 6= 0, m = 0, 1, . . . , n− 2, t ∈ [T,∞). (17.bar)

Let y fulfills (17.bar). First, we prove that s 6= 0 and

lim
t→∞

|y (t)| =∞. (18.bar)

Let, on the contrary, s = 0. Then (17.bar) and (2.bar) yield

y[0] y[1] < 0, |y[1]| is nondecreasing on [T,∞]

and

∞ > |y(∞)− y(T )| =
∫ ∞
T

a1(t) |y[1](t)| dt ≥ y[1](T )
∫ ∞
t̄

a1(t) dt =∞.

Thus s ∈ {1, . . . , n− 1}.

Let s = 1. Suppose, without loss of generality, that y > 0. Then (17.bar) yields

y > 0, y increasing,

y[1] > 0, y[1] decreasing,

y[i] < 0, |y[i]| increasing for i = 2, . . . , n− 1.

 (19.bar)

We prove that (18.bar) holds. Thus, suppose, indirectly, that

lim
t→∞

y(t) = C <∞. (20.bar)

If y[1](∞) > 0, then

∞ > y(∞)− y(T ) =
∫ ∞
T

a1(t)y[1](t)dt ≥ y[1)(∞)
∫ ∞
T

a1(t)dt =∞.

The contradiction proves that

lim
t→∞

y[1](t) = 0. (21.bar)



6 Miroslav Bartušek

It follows from (19.bar), (2.bar) and (4.bar) that

|y[i](t)| = | y[i](T )|+
∫ t

T

ai+1(τ)|y[i+1](τ)|dτ

≥
∫ ∞
T

ai+1(τ)|y[i+1](τ)|dτ, i = 2, . . . , n− 2,

y[n−1](t) ≥
∫ t

T

|y[n](τ)|dτ ≥
∫ t

T

an(τ)g(y(τ))dτ

≥ C1

∫ t

T

an(τ)dτ, C1 = max
y(T )≤τ≤C

g(τ) > 0. (22.bar)

From this and from (19.bar), (20.bar) and (21.bar)

∞ > y(∞)− y(T ) =
∫ ∞
T

a1(τ1)y[1](τ1)dτ1

=
∫ ∞
T

a1(τ1)
∫ ∞
τ1

a2(τ2)|y[2](τ2)|dτ2dτ1

≥ C1

∫ ∞
T

a1(τ1)
∫ ∞
τ1

a2(τ2)In−2(τ2, T ; a3, an)dτ2dτ1

= C1

∫ ∞
T

a2(τ2)In−2(τ2, T ; a3, an)
∫ τ2

T

a1(τ1)dτ1dτ2

≥ C1In(∞, T ; a2, a1) =∞

as according to (6.bar), i = 1

In−1(∞, t̄; a2, d1) =∞ =⇒ In−1(∞, T ; a2, d1) =∞

and thus
In(∞, T ; a2, a1) ≥ In−1(∞, T ; a2, d1) =∞.

The contradiction proves that (18.bar) is valid for s = 1.
Let s > 1. Then (17.bar) and (2.bar) yield

y(t)y[1](t) > 0, |y[1]| is nondecreasing on [T,∞),

|y(t)− y(T )| =
∫ ∞
T

a1(τ)|y[1](τ)|dτ ≥ |y[1](τ)|
∫ t

T

a1(τ)dτ −−−→t→∞ ∞.

Thus (18.bar) is valid for all s ∈ {1, . . . , n− 1}.
Let 0 ≤ λ < 1. The statement of the theorem was proved in [3, Ths 1-3] if

the more restrictive assumption (H4) is supposed instead of (H3). In this case the
inequality (4.bar) was used only for x1 = y(t), t ∈ [T,∞] where y fulfills (17.bar). From
this, using (18.bar), the statement is valid under the validity of (H3), too (note, that
(9.bar) follows from (5.bar)).

Finally, suppose λ = 1.
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Let s ∈ {1, . . . , n − 1}. We prove that the solution y, fulfilling (17.bar) does not
exist.

First, we estimate y[s]. Let, for the simplicity, y > 0 for large t. According to
(18.bar) there exists T1 ≥ T such that

y(t) ≥ K, t ∈ [T1,∞) (23.bar)

and (17.bar) yields

y[j](t) > 0, y[j] is increasing, j = 0, 1, . . . , s− 1,

y[s](t) > 0, y[s] is decreasing,

y[m](t) < 0, |y[m]| is nondecreasing, m = s+ 1, . . . , n− 1,

t ∈ [T1,∞).

 (24.bar)

From this, from (24.bar), (2.bar) and (4.bar) we have

|y[i](t)| ≥
∫ t

T1

ai+1(τ)|y[i+1](τ)|dτ, i = 0, . . . , n− 2, i 6= s,

|y[n−1](t)| ≥
∫ t

T1

|y[n](τ)|dτ ≥
∫ t

T1

an(τ)y(τ)dτ if s 6= n− 1 (25.bar)

and thus, using (24.bar),

|y[s+1](t)| ≥ In−1(t, T1; as+2, asy
[s])

≥ y[s](t)In−1(t, T1; as+2, as), s ∈ {1, . . . , n− 2},
|y(t)| ≥ y[n−1](t)In−1(t, T1; a1, an−1) for s = n− 1.

Further, using (2.bar) and (24.bar), it follows from this that

(y[s](t))
′

= as+1(t)y[s+1](t) = −as+1(t)|y[s+1](t)|
≤ −as+1(t)In−1(t, T1; as+2, as)y[s](t)

for s ∈ {1, . . . , n− 2},
(y[n−1](t))

′
= −|y[n](t)| ≤ −an(t)y(t) ≤ −an(t)In−1(t, T1; a1, an−1)
× y[n−1](t) for s = n− 1, t ≥ T1.

Thus

y[s](t) ≤ y[s](T1)e−In(t,T1;as+1,as). (26.bar)

Especially, using (6.bar),

lim
t→∞

y[s](t) = 0. (27.bar)
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Let the assumption (7.bar) be valid. Using (24.bar), (25.bar) and (27.bar)

y[s−1](t) = y[s−1](T1) +
∫ t

T1

as(τs)y[s](τs)dτs

= y[s−1)(T1) +
∫ t

T1

as(τs)
∫ ∞
τs

as+1(τs+1)|y[s+1](τs+1)|dτs+1dτs

≥ y[s−1](T1) +
∫ t

T1

as(τs)
∫ ∞
τs

as+1(τs+1)In−2(τs+1, T1; as+2, as−1 y
[s−1])dτs+1dτs

≥ y[s−1](T1) +
∫ t

T1

as(τs)
∫ ∞
τs

as+1(τs+1)In−2(τs+1, τs; as+2, as−1 y
[s−1])dτs+1dτs

≥ y[s−1](T1) +
∫ t

T1

y[s−1](τs)as(τs)
∫ ∞
τs

as+1(τs+1)In−2(τs+1, τs; as+2, as−1)dτs+1dτs,

t ≥ T1.

Thus Gronwall’s inequality yields

y[s−1](t) ≥ y[s−1](T1)eJ (t,T1;as), t ≥ T1. (28.bar)

On the other side, using (26.bar), we have

y[s−1](t) ≤ y[s−1](T1) + y[s](T1)
∫ t

T1

as(τ)e−In(τ,T1;as+1,as) dτ.

From this and from (28.bar)

1 ≤ e−J(t,T1;as) +
y[s](T1)
y[s−1](T1)

e−J(t,T1;as)

∫ t

T1

as(τ)

× e−In(τ,T1;as+1,as) dτ, t ≥ T1

that contradicts to (7.bar).

Let the assumption (8.bar) be valid. Then (24.bar) and (25.bar) yield

∞ > |y[s](∞)− y[s](T1)| =

=
∫ ∞
T1

as+1(τ)|y[s+1](τ)|dτ ≥ In−1(∞, T1; as+1, as−1y
[s−1]) ≥

≥ y[s−1](T1)In−1(∞, T1; as+1, as−1) =∞.

Thus, the solution y, fulfilling (17), does not exist. ut

Remark 5. (i) Theorem 4 generalizes results of [3], [6] and Theorem A.
(ii) The statements of Theorems 3 and 4 are valid for a solution y on [α,∞) if the
Cauchy conditions (16.bar) are taken in t = α and t̄ ≥ α (see (H3) ).
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3 Applications

We apply the previous results to Eq. (12.bar)

y′′′ + q(t)y′ + r(t)g(y) = 0 (12)

under the validity of the assumption

λ ∈ [0, 1], |x|λ ≤ |g(x)| for large |x|. (29.bar)

Let
q+(t) = max(q(t), 0), q̄(t) = min(q(t), 0), t ∈ R+.

Cecchi and Marini [6] studied Eq. (12.bar) under the following hypothesis:

(H5): Let
∫∞

0
tq−(t)dt = −K > −∞, and let the equation

h′′ + e−2Kq+(t)h = 0

be disconjugate on R+ (i.e. every its solution has at most one zero on R+).

They proved the following theorem.

Theorem B ([6]). Let (H5) and g be nondecreasing for large |y|. Let∫ ∞
0

|g(kt)|r(t)dt =∞ for every k ∈ (0, 1). (30.bar)

Then every proper solution of Eq. (12.bar) with a zero is oscillatory.

Note, that if the estimation (29.bar) holds, then (30.bar) has the form∫ ∞
0

tλr(t)dt =∞. (31.bar)

In case ∫ ∞
0

tq+(t)dt <∞, (32.bar)

using our previous results, the statement of Th. B can be proved under weaker
assumption than (31.bar).

Theorem 6. Let (H5), (32.bar) and (29.bar) be valid. Further, let∫ ∞
0

t2λr(t)dt =∞ if λ ∈ [0, 1) (33.bar)

and let

r(t) ≥ σ

t3
for large t if λ = 1, (34.bar)

where σ > 1 is a constant. Then every proper solution with a zero is oscillatory.
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Proof. Let y be a proper solution of (12.bar) with a zero T ∈ R+, y(T ) = 0. If∑2
i=0 |y[i](T )| = 0, then according to [1] there exists t0 > T such that the Cauchy

initial conditions at t0 fulfill (16.bar). In the opposite case it is evident that (16.bar) holds
in some right neighbourhood of t = T . Thus, in all cases, there exists t0 > T such
that (16.bar) is valid in t = t0.

In [6, Proposition 1] it is proved that (H5) and (32.bar) yield the existence of a solution
h : R+ → R of Eq. (13.bar) which is positive on (0,∞), increasing and

lim
t→∞

h(t) = h0 ∈ (0,∞). (35.bar)

Thus, (12.bar) is equivalent to (14.bar) on (0,∞) and (15.bar) yields

a1 = h, a2 =
1
h2
, a3 = rh on (0,∞) (36.bar)

and ∫ ∞
t0

a1(s)ds =
∫ ∞
t0

a2(s)ds =∞. (37.bar)

Let ε > 4
√
σ and let τ > t0 be such that

h0

ε
≤ h(t) ≤ εh0, t ≥ τ. (38.bar)

We will verify hypothesis (H3) with t̄ = τ (see Remark 5 (ii) ). According to (37.bar),
(5.bar), (6.bar) for i = 1 and (8.bar) for i = 1 (in case λ = 1) are valid. Thus it is necessary
to verify (6.bar) for i = 2 and, in case λ = 1, the condition (7.bar) for i = 2.

Condition (6.bar), i = 2 : Using (38.bar) we have

I1(∞, τ ; a3) =
∫ ∞
τ

r(t)h(t)
[∫ t

τ

h(α)
∫ α

τ

dβ

h2(β)
dα

]λ
dt

≥ ε−1−3λ h1−λ
0 2−λ

∫ ∞
τ

r(t) (t− τ)2λ
dt =∞.

Condition (7.bar), i = 2, λ = 1 :

J (t, τ ; a2) =
∫ t

τ

1
h2(s)

∫ ∞
s

h(s1)r(s1)
∫ s1

s

h(s2)ds2ds1ds

≥ ε−4

∫ t

τ

∫ ∞
s

(s1 − s)r(s1)ds1ds ≥ σ1 ln
t

τ
, σ1 =

σ

2
ε−4 >

1
2
,

I3(t, τ ; a3, a2) =
∫ t

τ

r(s)h(s)
∫ s

τ

h(s1)
∫ s1

τ

ds2

h2(s2)
ds1ds

≥ σ1

∫ t

τ

(s− τ)2

s3
ds ≥ σ1

[
ln
t

τ
− 2
]
.
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From this, according to (36.bar), (37.bar) and (38.bar)

0 ≤ lim inf
t→∞

e−J(t,τ ;a2)

∫ t

τ

a2(s)e−I3(s,τ ;a3,a2) ds

≤ lim inf
t→∞

(τ
t

)σ1
∫ t

τ

ε2

h2
0

e2σ1
(τ
s

)σ1
ds = 0 .

ut

Remark 7. Let the assumptions of Th. 6 and hypotheses (H1) and (H2) hold.
Then, using Th. 3, it is evident that (12.bar) has an oscillatory solution.

The following example shows that (33.bar) is not sufficient condition for the exis-
tence of oscillatory solutions in case λ = 1 and it shows how far is condition (34.bar)
from necessary one.

Example 8. Consider the equation

y′′′ +
σ

t3
y = 0, σ ≥ 0. (39.bar)

Lemma 9. Eq. (39.bar) has an oscillatory solution if, and only if

σ >
2
√

3
9
∼ 0, 385.

Proof. (sketch) Eq. (39.bar) can be transformed into the equation with constant coef-
ficients

...
Y − 3Ÿ + 2Ẏ + σY = 0 by t = ex, y(t) = Y (x). ut
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1 Department of Mathematics, Masaryk University,
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the n-th order differential equation
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and he classified this linear equation to be of the limit-circle type if every solu-
tion y belongs to the class L2, and to be of the limit-point type if at least one
solution does not belong to L2. This notion has been generalized to include even
order self-adjoint linear differential equations and operators (see, for example,
[5,6,7,8,9,14,15,16,17,18]), and more recently to nonlinear second order equations
of the form

(a(t)y′)′ + q(t)f(y) = 0

(see the papers of Graef and Spikes [10,11,12,13,19,20]).
Here, we consider the n-th order nonlinear differential equation

y(n) + r(t)f(y, y′, . . . , y(n−1)) = 0, (E.gra)

where r ∈ Lloc [0,∞),

r does not change sign on [t0,∞), t0 ≥ 0, (1.gra)

f : Rn → R is continuous, and

x1f(x1, . . . , xn) ≥ 0 on Rn. (2.gra)

We consider only those solutions of (E.gra) that are continuable to all of R+ = [0,∞)
and are not eventually identically zero. Such a solution is said to be oscillatory if
it is has arbitrarily large zeros, and it is said to be nonoscillatory otherwise.

Definition 1. Equation (E.gra) is of the nonlinear limit-circle type if every continu-
able solution y satisfies∫ ∞

0

y(t)f(y(t), y′(t), . . . , y(n−1)(t)) dt <∞;

if there is at least one continuable solution y of (E.gra) such that∫ ∞
0

y(t)f(y(t), y′(t), . . . , y(n−1)(t)) dt =∞,

then equation (E.gra) is said to be of the nonlinear limit-point type.

In this paper, we describe what is known for the higher order nonlinear limit-
point/limit-circle problem and indicate a number of open questions for future
research.

2 Motivation

Kauffman, Read, and Zettl [14, p. 95] noted that there are no known examples of
functions r such that

y(4) + r(t)y = 0. (L4.gra)

is limit-circle, i.e., all solutions of (L4.gra) are in L2. This leads to the following
conjecture.
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Conjecture 2. The equation

y(4k) + r(t)y = 0 (L4k.gra)

always has a solution y 6∈ L2[0,∞), i.e., (L4k.gra) is never of the limit-circle type.

As a consequence of our results, we will show that as long as r does not change
sign, or r is an oscillatory function that is either bounded from above or bounded
from below, then (L4k.gra) can never be a limit-circle equation. In addition, we will
apply our results to the sublinear Emden-Fowler equation

y(4k) + r(t)|y|λ sgn y = 0, λ ∈ (0, 1]

and show that this equation always has a solution y 6∈ L1+λ[0,∞) provided r
satisfies (1.gra).

3 Main Results

We begin by presenting some sufficient conditions for equation (E.gra) to be of the
nonlinear limit-point type (see [4]).

3.1 The Case r ≤ 0r ≤ 0r ≤ 0

Theorem 3. Suppose r(t) ≤ 0 on [t0,∞), (2.gra) holds, and there exist constants
M > 0 and M1 > 0 such that

1
x1
≤ f(x1, . . . , xn) ≤M1(1 + x1) (C1.gra)

for x1 ≥M, xi ∈ R, i = 2, . . . , n . Then (E.gra) is of the nonlinear limit-point type.

If we restrict our attention to equations of the form

y(n) + r(t)f(y) = 0,

then (C1.gra) becomes
1
u
≤ f(u) ≤M1(1 + u)

for u ≥M > 0, which is certainly true, for example, if f is an increasing function
with

|f(u)| ≤ A+B|u| for large u,

or if f(u) = uγ where 0 < γ ≤ 1 is the ratio of odd positive integers.

Remark 4. The left hand inequality in (C1.gra) is not unreasonable. For example, for
third order equations, Bartušek and Došlá (see Theorem 3.3 and Remark 3.4 in
[1]) proved that if r(t) ≤ −K < 0 and there exists β > 3

2 such that

|f(x1, x2, x3)| ≤ 1
|x1|β

for |x1| ≥M > 0,

then (E.gra) is of the nonlinear limit-circle type. Whether their result is true for n > 3
remains an open question.
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The proof of Theorem 3, as well as the other theorems in this section, are
somewhat long and technical in nature. They make use of an energy type function,
some integral inequalities, and knowledge of the behavior of oscillatory solutions
of (E.gra). Hence, we will omit the proofs, and concentrate on the nature of the results.

3.2 The Case r ≥ 0r ≥ 0r ≥ 0

In studying the asymptotic behavior of solutions of higher order equations, the
order itself sometimes plays an important role. Observe that the set of positive
integers can be divided into the three disjoint sets, {n : n = 4k, k = 1, 2, . . . },
{n : n = 2k + 1, k = 1, 2, . . .}, and {n : n = 4k + 2, k = 1, 2, . . .}.

Theorem 5. If n = 4k, (2.gra) holds, r(t) ≥ 0 on [t0,∞), and there exist constants
M1 > 0, M2 > 0, and λ ∈ (0, 1] such that

M1|x1|λ ≤ |f(x1, x2, . . . , xn)| ≤M2(1 + |x1|) on Rn, (C2.gra)

then (E.gra) is of the nonlinear limit-point type.

Observe once again that if f(x1, x2, . . . , xn) = f(x1) = xγ1 with 0 < γ ≤ 1 the
ratio of odd positive integers, then condition (C2.gra) is clearly satisfied.

Theorem 6. If n ≥ 3, (2.gra) holds, and there exist constants M > 0, M1 > 0,
M2 > 0, and λ ∈ (0, 1] such that

0 ≤ r(t) ≤M,

and
M1|x1|λ ≤ |f(x1, x2, . . . , xn)| ≤M2|x1|λ on Rn,

then (E.gra) is of the nonlinear limit-point type.

Remark 7. The case n = 3 is contained in [1, Theorem 3.7] under a slightly weaker
nonlinearity condition on f ; the proof for n ≥ 4 appears in [4, Theorem 3].

The following two theorems generalize the nonlinearity condition imposed on
f in Theorem 6, but at the same time, restrict the values of n allowed.

Theorem 8. Suppose n = 2k+ 1, there exist constants M1 > 0 and M2 > 0 such
that

M1 ≤ r(t) ≤M2,

and there is a positive constant M and a continuous function g : R+ → R such
that g(0) = 0, g(x) > 0 for x > 0, lim infx→∞ g(x) > 0, and

g(|x1|) ≤ |f(x1, . . . , xn)| ≤M(1 + |x1|) on Rn.

Then (E.gra) is of the nonlinear limit-point type.
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Theorem 9. Suppose that n = 4k, (2.gra) holds, and that there exist constants Ki,
i = 0, 1, 2, 3, 4, and x∗ such that

0 ≤ r(t) ≤ K0 t
δ on (t0,∞),

g1(|x1|) ≤ |f(x1, . . . , xn)| ≤ g2(|x1|) on Rn,

where δ = n+1
n−2 and

g1(x) =

{
K1x for x ∈ [0, x∗]
K2 for x ∈ (x∗,∞)

g2(x) =

{
K3 for x ∈ [0, x∗]
K4x for x ∈ (x∗,∞).

Then (E.gra) is of the nonlinear limit-point type.

Observe that in Theorems 6 and 8, r(t) is bounded above, while in Theorem 9,
r(t) is allowed to grow with t.

4 Applications of Main Results

Our first corollary concerns equation (E.gra) and is an immediate consequence of
Theorems 3 and 5.

Corollary 10. If n = 4k, and (1.gra)–(2.gra) and (C2.gra) hold, then (E.gra) is of the nonlinear
limit-point type.

Next, we apply our results to the equation

y(4k) + r(t)y = 0 (L4k)

and obtain a positive answer to the conjecture raised in Section 2.

Corollary 11. If r(t) satisfies (1.gra) or is an oscillatory function that is either
bounded from above or bounded from below, then (L4k.gra) is not limit-circle.

Proof. If r satisfies (1.gra), then the conclusion follows immediately from Corollary 10.
Suppose that r is an oscillatory function that is bounded from below. Then there
exists a constant K > 0 such that r(t) ≥ −K. By Corollary 10,

y(4k) + (r(t) +K)y = 0

is not limit-circle. By a result of Naimark [16, §23, Theorem 1, p.192], it follows
that the equation

y(4k) + (r(t) +K + q(t))y = 0

is not limit-circle whenever q is a measurable and essentially bounded function.
Thus, letting q = −K we obtain that (L4k.gra) is also not of the limit-circle type. A
similar argument holds if r(t) is bounded from above.
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Remark 12. Corollary 11 does not follow from Fedorjuk [9, Theorem 5.1] because
additional assumptions on the integrability of the derivatives of r would be needed.

As another application of our results, we consider the Emden-Fowler equation

y(n) + r(t)|y|λ sgn y = 0, λ ∈ (0, 1]. (E-F.gra)

From Theorems 3–6, we have the following corollary (see [4]).

Corollary 13. (a) If n = 4k and (1.gra) holds, then (E-F.gra) always has a solution
y 6∈ L1+λ[0,∞).

(b) Suppose n = 2k+ 1 or n = 4k+ 2. If either r(t) ≤ 0 or 0 ≤ r(t) ≤M , then
(E-F.gra) always has a solution y 6∈ L1+λ[0,∞).

5 More on Fourth Order Equations

Now that we have seen that equation (L4) is not a limit-circle equation (the only
possibile exception being if r is an oscillatory function that is unbounded from
above and below), it seems appropriate to ask if there are other fourth order
equations that are of the limit-circle type. This leads us to the study of fourth
order equations in self-adjoint form, namely,

y(4) − (p(t)y′)′ + r(t)f(y) = 0, (SA.gra)

where p, r : [0,∞) → R and f : R → R are continuous, and uf(u) ≥ 0 on R
(see [3]). For equation (SA.gra), the definitions of nonlinear limit-point and limit-circle
take the following form.

Definition 14. Equation (SA.gra) is of the nonlinear limit-circle type if every con-
tinuable solution y satisfies ∫ ∞

0

y(t)f(y(t)) dt <∞,

and if there is at least one continuable solution y such that∫ ∞
0

y(t)f(y(t)) dt =∞,

then equation (SA.gra) is said to be of the nonlinear limit-point type.

We have the following result in the case where f is sublinear, that is, there
exists K > 0 such that

1
|y| ≤ |f(y)| ≤ 1 + |y| for |y| ≥ K. (C3.gra)
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Theorem 15. Let (C3.gra) hold.

(a) If r(t) ≤ 0 and either
(i) p(t) ≥ 0, or

(ii) p(t) ≤ 0 and I(p) =
∫∞

0
s|p(s)|ds <∞,

then (SA.gra) is of the nonlinear limit-point type.
(b) If r(t) ≥ 0 is bounded, p(t) 6= 0, and I(p) <∞, then (SA.gra) is of the nonlinear

limit-point type.

A special case of equation (SA.gra), namely, the self-adjoint linear equation

My ≡ y(4) − (p(t)y′)′ + r(t)y = 0 (SAL.gra)

plays an important role in the spectral theory of singular differential operators
(see, for example, [5,6,7,8,9,16]) in which the so called deficiency index is defined
as follows.

Definition 16. The equation

y(4) − (p(t)y′)′ + r(t)y = λy, Im λ 6= 0, (SALλ.gra)

is said to be limit-ν if it has ν linearly independent solutions in L2(0,∞). The
differential expression M has the deficiency index (ν, ν) if (SALλ.gra) is limit-ν.

It is known from the spectral theory of linear operators that ν ∈ {2, 3, 4} for
equation (SALλ.gra). When ν = 2, (SALλ.gra) is said to be limit-point; when ν = 4,
(SALλ.gra) is said to be limit-circle. Note that this agrees with our Definition 14
above.

We will make use of the following two results from spectral theory. The first
describes the relationship between equations (SAL.gra) and (SALλ.gra), and enables us
to give criteria under which (SAL.gra) is not limit-circle.

Lemma 17. (Naimark [16, Theorem 4, p.93]) Equation (SALλ.gra) is limit-4 if and
only if equation (SAL.gra) has all its solutions belonging to L2(0,∞).

Lemma 18. (Naimark [16, §23, Theorem 1, p.192]) Let q be a real, measurable,
essentially bounded function on R+. Then the deficiency index of the expression
M is not changed by adding the function q to r.

The following conjecture is still open (see, e.g., Paris and Wood [17] or Schultz
[18]).

Conjecture 19. Real formally self-adjoint expressions with nonnegative coeffi-
cients are not limit-circle.

Kauffman [15] proved this conjecture in the case where the coefficients are finite
sums of real multiples of real powers satisfying certain other conditions. We can
provide additional information about this conjecture with our next result.
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Theorem 20. The equation (SAL.gra) is not limit-circle, equivalently, (SALλ.gra) is ei-
ther limit-2 or limit-3, or equivalently, the deficiency index of M is either (2,2) or
(3,3), if any one of the following conditions is satisfied:

(i) r(t) ≤ 0 and p(t) ≥ 0,
(ii) r(t) ≤ 0, p(t) ≤ 0, and I(p) =

∫∞
0 s|p(s)|ds <∞, or

(iii) r is bounded.

Proof. Parts (i) and (ii) follow immediately from Theorem 15 and Lemma 17. To
prove (iii), first observe that the equation

y(4) − (p(t)y′)′ = 0

is never of the limit-circle type since y(t) ≡ 1 6∈ L2 is a solution. Hence,

y(4) − (p(t)y′)′ + r(t)y = 0

is not limit-circle by Lemma 18.

Note 21. Results analogous to Theorems 15 and 20 for self-adjoint equations of
order n > 4 are not yet known.

We conclude this section with the following open problem.

Problem 22. Under what conditions, such as |r(t)| ≤ |R(t)| for all t > t0, is the
following statement true.
If

y(4) − (p(t)y′)′ +R(t)y = 0

is not limit-circle, then
y(4) − (p(t)y′)′ + r(t)y = 0

is not limit-circle.

To be of interest, it should be assumed that r(t) is an unbounded function (see
Theorem 20). Moreover, if p(t) ≡ 0, then r(t) should be assumed to be oscillatory
as well (see Corollary 11).

6 Concluding Remarks

We conclude this paper by noting the implication of the above results on the study
of the nonlinear limit-point/limit-circle problem. Nonlinear equations of the form

y(n) + r(t)f(y) = 0 (NL.gra)

have always been popular objects of study; this has been especially true for second
order equations. As a consequence of Corollary 11, unless r is an unbounded oscil-
latory function, it would not be possible to find sufficient conditions for equation
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(NL.gra) to be of the nonlinear limit-circle type if the conditions on the nonlinear func-
tion f include linear functions as a special case. This is not the case for second order
equations as can be seen from the work of Graef et al. [10,11,12,13,19,20]. Finally,
it would be interesting to examine the relationships, if any, between the nonlinear
limit-point/limit-circle property and the boundedness, oscillation, or convergence
to zero of solutions. These interconnections for second order equations were studied
in [10,11,12,13], but for higher order equations, it remains an open question.

References
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1 Introduction

This article presents some recent results obtained jointly with P. Marcellini (see
[10], [11] and [12]). We propose a new approach for existence of almost everywhere
solutions of nonlinear partial differential equations of the first and second order.
This approach does not use the notion of viscosity solution since it is mainly
intended for handling vectorial problems of non elliptic type. We also give an
example (c.f. Theorem 3 and for more general results see [3]) where our method
contrasts with the viscosity approach.

Our results establish only existence of solutions; it remains open, in general,
to find a criterion of selection among the many solutions which are provided by
our existence theorems. Of course when a Lipschitz viscosity solution exists and is
unique, then this is, in general, the best criterion.

Our original motivation to study such problems comes from the calculus of
variations and its applications to nonlinear elasticity and optimal design (see [9]).
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2 First order PDE, the scalar case

Consider the Dirichlet problem{
F (Du (x)) = 0, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω (1.dac)

where Ω ⊂ Rn is a bounded (or unbounded) open set, F : Rn → R and ϕ ∈
W 1,∞ (Ω). We then have

Theorem 1 (c.f. [10]). Let E = {ξ ∈ Rn : F (ξ) = 0}, if

Dϕ (x) is compactly contained in intcoE, a.e. in Ω (2.dac)

where intcoE stands for the interior of the convex hull of E, then there exists (a
dense set of) u ∈ W 1,∞ (Ω) that satisfies (1.dac). If in addition ϕ ∈ C1 (Ω) and if E
is closed then (2.dac) can be replaced by

Dϕ (x) ∈ E ∪ intcoE in Ω. (3.dac)

Remark 2. (i) One should note that no hypotheses of convexity or coercivity on F
are made. The condition is close to the necessary condition which, in some sense,
is

Dϕ (x) ∈ coE in Ω.

(ii) The condition (3.dac) excludes, as it should do, the linear case since then
intcoE = ∅.

(iii) The above theorem can be generalized to the case where F = F (x, u,Du),
c.f. [11], c.f. also [1] and [15].

(iv) It is interesting to compare the above result with the classical hypotheses
(c.f. [17], [7], [18]) ensuring existence of Lipschitz viscosity solution to (1.dac) i.e. F is
convex, coercive (limF (ξ) = +∞ if |ξ| → ∞) then

E ∪ intcoE = {ξ ∈ Rn : F (ξ) ≤ 0}

and we recover the usual compatibility condition F (Dϕ) ≤ 0.

Proof. We very roughly outline the idea of the proof in the classical case i.e. when
F is convex, coercive and F (Dϕ) ≤ 0. We set

V =
{
u ∈ ϕ+W 1,∞

0 (Ω) : F (Du) ≤ 0
}
.

Then ϕ ∈ V and when endowed with the C0 metric it becomes a complete metric
space (this results from the convexity and coercivity of F ). We then define

V k =
{
u ∈ V :

∫
Ω

F (Du) > −1
k

}
.
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Then V k is open and dense in V , the first property follows from the convexity of
F while the second one is more difficult and is some kind of relaxation theorem
used in the calculus of variations.

We then use Baire category theorem which ensures that⋂
V k =

{
u ∈ ϕ+W 1,∞

0 (Ω) : F (Du) = 0
}

is dense (and hence non empty) in V . This achieves the outline of the proof.
The idea to use Baire theorem for Cauchy problem for ordinary differential

inclusion is due to Cellina [5], c.f. also [14]. ut

A natural question is then to ask if under the general assumption of the theorem
one can always find among the many solutions a viscosity one (when F is convex
and coercive this is the case). The answer is in general negative unless strong
geometric restrictions are assumed. A necessary and sufficient condition is given
in [3]. We give below such a result only in a particular example which sheds some
light on the nature of these geometric restrictions. We will denote for u = u (x, y)
its partial derivatives by ux, uy.

Theorem 3 ([3]). Let Ω ⊂ R2 be convex. Then{
F (Du) =

(
u2
x − 1

)2 +
(
u2
y − 1

)2 = 0, a.e. in Ω
u = 0, on ∂Ω

(4.dac)

has a W 1,∞ viscosity solution if and only if Ω is a rectangle whose faces are
orthogonal to the vectors (1, 1) and (1,−1).

Remark 4. Note that by Theorem 1 the problem (4.dac) has a W 1,∞ solution since

0 ∈ intcoE =
{
ξ ∈ R2 : |ξ1| , |ξ2| < 1

}
.

3 First order PDE, the vectorial case

We now want to discuss the analogue of Theorem 1 in the vectorial case. The
problem is then {

F1 (Du) = · · · = FN (Du) = 0, a.e. in Ω
u = ϕ, on ∂Ω

(5.dac)

where u : Ω ⊂ Rn → Rm, n,m > 1, and Fi : Rm×n → R, i = 1, ..., N.
We then let

E =
{
ξ ∈ Rm×n : Fi (ξ) = 0, i = 1, ..., N

}
.

A natural conjecture (c.f. [11]) is then
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Conjecture 5. The system (5.dac) has a W 1,∞solution provided ϕ ∈ C1
(
Ω;Rm

)
is

such that

Dϕ (x) ∈ E ∪ intQcoE, in Ω

where QcoE denotes the quasiconvex (in the sense of Morrey) hull of E.

This conjecture is a theorem under some extra technical conditions which are
discussed in [11]. In the scalar case the notions of convexity and quasiconvexity
are equivalent, therefore QcoE = coE. As in the scalar case the conjecture is close
to the necessary condition which is, in some sense,

Dϕ (x) ∈ QcoE, in Ω.

These types of problems are important in the calculus of variations (see [9])
and in nonlinear elasticity (phase transitions, problem of potential wells, c.f. also
in this case [20]) or in optimal design.

We now give one typical case that can be handled by our method (c.f. [11] and
[13], c.f. also [4]).

Let ξ ∈ Rn×n and denote by 0 ≤ λ1 (ξ) ≤ ... ≤ λn (ξ) the singular values of
the matrix ξ (i.e. the eigenvalues of (ξtξ)1/2). This implies in particular that

|ξ|2 =
n∑

i,j=1

ξ2
ij =

n∑
i=1

(λi (ξ))2 , |det ξ| =
n∏
i=1

λi (ξ) .

Theorem 6. Let Ω ⊂ Rn be an open set, ai : Ω × Rn → R, i = 1, ..., n be
continuous functions satisfying

0 < c ≤ a1 (x, s) ≤ ... ≤ an (x, s)

for some constant c and for every (x, s) ∈ Ω × Rn. Let ϕ ∈ C1
(
Ω;Rn

)
satisfy

n∏
i=ν

λi (Dϕ (x)) <
n∏
i=ν

ai (x, ϕ (x)) , x ∈ Ω, ν = 1, ..., n (6.dac)

(in particular ϕ ≡ 0), then there exists (a dense set of) u ∈ W 1,∞ (Ω;Rn) such
that {

λi (Du (x)) = ai (x, u (x)) , a.e. x ∈ Ω, i = 1, ..., n
u (x) = ϕ (x) , x ∈ ∂Ω. (7.dac)

Remark 7. If ai ≡ 1, for every i = 1, ..., n, then (6.dac) becomes

λn (Dϕ (x)) < 1, x ∈ Ω.

The problem (7.dac) can then equivalently be rewritten as

Du (x) ∈ O (n) , a.e. in Ω.

The case n = 3, ai ≡ 1 and ϕ ≡ 0 has also been studied in [6].
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4 Second order case

Since second order equations can be rewritten as first order systems, this section
seems to fall in the preceding one; however some of the equations are then linear
and hence this corresponds to the case where

intQcoE = ∅.

We here present two types of results of more general ones, see [12].
The first one deals with one single equation. For this purpose we introduce the

following notations and terminology

Rn×ns =
{
ξ ∈ Rn×n : ξ = ξt

}
.

Let Ω ⊂ Rn be an open set, F : Ω×R×Rn×Rn×ns → R, F = F (x, s, p, ξ), we say
that F is coercive with respect to the last variable ξ in the rank one direction λ,
if λ ∈ Rn×ns with rank {λ} = 1, and for every bounded set of Ω ×R×Rn ×Rn×ns

there exist constants m, q > 0, such that

F (x, s, p, ξ + tλ) ≥ m |t| − q

for every t ∈ R and every (x, s, p, ξ) that vary in the bounded set of Ω×R×Rn×
Rn×ns . Examples of such functions are

F (ξ) = |ξ|2 − 1 =
n∑

i,j=1

(
ξ2
ij

)
− 1 or F (ξ) = |trace ξ| − 1.

Theorem 8. Let Ω ⊂ Rn be an open set, F : Ω × R × Rn × Rn×ns → R be a
continuous function, convex with respect to the last variable and coercive in a rank
one direction λ. Let ϕ ∈ C2 (Rn) satisfy

F
(
x, ϕ (x) , Dϕ (x) , D2ϕ (x)

)
≤ 0, x ∈ Ω. (8.dac)

Then there exists (a dense set of) u ∈ W 2,∞ (Ω) such that{
F
(
x, u (x) , Du (x) , D2u (x)

)
= 0, a.e. x ∈ Ω

u (x) = ϕ (x) , Du (x) = Dϕ (x) , x ∈ ∂Ω.

Remark 9. (i) The theorem remains valid if convexity is replaced by quasiconvexity
in the sense of Morrey (for this notion see [19] or [8]).

(ii) The coercivity condition in a rank one direction excludes from our analysis
linear equations as well as the so called fully non linear elliptic equations (in the
sense of [2], [7], [16] or [21]).

(iii) Note that if u and ϕ are smooth functions and ∂Ω is smooth, then to
write u = ϕ, Du = Dϕ, on ∂Ω is equivalent as simultaneously prescribing the
normal and tangential derivatives. Therefore the boundary conditions are at the
same time of Dirichlet and Neumann type.
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Examples of applications of this result are

Example 10. (i) The following Dirichlet-Neumann problem admits a W 2,∞ solu-
tion {

|∆u| = a (x, u (x) , Du (x)) , a.e. in Ω
u = ϕ, Du = Dϕ, on ∂Ω

provided the compatibility condition is satisfied, namely

|∆ϕ| ≤ a (x, ϕ (x) , Dϕ (x)) .

(ii) Similarly the problem{∣∣D2u
∣∣ = a (x, u (x) , Du (x)) , a.e. in Ω
u = ϕ, Du = Dϕ, on ∂Ω

has a W 2,∞ solution provided∣∣D2ϕ
∣∣ ≤ a (x, ϕ (x) , Dϕ (x)) .

Similar results can be established for systems of equations (c.f. [12]). We only
quote here the following second order version of Theorem 6 that we get by our
method.

Theorem 11. Let Ω ⊂ Rn be an open set, let ϕ ∈ C2 (Rn) satisfy

λn
(
D2ϕ (x)

)
< 1, x ∈ Ω (9.dac)

(in particular ϕ ≡ 0), then there exists (a dense set of) u ∈W 2,∞ (Ω) such that{
λi
(
D2u (x)

)
= 1, a.e. x ∈ Ω, i = 1, ..., n

u (x) = ϕ (x) , Du (x) = Dϕ (x) , x ∈ ∂Ω. (10.dac)

Remark 12. (i) Observe that since in this theorem the matrices are symmetric
then the singular values are the absolute values of the eigenvalues of the matrices.

(ii) Note that as a consequence of the above theorem we have that if (9.dac) holds,
then the following Dirichlet-Neumann problem admits a solution

∣∣detD2u
∣∣ =

n∏
i=1

λi
(
D2u

)
= 1, a.e. in Ω

u = ϕ, Du = Dϕ, on ∂Ω.

Observe that because of the Dirichlet-Neumann boundary data the above problem
cannot be handled as a corollary of the results on Monge-Ampère equation.
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Department of Mathematics, Faculty of Electrical Engineering and
Computer Science, Technical University of Brno,
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1 Introduction

This contribution is devoted to the problem of asymptotic behaviour of solutions
of scalar linear differential equation with variable bounded delay of the form

ẋ(t) = −c(t)x(t− τ(t)) (1.dib)

with positive function c(t). Results concerning the structure of its solutions are
obtained with the aid of properties of solutions of auxiliary homogeneous equation

ẏ(t) = β(t)[y(t) − y(t− τ(t))] (2.dib)

where the function β(t) is positive. It is known that, supposing existence of a pos-
itive solution x = ω(t) of Eq. (1.dib), the substitution y(t) = x(t)/ω(t) gives an
equation of the type (2.dib) where β(t) ≡ c(t)ω(t − τ(t))/ω(t). On the other hand
equation of the type (1.dib) can be obtained from Eq. (2.dib) by means of transforma-
tion y(t) = x(t) exp

(∫ t
t0
β(s) ds

)
. This means that both equations (1.dib) and (2.dib) are

equivalent in this sense. Eq. (2.dib) has very suitable form for investigations since an
obvious property (see Lemma 1 below), that any monotone initial function gener-
ates monotone solution, implies many further properties concerning behaviour of
all solutions.

A result concerning the behaviour of solutions of Eq. (1.dib) in critical case (when
τ(t) ≡ τ = const and limt→∞ c(t) = 1/τe) is given and, moreover, an analogy with
behaviour of solutions of the second order ordinary differential equation

x′′(t) + a(t)x(t) = 0 (3.dib)

when positive continuous function a(t) satisfies the condition limt→∞ t
2a(t) = 1/4

is showed. Comparisons with known results are given.

2 Convergence of solutions of Eq. (2.dib)

Let us consider Eq. (2.dib)

ẏ(t) = β(t)[y(t) − y(t− τ(t))]

where τ ∈ C(I−1,R+), I−1 = [t−1,∞), t−1 ∈ R, R+ = (0,∞), t − τ(t) is an
increasing function on I−1, τ(t) ≤ r, t ∈ I−1, 0 < r = const and β ∈ C(I−1,R+).
Let us denote I = [t0,∞), I1 = [t1,∞) where t0 = t−1 + τ(t0) and t1 = t0 + τ(t1).
The symbol “ ˙ ” represents the right-hand derivative.

A function y is called a solution of Eq. (2.dib) corresponding to initial point t∗ ∈ I
if y is defined and is continuous on [t∗ − τ(t∗),∞), differentiable on [t∗,∞) and
satisfies (2.dib) for t ≥ t∗. By a solution of (2.dib) we mean a solution corresponding to
some initial point t∗ ∈ I. We denote y(t∗, ϕ)(t) a solution of Eq. (2.dib) corresponding
to initial point t∗ ∈ I which is generated by continuous initial function ϕ : [t∗ −
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τ(t∗), t∗] 7→ R. In the case of linear Eq. (2.dib) solution y(t∗, ϕ)(t) is unique on its
maximal existence interval Dt∗,ϕ = [t∗,∞) ([20]).

By analogy we define these notions for Eq. (1.dib) or for other classes of differential
equations with delay. If in the text of the paper an initial point is not indicated,
we suppose it equals t0.

We say that a solution of Eq. (2.dib) corresponding to initial point t∗ is convergent
or asymptotically convergent if it has a finite limit at +∞.

Let us start with the following trivial lemma:

Lemma 1. (J. Dibĺık [8]) Let the initial function ϕ(t) be defined and continuous
on [t−1, t0] and

ϕ(t) < ϕ(t0) (4.dib)

or

ϕ(t) > ϕ(t0) , (5.dib)

where t ∈ [t−1, t0). Then the corresponding solution y(t, ϕ) of Eq. (2.dib) is on I
increasing in the case of inequality (4.dib) or decreasing in the case of inequality (5.dib).

This lemma establishes an obvious fact concerning monotony of solutions of
Eq. (2.dib). Immediately there arise the questions concerning the conditions for con-
vergence and divergence of such solutions. In this section and in the next one we
shall try some of these questions answered.

Theorem 2. (Convergence Criterion) (J. Dibĺık [6]) For the convergence of
all solutions of Eq. (2.dib), corresponding to initial point t0, a necessary and suffi-
cient condition is that there exists function k ∈ C(I−1,R+) satisfying the integral
inequality

1 + k(t) ≥ exp

[ ∫ t

t−τ(t)

β(s)k(s) ds

]
(6.dib)

on interval I.

The following corollary gives known sufficient condition for convergence of
solutions of Eq. (2.dib) which can be obtained as a consequence of Theorem 2 if
k(t) ≡ k = const where k is a sufficiently small positive number.

Corollary 3. All solutions of Eq. (2.dib) are convergent if

lim sup
t→∞

∫ t

t−τ(t)

β(s) ds < 1.

As further consequences we can obtain more accurate sufficient conditions for
convergence if τ(t) ≡ τ and k(t) ≡ (t lnε t)−1 where ε > 1 or k(t) ≡ εt−1(1/τ −
L/t)−1 where ε is a small positive constant. These sufficient conditions were at
first obtained by F. V. Atkinson and J. R. Haddock [2].
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Corollary 4. All solutions of Eq. (2.dib) are convergent if∫ t+τ

t

β(s) ds ≤ 1− τ

t
− L

t ln t

for some L > τ and all sufficiently large t or if

β(t) ≤ 1
τ
− L

t

where L > 1/2 and t is sufficiently large.

3 Divergence of solutions of Eq. (2.dib)

It is easy to see that the nonexistence of the function k ∈ C(I,R+) in Theorem 2
implies existence of divergent solutions of Eq. (2.dib) and vice versa.

Theorem 5. (Divergence Criterion) (J. Dibĺık [6]) Sufficient and necessa-
ry condition for existence of solution of Eq. (2.dib), corresponding to initial point t0,
with property y(∞) =∞ is nonexistence of function k ∈ C(I−1,R+) satisfying the
integral inequality (6.dib) on interval I.

A consequence of this criterion (if an additional property of k(t) in (6.dib) is taken
into account (see [6]) ) is:

Corollary 6. (J. Dibĺık [6]) For existence of solution of Eq. (2.dib), corresponding
to initial point t0, with property y(∞) = ∞ it is sufficient that∫ t

t−τ(t)

β(s) ds ≥ 1, t ∈ I. (7.dib)

Consider Eq. (2.dib) where τ(t) ≡ 1. Such type of equation was considered in
the paper by S. N. Zhang [41] with connection of investigation of structure and
asymptotic behaviour of solutions in divergent case (see an unpublished manuscript
by F. V. Atkinson and S. N. Zhang of the identical title too). His main condi-
tions (except condition β(t) > 0) are:∫ t+1

t

β(s) ds ≥ 1,
∫ t+1

t

β(s) ds 6≡ 1, t > t0. (8.dib)

As we can see, these conditions are a special case of (7.dib).
A more detailed sufficient condition for divergence which is sometimes suitable

in the case when limt→∞ β(t)τ(t) = 1 is given in the next theorem. (This case can
be called critical in view of Corollary 3 and Corollary 6.)
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Theorem 7. (J. Dibĺık [8]) Eq. (2.dib) has on I−1 a solution y = y(t) with property
y(∞) =∞ if

1
τ(t)β(t)

− 1 ≤
∫ t

t−τ(t)

[
1
τ(s)

− β(s)
]
ds, t ∈ I

and, moreover, ∫ +∞ [ 1
τ(s)

− β(s)
]
ds = +∞.

4 Structure of solutions of Eq. (2.dib) in convergent case

In the convergent case each solution has a finite limit. In this case we can give the
estimate of the rate of convergence to this limit.

Theorem 8. (J. Dibĺık [6]) Let there be a function k ∈ C(I−1,R+) which sat-
isfies the integral inequality (6.dib) on I. Then for each solution y(t) of Eq. (2.dib), cor-
responding to initial point t0, representation

y(t) = K + ζ(t) (9.dib)

holds on I−1, where K = y(∞), and ζ(t) is a vanishing function. Moreover,

|ζ(t)| < ψ(t), t ∈ I1,

where ψ(∞) = 0,

ψ(t) ≡ δe
−

t∫
t0−r

β(s)k(s) ds

− δe
−
∞∫

t0−r
β(s)k(s) ds

and δ is a fixed positive number such that

δ > M

{
min

[t0,t0+r]

[
β(t)k(t)e−

∫ t
t0−r

β(s)k(s) ds
]}−1

,

where

M = max
[t0,t0+r]

|ẏ(t)|.

On the other hand, to each K ∈ R there corresponds a solution y(t) of Eq. (2.dib) and
a function of the type ζ(t) such that representation (9.dib) holds and for K = 0 there
is an indicated representation with positive function ζ(t).
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5 Structure of solutions of Eq. (2.dib) in divergent case

Existence of a solution, tending to ∞, plays the main role in the characterization
of the family of solutions of Eq. (2.dib) in nonconvergent case. Let us state the
following result concerning the structure formula for the solutions of Eq. (2.dib).
The unique assumption of it is the existence of a solution y(t) = Y (t) of Eq. (2.dib)
with property Y (∞) =∞. This result generalizes the result by S. N. Zhang [41]
(which is contained in the above mentioned manuscript of F. V. Atkinson and
S. N. Zhang too) where the main assumptions are: β(t) > 0 and (8.dib).

Theorem 9. (J. Dibĺık [8]) Let Y (t) be a solution of Eq. (2.dib) on I−1 with prop-
erty Y (∞) = ∞. Then for each solution y(t) of Eq. (2.dib), corresponding to initial
point t0, representation

y(t) = K · Y (t) + δ(t) (10.dib)

holds on I−1, where K ∈ R is a constant, dependent on y(t), and δ(t) is a bounded
solution of (2.dib) on I−1 dependent on y(t). This representation is unique (with respect
to K and δ(t)). On the other hand, to each K ∈ R there corresponds a solution
y(t) of Eq. (2.dib) and a function of the type δ(t) such that representation (10.dib) holds
and for any real K,L, M the expression K · Y (t) + L+Mδ(t) gives a solution of
Eq. (2.dib).

Remark 10. In the paper by J. Dibĺık [8] it is proved that (under certain condi-
tions) bounded nonconstant and nonmonotone solutions of Eq. (2.dib) exist.

6 Concluding remarks concerning the solutions of Eq. (2.dib)

As an analysis of properties of solutions of Eq. (2.dib) shows, the affirmations of the
following theorems are equivalent. The indicated conjectures are included as some
open problems.

Theorem 11. (Convergent case) The following assertions are equivalent:
1) All solutions of Eq. (2.dib) are convergent.
2) There is a function k ∈ C(I−1,R+) which satisfies the integral inequality (6.dib)
on I.
3) There is a convergent nonconstant and monotone solution of Eq. (2.dib).
4) Solution of Eq. (2.dib) with infinite limit does not exist.
5) (Conjecture) There is a convergent nonconstant and nonmonotone solution of
Eq. (2.dib).
6) (Conjecture) Divergent bounded solution of Eq. (2.dib) does not exist.

Theorem 12. (Divergent case) The following assertions are equivalent:
1) There is a solution of Eq. (2.dib) with an infinite limit.
2) A function k ∈ C(I−1,R+), which satisfies the integral inequality (6.dib) on inter-
val I, does not exist.
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3) Each nonconstant monotone solution of Eq. (2.dib) has infinite limit.
4) (Conjecture) A convergent nonconstant solution of Eq. (2.dib) does not exist.
5) (Conjecture) There is divergent bounded solution of Eq. (2.dib).

7 Properties of solutions of Eq. (1.dib)

Let us suppose that c ∈ C(I−1,R+). All assumptions with respect to the delay
τ(t) remain the same as above.

As usual, a solution of Eq. (1.dib) is called oscillatory if it has arbitrary large zeros.
Otherwise it is called non-oscillatory (positive or negative).

At first we prove theorem concerning existence of positive solutions of Eq. (1.dib)

ẋ(t) = −c(t)x(t− τ(t))

with nonzero limit. In this theorem we shall suppose
∫∞

c(s) ds <∞ and the point
t0 so large that

∫∞
t0−r c(s) ds < 1.

Theorem 13. Eq. (1.dib) has a positive solution with nonzero limit if and only if∫ ∞
c(t) dt <∞. (11.dib)

Proof. Without loss of generality we shall suppose that
∫∞
t0−r c(t) dt = m < 1. Let

us define ω(t), where t ∈ I, as the set of functions λ ∈ C([t− r, t],R) such that

ϕ1(t+ θ) < λ(t+ θ) < ϕ2(t+ θ)

for all θ ∈ [−r, 0) where

ϕ1(t) ≡ 1 + δ1

∫ ∞
t

c(s) ds, ϕ2(t) ≡ 1 + δ2

∫ ∞
t

c(s) ds, t ∈ I−1,

δ1, δ2 = const, 0 < δ1 < 1; 1/(1−m) < δ2 and either λ(t) = ϕ1(t) or λ(t) = ϕ2(t).
Let us define function

W (t, x) ≡ (x − ϕ1(t)) · (x− ϕ2(t)), t ∈ I−1

and find the sign of derivative of this function along the solutions of Eq. (1.dib) on
the set ω(t) for each t ∈ I. We obtain

dW (t, x)
dt

=

−(c(t)x(t − τ(t)) + ϕ′1(t)) · (x− ϕ2(t))− (x− ϕ1(t)) · (c(t)x(t − τ(t)) + ϕ′2(t)).

For each λ ∈ ω, such that λ(t) = ϕ1(t), t ∈ I, we have

dW (t, x)
dt

∣∣∣∣
x=λ

= −(c(t)λ(t − τ(t)) + ϕ′1(t))(ϕ1(t)− ϕ2(t)) >
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> (δ2 − δ1)c(t)

(
1− δ1 + δ1

∫ ∞
t−τ(t)

c(s) ds

)∫ ∞
t

c(s) ds > 0

and for each λ ∈ ω, such that λ(t) = ϕ2(t), t ∈ I, we get

dW (t, x)
dt

∣∣∣∣
x=λ

= −(ϕ2(t)− ϕ1(t))(c(t)λ(t − τ(t)) + ϕ′2(t)) >

> (δ2 − δ1)c(t)

(
δ2 − 1− δ2

∫ ∞
t−τ(t)

c(s) ds

)∫ ∞
t

c(s) ds > 0.

Therefore in both cases, for t ∈ I, the following is true:

dW (t, x)
dt

∣∣∣∣
x=λ

> 0.

Now, by the topological method of T. Ważewski (see, for instance, [38]) in
the adaptation which is suitable for the retarded functional differential equations
(given by K. P. Rybakowski [36]), there is a solution of Eq. (1.dib) x = x̃(t), t ∈ I
such that x̃(t) ∈ ω(t) for each t ∈ I. From the form of the set ω(t) it fol-
lows that ϕ1(t) < x̃(t) < ϕ2(t) on I−1 and, moreover, limt→∞ x̃(t) = 1 since
limt→∞ ϕ1(t) = limt→∞ ϕ2(t) = 1. The details of the application of the topologi-
cal principle are omitted because they can be found e.g. in [8,9,10], [36].

Now, let us suppose that
∫∞

c(t) dt = ∞. If there is a positive solution x =
x̃(t), t ∈ I−1, of Eq. (1.dib) with nonzero limit x̃(∞) = L > 0, then integration of this
equation with limits t0 and ∞ gives

L− x̃(t0) = −
∫ ∞
t0

c(s)x̃(s− τ(t)) ds. (12.dib)

We obtain a contradiction since the left hand side of (12.dib) is equal to a negative
number although the right hand side is equal to −∞. The theorem is proved.

Corollary 14. As it follows from the proof of Theorem 13 if (11.dib) holds then there
is a solution x = x(t) of Eq. (1.dib) on I−1 such that

1 + δ1

∫ ∞
t

c(s) ds < x(t) < 1 + δ2

∫ ∞
t

c(s) ds,

where t ∈ I−1, δ1, δ2 = const , δ1 ∈ (0, 1), δ2 ∈ (1/(1−m),∞) and m =
∫∞
t0−r c(s) ds.

Remark 15. As it follows from Theorem 13, each positive solution of Eq. (1.dib) tends
to zero if

∫∞
c(t) dt =∞.



Behaviour of Solutions 39

8 Structure formulas for solutions of Eq. (1.dib)

Theorem 16. Let us suppose the existence of a positive solution x = x̃(t) of
Eq. (1.dib) on I−1. Then every solution x = x(t) of Eq. (1.dib) is by a unique way
represented either by the formula

x(t) = x̃(t)(K + ζ(t)), (13.dib)

where K ∈ R is a constant, dependent on x(t), and ζ(t), ζ(∞) = 0 is a continuous
function defined on I−1 dependent on x(t), or by the formula

x(t) = x̃(t)(KY (t) + δ(t)) (14.dib)

where Y (t) is a continuous increasing function which is the same for each x(t),
Y (∞) = ∞, K ∈ R is a constant, dependent on x(t), and δ(t) is a bounded
continuous function defined on I−1 dependent on x(t). On the other hand, to each
K ∈ R there corresponds a solution of x(t) Eq. (1.dib) and a function of the type ζ(t)
(if in (13.dib) K = 0, then there is a representation of a solution x(t) with positive
function ζ(t)) or of the type δ(t) such that either formula (13.dib) holds or formula
(14.dib) is valid. Moreover, in this case the representation (14.dib) gives a solution of
Eq. (1.dib) if δ(t) is shifted by any constant or is equal to any constant.

Proof. Let us introduce a new variable y(t) by means of formula

y(t) = x(t)/x̃(t)

where x(t) is any solution of Eq. (1.dib). Then y(t) satisfies the equation of the type
of Eq. (2.dib), i.e. the equation

ẏ(t) =
c(t)x̃(t− τ(t))

x̃(t)
[y(t)− y(t− τ(t))]. (15.dib)

We can conclude that either there is a positive function k(t) on I−1 which satisfies
the integral inequality (6.dib) on I if

β(t) ≡ c(t)x̃(t− τ(t))
x̃(t)

or such function does not exist. This means: either the convergence criterion (The-
orem 2) holds or the divergence criterion (Theorem 5) is valid. If the first case
occurs, then formula (13.dib) immediately follows from Theorem 8 (formula (9.dib)). If
we deal with the second possibility, then Theorem 9 is true and the representation
(14.dib) follows immediately from formula (10.dib). The theorem is proved.

Remark 17. Let us suppose that Theorem 16 holds. Then there are two linearly
independent positive solutions of Eq. (1.dib) x1(t), x2(t) on I−1, defined in the case
(13.dib) as

x1(t) = x̃(t), x2(t) = x̃(t)ζ(t)
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(the existence of a positive function ζ(t) follows from Lemma 1) and in the case
(14.dib) as

x1(t) = x̃(t)Y (t), x2(t) = x̃(t).

Obviously limt→∞ x2(t)/x1(t) = 0. Then formula (14.dib) turns into x(t) = Kx1(t) +
O(x2(t)). In the next theorem it is shown that this formula covers both represen-
tations (13.dib), (14.dib).

Theorem 18. Let there be a positive solution x = x̃(t), t ∈ I−1, of Eq. (1.dib).
Then there are two positive solutions x1(t), x2(t), t ∈ I−1, of Eq. (1.dib) such that
limt→∞ x2(t)/x1(t) = 0. Moreover, every solution x = x(t), t ∈ I−1, of Eq. (1.dib) is
represented by the formula

x(t) = Kx1(t) +O(x2(t)), t ∈ I−1, (16.dib)

where K ∈ R depends on x(t).

Proof. In view of Theorems 9, 16, Lemma 1 and Remark 17 it is sufficient to prove
formula (16.dib) if representation (13.dib) holds. Let us introduce a new variable y(t) by
means of formula

y(t) = x(t)/(x̃(t)ζ(t))

where x(t) is any solution of Eq. (1.dib) and ζ(t) > 0. Proceeding as above, we conclude
that for corresponding equation of the type (15.dib) the structure formula (10.dib) holds.
This means

y = K̃ Ỹ (t) + δ̃(t)

where the sense of K̃, Ỹ (t) and δ̃(t) is the same as the sense of K,Y (t) and δ(t) in
formula (10.dib). The representation (13.dib) can be written in the form

x(t) = x̃(t)ζ(t)(K̃ Ỹ (t) + δ̃(t)).

This representation is simultaneously the representation of the type (14.dib) for which
the affirmation was proved in Remark 17. The theorem is proved.

Remark 19. For previous results in this direction we refer to the papers by E. Ko-

zakiewicz [28,29,30] and the book of A. D. Myshkis [32]. Note, except this, that
(if Theorem 18 holds) any oscillating solution x = x(t) of (1.dib) satisfies relation
x(t) = O(x2(t)) and, consequently, tends to zero if t→∞.

Example 20. Let us consider the equation of the type Eq. (1.dib)

ẋ(t) = −(1/t)x(t− 1). (17.dib)

In the papers by J. Dibĺık [9], [10] it was shown that asymptotic behavior of two
linearly independent positive solutions x1(t), x2(t) of Eq. (17.dib) is given by relations

|x1(t)− (t− 1)−1| < (t− 1)−2
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and

exp[−3(t+ 1/4) ln(t+ 1/4)] < x2(t) < exp[−(t/2 + 1/8) ln(t− 1/4)].

Then, by Theorem 18, the representation (16.dib) holds.

Example 21. For the equation of the type Eq. (1.dib)

ẋ(t) = −(1/eτ)x(t − τ) (18.dib)

where τ = const it is known that there are two asymptotically different positive
solutions, namely x1(t) = t exp(−t/τ), x2(t) = exp(−t/τ). In accordance with
Theorem 18 the representation (16.dib) holds and each solution is representable in the
form

x(t) = te−t/τ (K +O (1/t)) .

9 Existence of positive solution of Eq. (1.dib)

In D. Zhou [42], L. H. Erbe, Q. Kong, B. G. Zhang [16] or J. Dibĺık [7], [11]
some criterions for existence of positive solution of Eq. (1.dib) are given. Let us give
one of them which will be used in the sequel.

Theorem 22. (L. H. Erbe, Q. Kong, B. G. Zhang [16], p. 29) Eq. (1.dib) has a positi-
ve solution with respect to t0 if and only if there exists a continuous function λ(t)
on I−1 such that λ(t) > 0 on I and

λ(t) ≥ c(t)e
∫ t
t−τ(t) λ(s) ds, t ∈ I. (19.dib)

A very well known sufficient condition, given (under various slightly different as-
sumption for (1.dib) or for modified classes of this equation) by many authors (see, e.g.,
L. H. Erbe, Q. Kong, B. G. Zhang [16], K. Gopalsamy [17], I. Györi, G.

Ladas [18], I. Györi, M. Pituk [19], R. G. Koplatadze, T. A. Chanturija

[25], M. Pituk [35]) is a consequence of this criterion:

Corollary 23. (L. H. Erbe, Q. Kong, B. G. Zhang [16], p. 29) If∫ t

t−τ(t)

c(s) ds ≤ 1/e, t ∈ I (20.dib)

then Eq. (1.dib) has a positive solution with respect to t0.

This consequence gives that, in the case τ(t) ≡ const for existence of a positive
solution with respect to t0 of Eq. (1.dib), the inequality

c(t) ≤ 1/eτ, t ∈ I−1 (21.dib)

is sufficient. In the next section the case

lim
t→∞

c(t) =
1
τe

is considered.
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10 Behaviour of solutions of Eq. (1.dib) in critical case

Y. Domshlak [13], [14] was the first who noticed that among the equations of the
form (1.dib) with limt→∞ c(t) = 1/τe there exist equations such that all their solutions
are oscillatory in spite of the fact that the corresponding limiting equation (18.dib)
admits a non-oscillatory solution (see Example 21). This situation is called critical.

Let us give an improvement of the last sufficient condition (21.dib) together with
the sufficient condition for oscillation of all solutions of Eq. (1.dib).
Let us denote

lnp t = ln ln . . . ln︸ ︷︷ ︸
p

t, p ≥ 1,

if t > expp−2 1, where

expp t ≡ ( exp(exp(. . . exp︸ ︷︷ ︸
p

t ))), p ≥ 1,

exp0 t ≡ t and exp−1 t ≡ 0. Moreover, let us define ln0 t ≡ t. Instead of expressions
ln0 t, ln1 t, we will write only t and ln t in the sequel. The following holds:

Theorem 24. (J. Dibĺık [11])
A) Let us assume that τ(t) ≡ τ = const,

c(t) ≤ cp(t) (22.dib)

for t→∞ and an integer p ≥ 0, where

cp(t) ≡
1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+

τ

8e(t ln t ln2 t)2
+ · · ·+ τ

8e(t ln t ln2 t . . . lnp t)2
.

Then there is a positive solution x = x(t) of Eq. (1.dib). Moreover,

x(t) < e−t/τ
√
t ln t ln2 t . . . lnp t

as t→∞.
B) Let us assume that τ(t) ≡ τ = const,

c(t) ≥ cp−1(t) +
θτ

8e(t ln t ln2 t . . . lnp t)2
(23.dib)

for t → ∞, an integer p ≥ 1 and a constant θ > 1. Then all solutions of Eq. (1.dib)
oscillate.

The proof of the part A) of this theorem can be made with the aid of Theo-
rem 22. Indeed, it is easy to see that the inequality (19.dib), where c(t) ≡ cp(t), has
(for sufficiently large t) a solution

λ(t) =
1
τ
− 1

2t
− 1

2t ln t
− 1

2t ln t ln2 t
− · · · − 1

2t ln t ln2 t . . . lnp t
.
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In process of verification it is necessary to find an asymptotic representation of the
right hand side of inequality (19.dib). After this, as usual, we compare the coefficients
of identical functional terms on left hand side and on right hand side. The following
equalities for determination of coefficients of the functional terms indicated below
are valid:

1 : 1/τ = 1/τ,

1/(t ln t . . . lnj t), 0 ≤ j ≤ p : −1/2 = −1/2,

1/(t ln t . . . lnj t)2, 0 ≤ j ≤ p : 0 = τ/8 − τ/8,

1/[(t ln t . . . lns t)2(lns+1 t . . . lnj t)], 0 < s < j < p : 0 = τ/8− τ/8 .

For the next asymptotic smaller terms we have

0 ≥ − τ2

16t3
− τ2

16t3
+ o

(
1
t3

)
= − τ

2

8t3
+ o

(
1
t3

)
.

This inequality holds for t→∞. The verification is ended.
In the paper by J. Dibĺık [11] this part is proved by another equivalent way.
The proof of the part B) is made in cited paper by using the method of

Y. Domshlak. In this part, Theorem 24 generalizes Theorem 3 of the recent
paper by Y. Domshlak and I. P. Stavroulakis [14]).

Remark 25. The behaviour of solutions in the critical case was investigated by
many authors. For example, the papers (except the above mentioned ones) by Li

Bingtuan [3], [4], by Á. Elbert and I. P. Stavroulakis [15], by J. Jaroš and
I. P. Stavroulakis [23], by E. Kozakiewicz [26], [27] and by J. Werbowski

[39] are devoted to this case. We refer to these papers for further bibliography
(and history) concerning this question.

Problem 26. An analogy of Theorem 24 is not yet given if inequalities (22.dib), (23.dib)
are substituted by inequalities (or by a slightly modified inequalities) obtained
from (22.dib), (23.dib) by integrating with limits t− τ and t, i.e. an analogy is not given
if corresponding inequalities are given in terms of the integral average

∫ t
t−τ c(s) ds

of the function c(t) instead in terms of values of the function c(t) itself. The first
step in this direction is inequality (20.dib). This can serve as a motivation for further
investigations in this direction. (As far as this question in the oscillation case is
concerned, we refer to the paper [14].) See this situation with an analogous one in
Corollary 4.

Remark 27. Let us observe that if inequality (23.dib) holds, then integral inequality
(19.dib) has not a positive solution, satisfying conditions indicated in Theorem 22.
Note, moreover, that in the papers by F. Neuman (e.g. [33], [34]) a theoretical
possibility is given for transformation of an equation with variable delays to an
equation of the same class with constant delays. This perhaps can serve as a pos-
sibility of generalization of Theorem 24 if the delay is not constant.
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11 Comparison with behaviour of solutions of Eq. (3.dib) in
critical case

Let us define functions
µp(t) ≡ t ln t ln2 t . . . lnp t,

ap(t) ≡
1
4

(
1
t2

+
1

(t ln t)2
+ · · ·+ 1

(t ln t . . . lnp−1 t)2
+

1 +A

(t ln t . . . lnp t)2

)
,

where p ≥ 0, A ∈ R and t is sufficiently large.

Lemma 28. The equation of the type of (3.dib)

x′′(t) + ap(t)x(t) = 0, p ≥ 0, (24.dib)

has following linearly independent solutions:
A)

x1(t) =
√
µp(t) sin

(a
2

lnp+1 t
)
, x2(t) =

√
µp(t) cos

(a
2

lnp+1 t
)
,

if A = a2, a > 0, p ≥ 0;
B)

x1(t) =
√
µp(t) , x2(t) =

√
µp(t) lnp+1 t,

if A = 0, p ≥ 0;
C)

x1(t) =
√
µp−1(t) (lnp t)λ1 , x2(t) =

√
µp−1(t) (lnp t)λ2 for p ≥ 1,

and
x1(t) = tλ1 , x2(t) = tλ2 for p = 0

if A < 0 and λ1, λ2 are roots of the quadratic equation

λ2 − λ+ (1 +A)/4 = 0, i.e. λ1,2 =
1
2

(
1±
√
−A

)
.

Proof. It is easy to verify this affirmation by means of substitution of the expres-
sions x1(t), x2(t) into Eq. (24.dib).

Let us formulate the known result concerning oscillatory and nonoscillatory
properties of all solutions of Eq. (3.dib) which can be proved by standard arguments
with the aid of Lemma 28 and Sturmian Comparison Method (see e.g. [21]).

Theorem 29. Let a ∈ C(I,R+). All solutions of Eq. (3.dib) oscillate on I if a(t) ≥
ap(t), t ∈ I for some integer p ≥ 0 and A > 0. If a(t) ≤ ap(t), t ∈ I for some
p ≥ 0 and for A = 0 then Eq. (3.dib) is nonoscillatory on I.
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Remark 30. Theorem 24 is an analogy of Theorem 29 since there is a parallel be-
tween oscillatory and nonoscillatory properties of solutions of Eq. (1.dib) and Eq. (3.dib).
Previous analogues in the case of equations with delay (for p = 0 and for p = 1)
with classical Kneser’s theorem [24], [37] and with result due to Hille [22], [37] were
given in the cited paper by Y. Domshlak and I. P. Stavroulakis [14]. Note,
except this, that conditions concerning functions a(t) and c(t) are very similar.
Comparison functions ap(t) and cp(t) consist of the same functional terms and
differ only in their multipliers and in additive constant.

Remark 31. Some close problems for similar classes of equations and systems of
equations (with respect to Eq. (1.dib) and Eq. (2.dib)) are considered e.g. by O. Arino,

M. Pituk [1], by J. Čermák [5], by T. Krisztin [31] and for equations with
impulses by A. Domoshnitsky, M. Drakhlin [12] and by Yu Jiang, Yan

Jurang [40].
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5. J. Čermák, On the asymptotic behaviour of solutions of certain functional differen-
tial equations, to appear in Math. Slovaca.
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y(t− τ (t))], J. Math. Anal. Appl., 217 (1998), 200–215.
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Abstract. The asymptotic behaviour of a Sturm-Liouville differential equ-
ation with coefficient λ2q(s), s ∈ [s0,∞) is investigated, where λ ∈ R and
q(s) is a nondecreasing step function tending to∞ as s→∞. Let S denote
the set of those λ’s for which the corresponding differential equation has
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1 Introduction and new results

In [1] F. V. Atkinson investigated the differential equations of the form

y′′(s) +
(
λ2q(s) + λ

√
q(s)g(s)

)
y(s) = 0 λ ∈ R, s ∈ (s0,∞)

with a coefficient q(s) > 0, which is continuous, nondecreasing and lims→∞ q(s) =
∞, and

∫∞ |g(s)| ds < ∞. He defined the set S of those λ’s for which there
exist a g(s) and a solution y(s) of this differential equation such that the relation
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lims→∞ y(s) = 0 does not hold. He found that S is an additive group and he gave
examples when S = {0}, S = Z.

Here we consider the cases when q(s) is a step function, i.e.

q(s) = k2
i for si ≤ s < si+1, i = 0, 1, . . . , (1.elb)

where 0 < k0 < k1 < . . . , limi→∞ ki =∞ and we consider the differential equation

y′′(s) + λ2q(s) y(s) = 0 s ≥ s0, λ ∈ R. (2.elb)

The function y(s) is a solution of this differential equation if y(s) is continuously
differentiable, y′(s) is piecewise continuously differentiable and it satisfies (2.elb) on
that pieces of interval.

In [3] we have shown that (2.elb) has at least one solution for which lims→∞ y(s) = 0
holds provided λ 6= 0. It is a question whether all solutions of (2.elb) tend to zero or
there are some which do not do this. This property may depend heavily on the
actual value of λ. Here we extend the Atkinson’s result in the following way.

Theorem. Let S denote the set of those λ’s for which (2.elb) has a solution yλ(s)
such that the limit lims→∞ yλ(s) = 0 does not hold. Then S is an additive group.

The set S is never empty because 0 ∈ S: for λ = 0 in (2.elb) we have the solution
y0(s) ≡ 1 which does not tend to 0. On the other hand, if λ 6= 0 and λ ∈ S, then
−λ ∈ S because in (2.elb) only the value λ2 counts.

In [3] we have investigated similar problems and we have seen that the stability
properties of differential equation (2.elb) are equivalent to the stability of the difference
equation [

ai+1

bi+1

]
= D(di)E(λωi)

[
ai
bi

]
, i = 0, 1, . . . , (3.elb)

where

di =
ki
ki+1

, ωi = ki(si+1 − si), D(d) =
[
1 0
0 d

]
, E(ω) =

[
cosω sinω
− sinω cosω

]
. (4.elb)

Clearly, the sequences {di}∞i=0, {ωi}∞i=0 are subject to the restrictions

0 < di < 1,
∞∏
i=0

di = 0,
∞∑
i=0

ωid0 . . . di−1 =∞. (5.elb)

It is evident that if the sequences {di}∞i=0, {ωi}∞i=0 are given, satisfying (5.elb), and
knowing the initial data k0 and s0, we can reconstruct the function q(s) of the
form (1.elb). Hence the correspondence between the differential equation (2.elb) and the
difference equation (3.elb) is one to one.

We shall give examples for different additive groups S.
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Example 1. Let di < di+1 < 1 (i = 0, 1, . . . ) and limi→∞ ωi = 0 such that (5.elb) is
satisfied and

∞∑
i=0

(1− di+1)ω2
i =∞.

Then S = {0}.

Particularly, for di = i+1
i+2 , ωi = 1√

log(i+2)
all the requirements of Example 1 are

satisfied.

Example 2. Let ωi = π and di < di+1 < 1 with
∏∞
i=0 di = 0. Then S = Z.

Let D denote the set of dyadic numbers, i.e. the rational numbers of the form n/2m

for all n,m ∈ Z. Clearly, this set is an additive group.

Example 3. Let ωi = 2iπ and di = d ∈ [ 1
2 , 1) be fixed. Then S = D.

Example 4. Let ωi = i!π and di = d ∈ (0, 1). Then 1
2e /∈ S, where e = 2.718 . . . is

the Euler number and Q ⊂ S $ R.

Open problem. For the case S = R we have no other example than the trivial one
(see also in [1]) when q(s) tends to a positive constant or q(s) ≡ const > 0. We
guess that there is no example for S = R and lims→∞ q(s) =∞.

In the next section we prepare the tools for the proof of the above theorem and
examples and the proof itself will be carried out in Section 3.

2 Preliminaries

In [1] the proof goes on the Prüfer transformation technique. Also here we shall
follow this way. First we consider the difference equation[

ai+1

bi+1

]
= D(di)E(ωi)

[
ai
bi

]
, i = 0, 1, . . . , (6.elb)

with parameters di, ωi as in (5.elb). According to the results in [2], we know that the
limit limi→∞(a2

i +b2i ) exists for all solutions {[a0
b0

], [a1
b1

], . . . }. We say that the differ-
ence equation (6.elb) is asymptotically stable if for all solutions limi→∞(a2

i + b2i ) = 0,
otherwise we say that (6.elb) is not asymptotically stable. Clearly, λ ∈ S if and only
if (3.elb) is not asymptotically stable. Therefore we look for criteria to decide when a
difference equation is asymptotically stable or not asymptotically stable.

Let ri, ϕi be defined by

ai = ri cosϕi, bi = −ri sinϕi, (ri > 0). (7.elb)
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Then {ri}∞i=0 is defined uniquely by ri =
√
a2
i + b2i . Also ϕ0 is unique if we make

the restriction 0 ≤ ϕ0 < 2π. The desirable uniqueness of the values ϕ1, ϕ2, . . . will
be guaranteed by a continuity consideration given later. By (6.elb) we have

ai+1 = ri+1 cosϕi+1 = ri cos(ωi + ϕi),
bi+1 = −ri+1 sinϕi+1 = −di ri sin(ωi + ϕi),

i = 0, 1, . . . . (8.elb)

Hence
r2
i+1 = r2

i [1− (1− d2
i ) sin2(ωi + ϕi)], i =, 0, 1, . . . ,

consequently

r2
i+1 = r2

0

i∏
j=0

[1− (1− d2
j ) sin2(ωj + ϕj)].

Clearly, (6.elb) is not asymptotically stable if and only if there exists an initial value
ϕ0 (and r0 = 1), such that the sequences {ϕi}∞i=0 and {di}∞i=0 satisfy (8.elb) and

∞∏
i=0

[1− (1− d2
i ) sin2(ωi + ϕi)] > 0,

or equivalently,
∞∑
i=0

(1− d2
i ) sin2(ωi + ϕi) <∞. (9.elb)

In this criterion only the knowledge of the sequence ϕ0, ϕ1, . . . is important
and we do not have to calculate the sequence {r1, r2, . . . } to decide the asymptotic
stability of the difference equation (6.elb).

Let us introduce the continuous function Φ(d, α) : (0,∞) × R → R by the
relations:

Φ(1, α) = α,

Φ(d, k
π

2
) = k

π

2
, d > 0, k ∈ Z,

tanΦ(d, α) = d tanα, d > 0, α 6= (2k + 1)
π

2
, k ∈ Z.

(10.elb)

Clearly, Φ(d, α) is strictly increasing function of α when d is fixed. Hence there
exists its inverse Φ−1(d, α), too. Making use of the function Φ(d, α), we have by (8.elb)

ϕi+1 = Φ(di, ωi + ϕi), i = 0, 1, . . . , (11.elb)

which defines uniquely the values of ϕ1, ϕ2, . . . .
Let the function σ(d, α, β) be defined on (0,∞) × R2 by one of the following

(equivalent) relations:

σ(d, α, β) = Φ−1(d, Φ(d, α) + Φ(d, β)) − α− β,
Φ(d, α + β + σ(d, α, β)) = Φ(d, α) + Φ(d, β).

(12.elb)

Clearly, we have σ(1, α, β) ≡ 0. The most important property of this function is
formulated as follows.
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Lemma. Let 0 < d < 1, then

|σ(d, α, β)| ≤ π

2
(1− d2) | sinα| | sinβ|,

where the equality holds if and only if either sinα = 0 or else sinβ = 0.

The proof of this lemma will be given in the next section.
On asymptotic stability or non stability we can find sufficient conditions in [2]

or in [3]. We recall them as follows.

Theorem A. The difference equation (6.elb) is asymptotically stable if

∞∑
i=0

min{1− di, 1− di+1} sin2 ωi =∞.

Theorem B. If the sum
∑∞

i=0 | sinωi| < ∞, then the difference equation (6.elb) is
not asymptotically stable.

Let M be a 2× 2 (real) matrix and let x = [ab ] with the norm |x| =
√
a2 + b2.

Define the spectral norm ‖M‖ of the matrix M by

‖M‖ = max
|x|=1

|Mx|.

Consider the difference equation[
âi+1

b̂i+1

]
=Mi

[
âi
b̂i

]
i = 0, 1, . . . , (13.elb)

where Mi is nonsingular 2 × 2 matrix for i = 0, 1, . . . . We say that (13.elb) is an
`1-perturbation of (6.elb) if

∞∑
i=0

‖Mi −D(di)E(ωi)‖ <∞ (14.elb)

holds. Here we recall another result from [2, Theorem 6 and Remark 1, Proposi-
tion 3]:

Theorem C. Suppose (13.elb) is an `1-perturbation of (6.elb). Then these difference
equations are either both asymptotically stable or both not asymptotically stable.

3 Proofs

We start with the proof of Lemma because we have to apply it to the proof of
Theorem.
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Proof of the Lemma. Suppose that tanα and tanβ are defined (i.e. α 6≡ π
2 (mod π)

and β 6≡ π
2 (mod π)). Let α1 = Φ(d, α), β1 = Φ(d, β). Again we suppose that

α1 + β1 6≡ π
2 (mod π). Then by (10.elb), (12.elb) we have

tan(α1 + β1) = d tan(α+ β + σ) = d
tan(α + β) + tanσ

1− tan(α+ β) tanσ
=

=
tanα1 + tanβ1

1− tanα1 tanβ1
= d

tanα+ tanβ
1− d2 tanα tanβ

,

therefore

tanσ = tanσ(d, α, β) = −(1− d2)
sinα sinβ sin(α+ β)

1 + (1− d2) sinα sinβ cos(α+ β)
. (15.elb)

Also by this formula it is clear that σ(1, α, β) ≡ 0 and σ(d, α, β) is defined for all
(α, β) ∈ R2 if d ∈ (0, 1], i.e. |σ(d, α, β)| < π

2 .
By (15.elb) it follows that

σ(d, α, β) = σ(d, β, α), σ(d, α+ π, β) = σ(d, α, β), σ(d,−α,−β) = −σ(d, α, β).

Thus it is sufficient to prove our Lemma for 0 ≤ |β| ≤ α ≤ π
2 . If β = 0, the

statement is trivial. Let 0 < β ≤ α ≤ π
2 . First we show that |σ(s, α,−β)| ≤

|σ(d, α, β)| or

(1− d2)
sinα sin β sin(α− β)

1− (1− d2) sinα sin β cos(α− β)
≤ (1− d2)

sinα sin β sin(α + β)

1 + (1− d2) sinα sin β cos(α + β)

or simplifying by (1− d2) sinα sinβ:

(1− d2) sinα sinβ sin 2α ≤ 2 cosα sinβ

whence the equality holds if α = π
2 , and the sharp inequality (1 − d2) sin2 α < 1

in other cases.
Introducing the quantity x = π

2 (1 − d2) sinα sinβ, we have to show by (15.elb)
that

| tanσ| =
2
πx sin(α+ β)

1 + 2
πx cos(α+ β)

< tanx =
sinx
cosx

, 0 < x <
π

2

or equivalently

sin(α+ β − x) <
π

2
sinx
x

.

The function on the right hand side is strictly decreasing and only at x = π
2 would

attain the value 1, and this fact proves our Lemma. ut

Proof of the Theorem. We have to show that if λ, µ ∈ S (and λ + µ 6= 0), then
λ + µ ∈ S. According to (3.elb) and (9.elb) there exist ϕ0 and ψ0 such that for the
sequences {ϕi}∞i=0, {ψi}∞i=0 defined by (11.elb):

ϕi+1 = Φ(di, λωi + ϕi), ψi+1 = Φ(di, µωi + ψi)
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satisfy the relations

∞∑
i=0

(1− d2
i ) sin2(λωi + ϕi) <∞,

∞∑
i=0

(1− d2
i ) sin2(λµi + ψi) <∞.

(16.elb)

Let σi = σ(di, λωi + ϕi, µωi + ψi) be defined by (12.elb) and consider the difference
equation [

ai+1

bi+1

]
=
[
1 0
0 di

] [
cos ω̄i sin ω̄i
− sin ω̄i cos ω̄i

] [
ai
bi

]
i = 0, 1, . . . , (17.elb)

where ω̄i = (λ+ µ)ωi + σi. Let ϕ̄i = ϕi +ψi. Then by definition of ω̄i and by (12.elb)
we obtain

ϕ̄i+1 = ϕi+1 + ψi+1 = Φ(di, λωi + ϕi) + Φ(di, µωi + ψi) =
= Φ(di, λωi + ϕi + µωi + ψi + σi) = Φ(di, (λ + µ)ωi + σi + ϕ̄i) =
= Φ(di, ω̄i + ϕ̄i).

Now the difference equation (17.elb) is not asymptotically stable because it has a
solution not tending to 0. To see this we apply relation (9.elb). We find

∞∑
i=0

(1− d2
i ) sin2(ω̄i + ϕ̄i) =

∞∑
i=0

(1− d2
i ) sin2(λωi + ϕi + µωi + ψi + σi) ≤

≤ 3
∞∑
i=0

(1− d2
i )
[
sin2(λωi + ϕi) + sin2(µωi + ψi) + sin2 σi

]
=

= 3
∞∑
i=0

(1− d2
i ) sin2(λωi + ϕi) + 3

∞∑
i=0

(1− d2
i ) sin2(µωi + ψi) +

+ 3
∞∑
i=0

(1 − d2
i ) sin2 σi.

The first two terms are convergent because of (16.elb). By Lemma we have

sin2 σi ≤ σ2
i ≤

π2

4
(1 − d2

i )
2 sin2(λωi + ϕi) sin2(µωi + ψi),

hence also the third term is convergent. Thus we have got

∞∑
i=0

(1− d2
i ) sin2(ω̄i + ϕ̄i) <∞,

which implies the existence of a solution of (17.elb) not tending to 0.



56 Á. Elbert

To complete the proof, we show that (17.elb) is an `1-perturbation of the difference
equation [

ai+1

bi+1

]
= D(di)E((λ + µ)ωi)

[
ai
bi

]
i = 0, 1, . . . . (18.elb)

By Theorem C we have to estimate the spectral norm of the difference of the
coefficient matrices:

‖D(di) [E(ω̄i)− E((λ + µ)ωi)]‖ ≤ ‖D(di)‖ ‖E((λ + µ)ωi)‖ ‖E(σi)− E(0)‖ ≤

≤ 1 · 1 ·
√

sin2 σi + (1− cosσi)2 ≤ |σi|

because ω̄i = (λ+µ)ωi +σi and E(α+β) = E(α)E(β). By Lemma and by (16.elb) we
conclude that

∞∑
i

|σi| ≤
π

2

∞∑
i=0

(1− d2
i )
(
sin2(λωi + ϕ) + sin2(µωi + ψi)

)
<∞,

i.e. the difference equation (18.elb) is not asymptotically stable. Finally we observe
that this difference equation corresponds to the differential equation

y′′(s) + (λ + µ)2q(s)y(s) = 0,

hence λ+ µ ∈ S. ut
Proof of Example 1. Let λ 6= 0, then we have limi→∞ λωi = 0. Let i0 be sufficiently
large integer such that |λωi| < π

2 for i ≥ i0. Applying the inequality sinx/x >

1/
√

2 for |x| < π
2 , we obtain

∞∑
i=0

(1 − di+1) sin2 λωi ≥
λ2

2

∞∑
i=i0

(1− di+1)ω2
i =∞,

hence by Theorem A we conclude that λ 6∈ S, which proves that S = {0}. ut
Proof of Example 2. Let λ = k ∈ Z, then

∞∑
i=0

| sin kωi| =
∞∑
i=0

| sinkπ| = 0,

and by Theorem B k ∈ S, i.e. Z ⊂ S.
If λ 6∈ Z, then sinλπ 6= 0 and

∞∑
i=0

(1− di+1) sin2 λπ = sin2 λπ

∞∑
i=1

(1− di) =∞

because by (5.elb) the restriction
∏∞
i=0 di = 0 is equivalent to

∑∞
i=0(1 − di) = ∞.

By Theorem A all solutions of (3.elb) tend to 0 if λ 6∈ Z, consequently for these λ’s
we have λ 6∈ S, which proves this example. ut
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Proof of Example 3. The restriction d ∈ [ 1
2 , 1) is justified by the requirement in

(5.elb):
∑∞

i=0 2iπdi = π
∑∞

i=0(2d)i =∞. Let λ = 1
2n , n ∈ N. Then

∞∑
i=0

| sinλωi| =
∞∑
i=0

| sin 2i

2n
π| =

n−1∑
i=0

| sin 2i−nπ| <∞

and by Theorem B 1
2n ∈ S, consequently D ⊂ S.

Since 1 ∈ S and S is an additive group, it is sufficient to show that if λ 6∈ D,
λ ∈ (0, 1), then λ 6∈ S. A real number λ in (0, 1) can be represented in the form

λ =
∞∑
n=1

en
2n
, where en ∈ {0, 1}.

Then the condition λ 6∈ D is equivalent to the restriction that in the sequence e1,
e2, e3, . . . there are infinitely many 0’s and 1’s. We claim that

∞∑
i=0

sin2 2iλπ =∞. (19.elb)

We prove this in indirect way. If this sum is convergent, then limi→∞ sin2 2iλπ = 0
and there exists index k ≥ 1 such that sin2 2iλπ < 1

4 or | sin 2iλπ| < 1
2 for i =

k, k + 1, . . . . Since

sin 2iλπ = sin
( ∞∑
n=1

en
2n

2iπ
)

= ± sin
( ∞∑
n=i+1

en
2n−i

)
π. (20.elb)

Taking into account the bound | sin 2iλπ| < 1
2 = sin π

6 for i ≥ k, we have two
possibilites: (1): ek+1 = 0, (2): ek+1 = 1.

(1) We claim that ek+1 = 0 implies ek+2 = 0. Suppose the contrary, i.e.
ek+2 = 1, then 1

4 ≤
∑∞

n=k+1
en

2n−k
< 1

2 and by (20.elb) sin π
4 ≤ | sin 2kλπ| < sin π

2

which contradicts the restriction | sin 2iλπ| < 1
2 for i = k, k+1, . . . . Repeating this

argumentation, we find that ei = 0 for i = k + 1, k + 2, . . . , hence λ ∈ D, which
was excluded.

(2) Similarly, we claim that ek+1 = 1 implies ek+2 = 1. Again, we suppose
the contrary, i.e. let ek+2 = 0. Then 1

2 ≤
∑∞

n=k+1
en

2n−k
< 1

2 +
∑∞
n=k+3

1
2n−k

= 5
4

and by (20.elb) we find | sin 2kλπ| > sin 5π
4 > 1

2 contradicting our assumption on k.
Consequently, we must have ei = 1 for all i ≥ k + 1, which again contradicts the
assumption λ 6∈ D.

Thus we have proved that the sum in (19.elb) is indeed, divergent. Then Theorem A
implies the asymptotic stability of (3.elb), hence λ 6∈ D implies λ 6∈ S, which completes
the proof of the relation S = D. ut
Proof of Example 4. Let n ∈ N, n 6= 0. Let λ = 1

n . Since

∞∑
i=0

∣∣∣sin i!π
n

∣∣∣ =
n−1∑
i=0

∣∣∣sin i!π
n

∣∣∣ <∞
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by Theorem B we conclude 1
n ∈ S, hence Q ⊂ S because Q is the smallest additive

group which contains all the reciprocals 1
n , n = 1, 2, . . . .

We are going to show that 1
2e 6∈ S. Consider the sum

∑∞
i=0 sin2(i! eπ2 ) ! We

have for e = 1 + 1
1! + 1

2! + · · ·+ 1
i! + 1

(i+1)! + 1
(i+2)! + . . .

i! e = i!
(

1 +
1
1!

+
1
2!

+ · · ·+ 1
(i− 2)!

)
+ i+ 1 +

1
i+ 1

+
1

(i + 1)(i+ 2)
+ · · · =

= 2ki + i+ 1 +
1

i+ θi
, 0 < θi < 1, ki ∈ N, i ≥ 2,

therefore

∞∑
i=0

sin2
(
i! e

π

2

)
=
∞∑
i=0

sin2

(
i+ 1

2
π +

π

2(i+ θi)

)
≥

≥
∞∑
i=0

sin2

(
2i+ 1

2
π +

π

2(2i+ θ2i)

)
=
∞∑
i=0

cos2 π

2(2i+ θ2i)
=∞,

hence by Theorem A e
2 6∈ S, and S 6= R, i.e. S is a proper subset of R. However,

it is still an open problem whether the relation Q = S holds. ut
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3. Á. Elbert, On asymptotic stability of some Sturm-Liouville differential equations, Gen-
eral Seminars of Mathematics (University of Patras) 22–23 (1997), 57–66.



EQUADIFF 9 CD ROM, Brno 1997, Masaryk University

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 34 (1998), 59–72

Singular Eigenvalue Problems for Second Order

Linear Ordinary Differential Equations
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Abstract. We consider linear differential equations of the form

(p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A)

on an infinite interval [a,∞) and study the problem of finding those values
of λ for which (A.kus) has principal solutions x0(t;λ) vanishing at t = a. This
problem may well be called a singular eigenvalue problem, since requiring
x0(t;λ) to be a principal solution can be considered as a boundary condition
at t =∞. Similarly to the regular eigenvalue problems for (A.kus) on compact
intervals, we can prove a theorem asserting that there exists a sequence
{λn} of eigenvalues such that 0 < λ0 < λ1 < · · · < λn < · · · , lim

n→∞
λn =∞,

and the eigenfunction x0(t;λn) corresponding to λ = λn has exactly n zeros
in (a,∞), n = 0, 1, 2, . . . . We also show that a similar situation holds for
nonprincipal solutions of (A.kus) under stronger assumptions on p(t) and q(t).
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1 Introduction

We consider the second order linear differential equation

(p(t)x′)′ + λq(t)x = 0, t ≥ a, (A.kus)

where p(t) and q(t) are positive continuous functions on [a,∞), a ≥ 0, and λ is
a real parameter. We assume that (A.kus) is nonoscillatory at t = ∞ for all λ > 0
(and hence for all λ ∈ R). It is known [1, Theorem 6.4, p. 355] that there exists a
solution x0(t;λ) of (A.kus) which is uniquely determined up to a constant factor by
the condition ∫ ∞ dt

p(t)(x0(t;λ))2
=∞, (1.kus)

and that any solution x1(t;λ) of (A.kus) linearly independent of x0(t;λ) has the prop-
erty that ∫ ∞ dt

p(t)(x1(t;λ))2
<∞. (2.kus)

A solution x0(t;λ) satisfying (1.kus) is called a principal solution of (A.kus) (at t = ∞),
and a solution x1(t;λ) satisfying (2.kus) is called a nonprincipal solution of (A.kus) (at
t =∞).

We are concerned with the problem of finding principal solutions x0(t;λ) of
(A.kus) which satisfy the boundary condition

x0(a;λ) = 0. (3.kus)

This problem falls within the category of general eigenvalue problems formulated
by Hartman [2]. A solution x0(t;λ) of this problem will be said to be a principal
eigenfunction and the corresponding value of λ a principal eigenvalue. Our task is
to establish the existence of principal eigenvalues and count the number of zeros
of the corresponding principal eigenfunctions.

We begin by introducing the notation needed in stating the main results. With
regard to the function p(t) the following two cases are possible:
either ∫ ∞

a

dt

p(t)
=∞ (4.kus)

or ∫ ∞
a

dt

p(t)
<∞. (5.kus)

We define the functions P (t) and π(t) as follows:

P (t) =
∫ t

a

ds

p(s)
, t ≥ a, in case (4.kus) holds; (6.kus)

π(t) =
∫ ∞
t

ds

p(s)
, t ≥ a, in case (5.kus) holds. (7.kus)
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It is clear that P (t) → ∞ and π(t) → 0 as t → ∞. Our fundamental hypotheses
on (A.kus) are: ∫ ∞

a

P (t)q(t)dt <∞ in case (4.kus) holds; (8.kus)∫ ∞
a

π(t)q(t)dt <∞ in case (5.kus) holds. (9.kus)

It is well known that (8.kus) [resp. (9.kus)] implies the existence of solutions x0(t;λ) of
(A.kus) satisfying the following boundary condition (10.kus) [resp. (11.kus)] at t =∞:

lim
t→∞

x0(t;λ) = 1, lim
t→∞

P (t)p(t)x′0(t;λ) = 0 in case (4.kus) holds; (10.kus)

lim
t→∞

x0(t;λ)
π(t)

= 1, lim
t→∞

p(t)x′0(t;λ) = −1 in case (5.kus) holds. (11.kus)

Since this solution x0(t;λ) satisfies (1.kus), we easily find that, under the condition
(8.kus) or (9.kus), the requirement that x0(t;λ) be a principal solution of (A.kus) is equivalent
to the requirement that x0(t;λ) be a solution of (A.kus) satisfying (10.kus) or (11.kus).

One of the main results of this paper now follows.

Theorem I. Suppose that (8.kus) or (9.kus) holds. Then, there exists a sequence of prin-
cipal eigenvalues {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn =∞

such that the corresponding principal eigenfunction x0(t;λn) satisfying (10.kus) or
(11.kus) has exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

The proof of this theorem will be given in Section 1. It will be shown that
Theorem I follows from the corresponding result for the particular equation x′′ +
λq(t)x = 0.

Let us now turn to the consideration of nonprincipal solutions of the nonoscil-
latory equation (A.kus). A nonprincipal solution of (A.kus) is by no means unique. It may
happen, however, that certain additional restrictions on the functions p(t), q(t)
and/or the asymptotic behavior of the solution determine a unique nonprincipal
solution x1(t;λ) of (A.kus) for each fixed λ. If this is the case one could speak of a
nonprincipal eigenvalue problem for (A.kus) which consists in finding its nonprincipal
solutions x1(t;λ) satisfying the boundary condition (3.kus); such a solution x1(t;λ) is
termed a nonprincipal eigenfunction and the corresponding value of λ a nonprin-
cipal eigenvalue. This kind of problem has not been studied in the literature.

For example, if we assume (8.kus) or (9.kus), then (A.kus) has a nonprincipal solution,
non-unique, x1(t;λ) such that

lim
t→∞

x1(t;λ)
P (t)

= 1, lim
t→∞

p(t)x′1(t;λ) = 1 in case (4.kus) holds; (12.kus)

lim
t→∞

x1(t;λ) = 1, lim
t→∞

π(t)p(t)x′1(t;λ) = 0 in case (5.kus) holds. (13.kus)
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However, if we require that p(t) and q(t) satisfy the more stringent condition∫ ∞
a

(P (t))2q(t)dt <∞ in case (4.kus) holds (14.kus)

or ∫ ∞
a

q(t)dt <∞ in case (5.kus) holds, (15.kus)

then there exists, for each λ, a unique nonprincipal solution x1(t;λ) of (A.kus) such
that

lim
t→∞

[x1(t;λ) − P (t)] = 0, lim
t→∞

P (t)[p(t)x′1(t;λ)− 1] = 0 in case (4.kus) holds

(16.kus)

or

lim
t→∞

x1(t;λ) − 1
π(t)

= 0, lim
t→∞

p(t)x′1(t;λ) = 0 in case (5.kus) holds. (17.kus)

From these solutions x1(t;λ) one can extract a sequence of nonprincipal eigenfunc-
tions having the prescribed numbers of zeros as is shown by the following theorem
which is another main result of this paper.

Theorem II. Suppose that (14.kus) or (15.kus) holds. Then, there exists a sequence of
nonprincipal eigenvalues {λn}:

0 ≤ λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn =∞

such that the corresponding nonprincipal eigenfunction x1(t;λn) satisfying (16.kus) or
(17.kus) has exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will prove this theorem in Section 2 by reducing the problem under study
to the corresponding problem for the simpler equation x′′+λq(t)x = 0. We remark
that since (14.kus) and (15.kus) are stronger than (8.kus) and (9.kus), respectively, the hypotheses
of Theorem II guarantee the existence of both principal and nonprincipal eigenval-
ues for the equation (A.kus). Section 3 will be devoted to a discussion of applicability
of Theorems I and II to the qualitative study of a certain class of linear elliptic
partial differential equations in exterior domains.

2 Principal eigenvalue problem

A) A reduced problem. Consider the particular equation

x′′ + λq(t)x = 0, t ≥ a, (B.kus)

where q(t) is a positive continuous function on [a,∞) and λ is a real parameter.
Theorem I specialized to (B.kus) reads as follows.
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Theorem 1. Suppose that ∫ ∞
a

tq(t)dt <∞. (18.kus)

Then, there exists a sequence of positive constants {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn =∞ (19.kus)

such that, for each λ = λn, the equation (B.kus) possesses a solution x0(t;λ) satisfying
the boundary conditions

x0(a;λn) = 0, lim
t→∞

x0(t;λn) = 1, lim
t→∞

tx′0(t;λn) = 0 (20.kus)

and having exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will show that Theorem I follows from its specialized version: Theorem 1.
First consider the case where p(t) and q(t) satisfy (4.kus) and (8.kus). In this case the

change of variables (t, x)→ (τ, ξ) defined by

τ = P (t), ξ(τ ;λ) = x(t;λ) (21.kus)

transforms (A.kus) into

ξ̈ + λQ(τ)ξ = 0, τ ≥ 0, (22.kus)

where a dot denotes differentiation with respect to τ and Q(τ) = p(t)q(t). Since
(22.kus) is of the type (B.kus) and since∫ ∞

0

τQ(τ)dτ =
∫ ∞
a

P (t)q(t)dt <∞

by (8.kus), it follows from Theorem 1 that there exist a sequence of positive constants
{λn}∞n=0 satisfying (19.kus) and the corresponding sequence of solutions {ξ0(τ ;λn)}∞n=0

of (22.kus) such that

ξ0(0;λn) = 0, lim
τ→∞

ξ0(τ ;λn) = 1, lim
τ→∞

τ ξ̇0(τ ;λn) = 0. (23.kus)

Define x0(t;λn) = ξ0(P (t);λn). Then, x0(t;λn) is clearly a solution of (A.kus) on
[a,∞), and in view of (21.kus), (23.kus) implies that it satisfies the boundary conditions
(3.kus) and (10.kus).

Next suppose that p(t) and q(t) satisfy (5.kus) and (9.kus). Perform the change of
variables (t, x)→ (τ, η) given by

τ =
1
π(t)

, η(τ ;λ) = τx(t;λ). (24.kus)
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The equation (A.kus) then transforms into

η̈ + λR(τ)η = 0, τ ≥ 1
π(a)

, (25.kus)

where a dot denotes differentiation with respect to τ and R(τ) = p(t)q(t)/τ4. In
view of (9.kus) we have ∫ ∞

1/π(a)

τR(τ)dτ =
∫ ∞
a

π(t)q(t)dt <∞,

and so applying Theorem 1 to (25.kus) we see that there exists a sequence of positive
constants {λn}∞n=0 satisfying (19.kus) and the corresponding solutions {η0(τ ;λn)}∞n=0

of (25.kus) such that

η0(
1

π(a)
;λn) = 0, lim

τ→∞
η0(τ ;λn) = 1, lim

τ→∞
τ η̇0(τ ;λn) = 0. (26.kus)

Define x0(t;λn) = π(t)η0(1/π(t);λn). As it is easily seen, x0(t;λn) is a solution of
(A.kus) on [a,∞) and satisfies the boundary conditions (3.kus) and (11.kus). Thus the proof
of Theorem I is reduced to that of Theorem 1.

B) Proof of Theorem 1. The condition (18.kus) ensures the existence of a unique
principal solution x0(t;λ) of (B.kus) such that

lim
t→∞

x0(t;λ) = 1, lim
t→∞

tx′0(t;λ) = 0. (27.kus)

This x0(t;λ) is characterized as the solution to the integral equation

x0(t;λ) = 1− λ
∫ ∞
t

(s− t)q(s)x0(s;λ)ds, t ≥ a, (28.kus)

and is subject to the estimate

|x0(t;λ)| ≤ exp
[
|λ|
∫ ∞
a

sq(s)ds
]
≡ K(λ), t ≥ a. (29.kus)

For this fact, see e.g. Hille [3, Theorem 9.1.1 and its proof].
We need only to examine positive values of λ, since the boundary condition

x0(a;λ) = 0 is not satisfied for λ ≤ 0.
A simple consequence of (28.kus) and (29.kus) is that x0(t;λ) is positive on [a,∞) if

λ > 0 is so small that

λK(λ)
∫ ∞
a

sq(s)ds < 1

that is, x0(t;λ) has no zero in [a,∞) for such small values of λ.
It can be shown that x0(t;λ) has a zero in (a,∞) if λ > 0 is sufficiently large

and that the number of zeros of x0(t;λ) in [a,∞), denoted by N [x0(λ)], tends to
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∞ as λ → ∞. In fact, let k ∈ N be given. Put q∗ = min{q(t) : a ≤ t ≤ a + π}
and define λk = k2/q∗. Then, λ > λk implies λq(t) > k2 on [a, a + π]. We now
compare (B.kus) with the harmonic oscillator y′′ + k2y = 0. Noting that a solution
y(t) = sin k(t− a) of the latter equation has k + 1 zeros in [a, a+ π], we conclude
from Sturm’s comparison theorem that every solution of (B.kus), and hence x0(t;λ),
has at least k zeros in (a, a + π) provided λ > λk. Since k is arbitrary, it follows
that N [x0(λ)]→∞ as λ→∞.

We now make use of the Prüfer transformation:

x0(t;λ) = ρ(t;λ) sinϕ(t;λ), x′0(t;λ) = ρ(t;λ) cosϕ(t;λ), (30.kus)

or equivalently,

ρ(t;λ) =
[
(x0(t;λ))2 + (x′0(t;λ))2

] 1
2 > 0,

ϕ(t;λ) = arctan
x0(t;λ)
x′0(t;λ)

.
(31.kus)

As it is well-known, ρ(t;λ) and ϕ(t;λ) are continuously differentiable functions of t
on [a,∞), and ϕ(t;λ) satisfies the differential equation

ϕ′(t;λ) = cos2 ϕ(t;λ) + λq(t) sin2 ϕ(t;λ), t ≥ a. (32.kus)

Note that the boundary condition (27.kus) imposed on x0(t;λ) at t =∞ corresponds
via (31.kus) to the “terminal” condition for ϕ(t;λ):

lim
t→∞

ϕ(t;λ) ≡ π

2
(mod π).

There is no loss of generality in requiring at the outset that

lim
t→∞

ϕ(t;λ) =
π

2
. (33.kus)

We will prove that, for each fixed t ≥ a, ϕ(t;λ) is a continuous decreasing
function of λ > 0. From the equation

x0(t;λ) − x0(t;µ) = −λ
∫ ∞
t

(s− t)q(s)[x0(s;λ) − x0(s;µ)]ds

−(λ− µ)
∫ ∞
t

(s− t)q(s)x0(s;µ)ds ,

which follows from (28.kus), we see with the use of (29.kus) that u(t) = |x0(t;λ)−x0(t;µ)|
satisfies

u(t) ≤ |λ− µ|K(µ)
∫ ∞
a

sq(s)ds+ λ

∫ ∞
t

sq(s)u(s)ds, t ≥ a.

Using the Gronwall inequality and an easy calculation one may conclude that

u(t) ≤ |λ− µ|K(λ)K(µ)
∫ ∞
a

sq(s)ds, t ≥ a,
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which shows that x0(t;λ) is continuous with respect to λ. The continuity of x′0(t;λ)
with respect to λ follows from the relation

x′0(t;λ) = λ

∫ ∞
t

q(s)x0(s;λ)ds, t ≥ a.

Then (31.kus) implies that ϕ(t;λ) is continuous with respect to λ.
The decreasing property of ϕ(t;λ) with respect to λ is verified by contradiction.

Suppose that

ϕ(b;λ) ≥ ϕ(b;µ) (34.kus)

for some b ∈ [a,∞) and λ and µ with λ > µ > 0. Since the right-hand side of (32.kus)
written as cos2 ϕ+λq(t) sin2 ϕ is increasing with respect to λ, the initial inequality
(34.kus) implies that

ϕ(t;λ) > ϕ(t;µ) for t > b,

or
arctan

x0(t;λ)
x′0(t;λ)

> arctan
x0(t;µ)
x′0(t;µ)

, t > b.

Consequently, there exists c > b such that

x0(t;λ)
x′0(t;λ)

>
x0(t;µ)
x′0(t;µ)

, t ≥ c. (35.kus)

Put
X(t;λ, µ) = x0(t;λ)x′0(t;µ)− x′0(t;λ)x0(t;µ).

Then X(t;λ, µ) > 0, t ≥ c, by (35.kus), and since

X ′(t;λ, µ) = (λ − µ)q(t)x0(t;λ)x0(t;µ) > 0, t ≥ c,

provided c is taken sufficiently large, X(t;λ, µ) tends to a positive constant as
t → ∞. But this is impossible, since the boundary condition (27.kus) implies that
X(t;λ, µ) → 0 as t → ∞. Therefore, ϕ(t;λ) must be a decreasing function of
λ > 0 for each fixed t ≥ a.

Finally consider the values ϕ(a;λ) for λ > 0. Since ϕ(t;λ) is an increasing
function of t for fixed λ > 0, we have ϕ(a;λ) < π/2 (cf. (33.kus)). If λ > 0 is sufficiently
small, then ϕ(a;λ) > 0, because x0(t;λ) has no zero in [a,∞) as proven above. On
the other hand, the fact that N [x0(λ)]→∞ as λ→∞ shows that ϕ(a;λ)→ −∞
as λ→∞. Since ϕ(a;λ) is decreasing with respect to λ > 0, for every n ∈ N∪{0},
there exists λn > 0 such that

ϕ(a;λn) = −nπ, (36.kus)

which means that the principal solution x0(t;λn) of (B.kus) satisfies the boundary
condition x0(a;λn) = 0 and has exactly n zeros in (a,∞). It is almost trivial to
see that (19.kus) holds for the sequence of principal eigenvalues {λn}. This completes
the proof of Theorem 1.
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Remark. It is well-known [6] that the equation (A.kus) is nonoscillatory for all λ > 0
if and only if

lim
t→∞

P (t)
∫ ∞
t

q(s)ds = 0 in case (4.kus) holds; (37.kus)

lim
t→∞

1
π(t)

∫ ∞
t

(π(s))2q(s)ds = 0 in case (5.kus) holds. (38.kus)

The condition (8.kus) or (9.kus) required in Theorem I is stronger than (37.kus) or (38.kus),
respectively. We conjecture that an analogue of Theorem I will hold under the
most general condition (37.kus) or (38.kus).

3 Nonprincipal eigenvalue problem

Let us turn to the nonprincipal eigenvalue problem for (A.kus) mentioned in the In-
troduction. As in the preceding section it can be shown that our main result,
Theorem II, follows from the corresponding result for the particular equation (B.kus).

Theorem 2. Suppose that ∫ ∞
a

t2q(t)dt <∞. (39.kus)

Then, there exists a sequence of numbers {λn}:

0 ≤ λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn =∞ (40.kus)

such that, for each λ = λn, the equation (B.kus) possesses a solution x1(t;λn) satis-
fying the boundary conditions

x1(a;λn) = 0, lim
t→∞

[x1(t;λn)− t] = 0, lim
t→∞

t[x′1(t;λn)− 1] = 0 (41.kus)

and having exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will give a proof of this theorem, leaving the reduction of Theorem II to
Theorem 2 to the reader.

Because of (39.kus) there exists, for each λ, a unique nonprincipal solution x1(t;λ)
of (B.kus) such that

lim
t→∞

[x1(t;λ) − t] = 0, lim
t→∞

t[x′1(t;λ)− 1] = 0. (42.kus)

This solution is characterized as the solution to the integral equation

x1(t;λ) = t− λ
∫ ∞
t

(s− t)q(s)x1(s;λ)ds, t ≥ a, (43.kus)
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and this enables us to obtain the estimate

|x1(t;λ) − t| ≤ |λ|K(λ)
∫ ∞
a

s2q(s)ds ≡ L(λ), t ≥ a, (44.kus)

where K(λ) is the constant defined in (29.kus). For the details the reader is referred
to Hille [3, Theorem 9.1.1].

Since

x1(t;λ)− x1(t;µ) = −λ
∫ ∞
t

(s− t)q(s)[x1(s;λ)− x1(s;µ)]ds

−(λ− µ)
∫ ∞
t

(s− t)q(s)x1(s;µ)ds, t ≥ a,

using (43.kus), we see that the function u(t) = |x1(t;λ)− x1(t;µ)| satisfies

u(t) ≤ |λ− µ|
∫ ∞
a

sq(s)[s+ L(µ)]ds+ |λ|
∫ ∞
t

sq(s)u(s)ds, t ≥ a,

and hence we have

u(t) ≤ |λ− µ|M(µ) exp
[
|λ|
∫ ∞
a

sq(s)ds
]
, t ≥ a,

where

M(µ) =
∫ ∞
a

sq(s)[s+ L(µ)]ds.

This shows that x1(t;λ) is a continuous function of λ for each fixed t ≥ a. The
continuity of x′1(t;λ) with respect to λ follows from the equation

x′1(t;λ) = 1 + λ

∫ ∞
t

q(s)x1(s;λ)ds, t ≥ a.

Nonnegative values of λ [or negative values of λ] may be excluded from our
consideration in the case a > 0 [or in the case a = 0], since it follows from (A.kus)
and (43.kus) that x1(t;λ) is unable to satisfy the boundary condition x1(a;λ) = 0 for
such values of λ.

Now we perform the Prüfer transformation:

x1(t;λ) = ρ(t;λ) sinϕ(t;λ), x′1(t;λ) = ρ(t;λ) cosϕ(t;λ), (45.kus)

or equivalently

ρ(t;λ) =
[
(x1(t;λ))2 + (x′1(t;λ))2

] 1
2
> 0,

ϕ(t;λ) = arctan
x1(t;λ)
x′1(t;λ)

.
(46.kus)
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The function ϕ(t;λ) satisfies (32.kus), and so it is an increasing function of t for λ > 0.
Also, ϕ(t;λ) is continuous with respect to λ, since so are x1(t;λ) and x′1(t;λ) as
stated above.

From (45.kus) and (42.kus) we have ρ(t;λ)/t → 1, sinϕ(t;λ) → 1 and cosϕ(t;λ) → 0
as t→∞, which implies that

lim
t→∞

ϕ(t;λ) ≡ π

2
(mod π).

To fix the idea we suppose that

lim
t→∞

ϕ(t;λ) =
π

2
. (47.kus)

Proceeding exactly as in the proof of Theorem 1 we can show that the number
of zeros of x1(t;λ) in [a,∞) can be made as large as possible if λ > 0 is chosen
sufficiently large. It follows that ϕ(a;λ)→ −∞ as λ→∞.

To examine the values ϕ(a;λ) for small λ > 0, we distinguish the two cases:
either a = 0 or a > 0. Consider the case where a = 0. Let λ = 0. Then, x1(t; 0) = t
by inspection. This solution has no zero in (0,∞). It should be noted that x1(t; 0)
itself is a nonprincipal eigenfunction for (B.kus) corresponding to a nonprincipal eigen-
value λ = 0. Next consider the case where a > 0 and claim that x1(t;λ) > 0 on
[a,∞) for all sufficiently small λ > 0. In fact, let λ > 0 be small enough so that

λ

∫ ∞
a

sq(s)[s+ L(λ)]ds < a,

where L(λ) is defined in (44.kus). Then, from (43.kus) and (44.kus) we obtain

x1(t;λ) ≥ a− λ
∫ ∞
a

sq(s)|x1(s;λ)|ds

≥ a− λ
∫ ∞
a

sq(s)[s+ L(λ)]ds > 0, t ≥ a.

It remains to establish the decreasing property of ϕ(t;λ) with respect to λ > 0.
Suppose to the contrary that ϕ(b;λ) ≥ ϕ(b;µ) for some b ∈ [a,∞) and λ and µ
with λ > µ > 0. Applying the argument which derived (35.kus) from (34.kus), we see that
the function

X(t;λ, µ) = x1(t;λ)x′1(t;µ)− x′1(t;λ)x1(t;µ)

and its derivative X ′(t;λ, µ) are positive for all sufficiently large t. It follows that
X(t;λ, µ) tends to a positive constant or ∞ as t → ∞. On the other hand, using
the relation

X(t;λ, µ) = [x1(t;λ)− t]x′1(t;µ)− [x1(t;µ)− t]x′1(t;λ)
−t[x′1(t;λ)− 1] + t[x′1(t;µ)− 1]

and (42.kus), we find that X(t;λ, µ) → 0 as t → ∞. This contradiction proves that
ϕ(t;λ) is a decreasing function of λ > 0 for each fixed t ≥ a.
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From the above observations we conclude that, for every n ∈ N ∪ {0}, there
exists λn such that ϕ(a;λn) = −nπ, so that x1(t;λn) is a desired nonprincipal
eigenfunction for (B.kus). It is clear that the sequence of eigenvalues {λn} satisfies
(40.kus). Note that λ0 = 0 if a = 0 and λ0 > 0 if a > 0. This completes the proof of
Theorem 2.

Example. As an example of equations to which Theorems 1 and 2 apply we give
Halm’s equation ([3, p. 357])

x′′ + λ(1 + t2)−2x = 0, t ≥ 0.

4 Application to elliptic equations

Our purpose here is to show that Theorems I and II can be applied to a qualitative
study of elliptic partial differential equations of the type

∆u + λc(|x|)u = 0, x ∈ Ea, (C.kus)

where x = (x1, . . . , xN ) ∈ RN , N ≥ 2, |x| =
(
ΣN
i=1x

2
i

)1/2, ∆ is the N -dimensional
Laplace operator, Ea = {x ∈ RN : |x| ≥ a}, a > 0, c(t) is a positive continuous
function on [a,∞), and λ is a real parameter. We are interested in the existence
of radially symmetric solutions u(x) which satisfy the Dirichlet condition

u(x) = 0, x ∈ ∂Ea = {x ∈ RN : |x| = a}. (48.kus)

Radial symmetry of a solution means that it depends only on |x|, that is, it is of
the form u(x) = y(|x|).

It is easy to see that a radially symmetric function u(x) = y(|x|) is a solution of
the exterior Dirichlet problem (C.kus)–(48.kus) if and only if the function y(t) is a solution
of the ordinary differential equation

(tN−1y′)′ + λtN−1c(t)y = 0, t ≥ a (49.kus)

satisfying

y(a) = 0. (50.kus)

The equation (49.kus) is a special case of (A.kus) in which

p(t) = tN−1 and q(t) = tN−1c(t). (51.kus)

We note that:

(i) (4.kus) holds if and only if N = 2, in which case the function P (t) defined by (6.kus)
is

P (t) = log
t

a
, t ≥ a; (52.kus)
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(ii) (5.kus) holds if and only if N ≥ 3, in which case the function π(t) defined by (7.kus)
is

π(t) =
t2−N

N − 2
, t ≥ a. (53.kus)

Therefore, the conditions (8.kus), (9.kus) reduce to∫ ∞
t(log t)c(t)dt <∞, (54.kus)∫ ∞
tc(t)dt <∞, (55.kus)

and the conditions (14.kus), (15.kus) to∫ ∞
t(log t)2c(t)dt <∞, (56.kus)∫ ∞
tN−1c(t)dt <∞. (57.kus)

The next result follows from Theorem I applied to (49.kus)–(50.kus).

Theorem 3. (i) Let N = 2 and suppose that (54.kus) holds. Then, there exists a
sequence of positive numbers {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn =∞ (58.kus)

such that, for each λ = λn, the exterior Dirichlet problem (C.kus)–(48.kus) possesses a
radially symmetric solution u(x;λn) satisfying

lim
|x|→∞

u(x;λn) = 1 (59.kus)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .
(ii) Let N ≥ 3 and suppose that (55.kus) holds. Then, there exists a sequence of

positive numbers {λn} with the property (58.kus) such that, for each λ = λn, the
problem (C.kus)–(48.kus) possesses a radially symmetric solution u(x;λn) satisfying

lim
|x|→∞

|x|N−2u(x;λn) = 1 (60.kus)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .

Theorem II specialized to (49.kus)–(50.kus) yields another result for the exterior Dirich-
let problem under consideration.

Theorem 4. (i) Let N = 2 and suppose that (56.kus) holds. Then, there exists a se-
quence of positive numbers {λn} with the property (58.kus) such that, for each λ = λn,
the problem (C.kus)–(48.kus) possesses a radially symmetric solution u(x;λn) satisfying

lim
|x|→∞

u(x;λn)
log |x| = 1 (61.kus)
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and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .
(ii) Let N ≥ 3 and suppose that (57.kus) holds. Then, there exists a sequence of

positive numbers {λn} with the property (58.kus) such that, for each λ = λn, the
problem (C.kus)–(48.kus) possesses a radially symmetric solution u(x;λn) satisfying

lim
|x|→∞

u(x;λn) = 1 (62.kus)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .

Remark. A related problem for (C.kus) in the entire space RN has been studied by
Naito [5] and Kabeya [4].
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1 Introduction

There are many concrete problems in mechanics with non-smooth nonlinearities.
Such discontinuities arise in the context of modelling Coulomb friction [1,3,9,19].
One of the simplest examples for such problems is provided by the pendulum with
dry friction given by

ẍ+ x+ µ sgn ẋ = ψ(t) . (1.fec)

Here sgn r = r/|r| for r ∈ R \ {0}. Equation (1.fec) is studied for the periodic case
in [7] and for the almost periodic case in [8]. Also a rather complete picture of
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the asymptotic behaviour of (1.fec) is derived. The range of µ is found such that
nontrivial almost periodic and periodic motions exist. The question of uniqueness
of such motions is studied as well.

The numerical analysis is presented in the papers [26,27,28] for a mechanical
model of a friction-oscillator with simultaneous self- and external excitation given
by the equation of motion

ẍ+ x = FR(vr) + u0 cosΩt , (2.fec)

where u0, Ω are positive constants, vr = v0− ẋ is a relative velocity and FR is the
friction force defined by

FR(vr) = µ(vr)FN sgn (vr) for the slip mode vr 6= 0
FR(vr) = x(t)− u0 cosΩt for the stick mode vr = 0 .

Here µ(vr) is a friction coefficient and FN is the normal force. Three different
types of friction coefficients µ(vr) are studied in [26,27,28] including the Coulomb
one µ(vr) = 1, vr 6= 0. The bifurcation behaviour and the routes to chaos of (2.fec)
are investigated for a wide range of parameters. The influence of these three types
of friction coefficients is described and the admissibility of smoothing procedures
is examined by comparing results gained for non-smooth and smoothed friction
coefficients. These papers [26,27,28] present a nice introduction to the phenomenon
of dry friction problem as well.

The boundedness of solutions of the equation

ẍ+ x+ µ sgnx = ψ(t) (3.fec)

is studied in [23] as well as the existence of infinitely many periodic and quasiperi-
odic solutions of (3.fec) is established for all µ > 0 sufficiently large.

By using Lyapunov exponents, the qualitative analysis for (1.fec) and for a similar
friction-oscillator is given in [20] and [21], respectively. A numerical analysis of the
same friction-oscillator is presented in [22].

Finally, let us note that equations of the type (1.fec) also appear in electrical
engineering (see [1, Chap. III]), related problems are studied in control systems
(see [31]) as well, and dry friction problems were investigated already in [29], [30].

This note is based on recent results derived in the papers [10,11,12,13,14,15]. We
focus on concrete examples rather than presenting theoretical results. In Section 2,
we give examples with chaotic solutions. Section 3 deals with bifurcation of periodic
solutions for a friction-oscillator. A problem with small relay hysteresis is studied
in Section 4.

In this paper, the dry friction is modelled by the Coulomb law [9], [19] which
includes a static coefficient of friction µs and a dynamic coefficient of friction µd.
If µs = µd = µ, then the friction law may be written as ẋ → µ sgn ẋ. On the
other hand, since usually µs > µd, the smooth approximation of sgn r given, for
instance, by

Φ(r) =
1
π

(
7 arctan 8sr − 5 arctan 4sr

)
, s� 1
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seems to be physically more relevant than the mathematically convenient approx-
imation of the form

r→ 2
π

arctan sr, s� 1 .

The function Φ has two symmetric spikes at r = ±
√

6
8s of the values

± 1
π

(
7 arctan

√
6− 5 arctan

√
6

2

)
.= ±1, 2261344 .

Moreover, Φ(r) is close to 1 or −1 when r > 0 or r < 0, respectively, tends off
0. Summarizing, we can take for any η ≥ 0, ζ ≥ 1, 0 < κ ≤ 1 the multivalued
function Sgnη,ζ,κ r defined by

Sgnη,ζ,κ r =



−1 for r < −η ,
[−ζ,−κ] for − η ≤ r < 0 ,
[−ζ, ζ] for r = 0 ,
[κ, ζ] for 0 < r ≤ η ,
1 for r > η .

The term Sgnη,ζ,κ ẋ can be viewed as an extension for modelling dry friction in-
cluding static and dynamic frictions as well.

2 Chaos in Dry Friction Problems

Dry friction forces acting on a moving particle due to its contact to walls have
in certain situations the form µ(x)(g0(ẋ) + sgn ẋ), where x is displacement from
the rest state, ẋ is velocity, µ and g0 are non-negative bounded continuous, and
sgn r = r/|r| for r ∈ R \ {0}, see [1,5,19]. If there is also damping , restoring and
external forces, the following equation is studied

ẍ+ g(x) + µ1 sgn ẋ+ µ2ẋ = µ3ψ(t) , (4.fec)

where µ1, µ2, µ3 ∈ R are small parameters, g ∈ C2(R,R), g(0) = 0, g′(0) < 0, ψ ∈
C1(R,R) and ψ is periodic.

If a smooth small perturbation is included in (4.fec), then by using a method de-
veloped in dynamical systems (see [18]), it would be possible to show the existence
of chaos for such ordinary differential equations.

By introducing the multivalued mapping

Sgn r =

{
sgn r for r 6= 0 ,
[−1, 1] for r = 0 ,

(4.fec) is rewritten as follows

ẍ+ g(x) + µ2ẋ− µ3ψ(t) ∈ −µ1 Sgn ẋ . (5.fec)
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By a solution of any first order differential inclusion we mean a function which is
absolute continuous and satisfying differential inclusion almost everywhere.

We assume the existence of a homoclinic solution ω of ẍ + g(x) = 0 such that
lim

t→±∞
ω(t) = 0 and ω(0) > 0.

Lemma 1. ([14]) There is a unique t0 ∈ R satisfying ω̇(t0) = 0. Consequently,
ω̇(t) > 0, ∀ t < t0 and ω̇(t) < 0, ∀ t > t0.

We consider a mapping Mµ, µ = (µ1, µ2, µ3), of the form

Mµ(α) = −2ω(t0)µ1 − µ2

∞∫
−∞

ω̇2(s) ds+ µ3

∫ ∞
−∞

ω̇(s)ψ(s+ α) ds .

Since ω(0) > 0, Lemma 1 implies ω(t0) > 0. By putting

A(α) =
∫ ∞
−∞

ω̇(s)ψ(s+ α) ds ,

we arrive at

Mµ(α) = A(α)µ3 − 2ω(t0)µ1 − µ2

∞∫
−∞

ω̇2(s) ds .

We note that A is periodic and C1-smooth. We put m̄ = minA, M̄ = maxA. By
applying results of [12], we obtain the following theorem.

Theorem 2. Assume that A has critical points only at maximums and minimums.
Then there is an open subset R of R3 of all sufficiently small (µ1, µ2, µ3) satisfying
µ3 6= 0 together with

m̄ <

2ω(t0)µ1 + µ2

∞∫
−∞

ω̇2(s) ds

µ3
< M̄ ,

on which equation (4.fec) has chaotic solutions in the following sense:
If J : E =

{
E : E ∈ {0, 1}Z

}
→ E is the Bernoulli shift defined by J

(
{ej}j∈Z

)
= {ẽj}j∈Z, ẽj = ej+1, then for any µ ∈ R and m ∈ N sufficiently large, (4.fec)
possesses a family of solutions

{
xm,E

}
E∈E such that

(i) E → xm,E is injective;
(ii) xm,J(E)(t) is orbitally close to xm,E(t + Ωm), where Ω > 0 is the period

of ψ.

To be more precise, we consider Duffing-type equation (4.fec) with g(x) = −x +
2x3, ψ(t) = cos t. Hence (4.fec) has the form

ẍ− x+ 2x3 + µ1 sgn ẋ+ µ2ẋ = µ3 cos t . (6.fec)
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Then (see [18]), ω(t) = sech t. So we have

A(α) =
∫ ∞
−∞

˙sech s cos (s+ α) ds = π sech
π

2
sin α ,

and M̄ = −m̄ = π sech π
2 , t0 = 0, ω(t0) = 1,

∞∫
−∞

ω̇2(s) ds = 2/3.

Corollary 3. Equation (6.fec) has chaotic solutions in the sense of Theorem 2 pro-
vided that the parameters µ1, µ2, µ3 are sufficiently small satisfying

0 < 3π|µ3| sech
π

2
< |6µ1 + 2µ2| .

The next example is a modification of (4.fec)

ẍ+ δg(x) +
η√
δ
ẋ+ ψ(t) sgn ẋ = 0 , (7.fec)

where g ∈ C2(R,R), g(0) = 0, g′(0) < 0, δ > 0 is a large parameter, ψ ∈
C1(R, (0,∞)) is periodic and η is a constant. We assume the existence of a ho-
moclinic solution ω of ẍ+ g(x) = 0 such that lim

t→±∞
ω(t) = 0 and ω(0) < 0. Then

again there is a unique t0 ∈ R satisfying ω̇(t0) = 0. Consequently, ω̇(t) < 0, ∀ t <
t0, ω̇(t) > 0, ∀ t > t0 and ω(t0) < 0.

The equation (7.fec) is rewritten in the form

εẋ = y, ε =
√

1/δ

εẏ = −g(x)− ε2
(
ηy + ψ(t) sgn y

)
. (8.fec)

Hence (8.fec) is a singularly perturbed discontinuous problem. Results of [12] imply
the next theorem.

Theorem 4. If the function

M(α) = 2ψ(α)ω(t0)− η
∫ ∞
−∞

ω̇2(s) ds

has a simple root, then for any δ > 0 sufficiently large, equation (7.fec) has chaotic
solutions in the sense of Theorem 2.

We consider again the Duffing-type equation (7.fec) of the form

ẍ+ δ(−x+ 2x3) +
η√
δ
ẋ+ (2 + cos t) sgn ẋ = 0 . (9.fec)

Hence g(x) = −x + 2x3, ψ(t) = 2 + cos t, ω(t) = −sech t, t0 = 0, ω(t0) = −1.
Consequently, Theorem 4 gives the next corollary.

Corollary 5. Equation (9.fec) has chaotic solutions in the sense of Theorem 2 pro-
vided that δ > 0 is sufficiently large and η ∈ (−9,−3).
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3 Bifurcation of Periodic Solutions

Consider a mass attached to a mechanical device on a moving ribbon with a speed
v0 > 0. If there is also an external force and damping then the resulting differential
equation [1,3,9] has the form

ẍ+ q(x) + µ1 sgn (ẋ− v0) + µ2ẋ = µ3 sinωt , (10.fec)

where sgn r corresponds to the dry friction between the mass and ribbon, q ∈
C2(R,R) represents the force of the mechanical device and µ1, µ2, µ3, ω > 0 are
constants. Since sgn r is discontinuous in r = 0, (10.fec) is considered as a perturbed
differential inclusion of the form

ẋ = y, ẏ ∈ −q(x)− µ1 Sgn (y − v0)− µ2y + µ3 sinωt . (11.fec)

Moreover, we assume

(i) There are numbers 0 < c < e and a C2-mapping γ : (c, e)×R→ R such that
γ(θ, t) has the minimum period θ in t, γ̇(θ, 0) = 0 and γ(θ, ·) is a solution
of ẍ+ q(x) = 0.

If c < 2π/ω < e then we take

B(α) =

2π/ω∫
0

sinω(t+ α)γ̇(2π/ω, t) dt .

Since B is periodic, we put m̃ = minB, M̃ = maxB.

Theorem 6. Let v0 > 0 be sufficiently small and let B have only critical points at
minimums and maximums. If (i) holds and c < 2π/ω < e, then for any sufficiently
small µ = (µ1, µ2, µ3), µ3 6= 0 satisfying

m̃ <
1
µ3

(
µ2

2π/ω∫
0

γ̇2(2π/ω, t) dt+ 2µ1

∣∣γ(2π/ω, π/ω)− γ(2π/ω, 0)
∣∣) < M̃ ,

equation (10.fec) has a 2π/ω-periodic solution in a neighbourhood of the family γ(θ, t),
θ ∈ (c, e) from (i).

Proof. We apply Corollary 3.2 of [10]. The formula (3.6) of [10] has the form

Mµ,v0(α) =
{ 2π/ω∫

0

h(s)γ̇(2π/ω, s) ds | h ∈ L2(0, 2π/ω) ,

h(t) ∈ µ1 Sgn (γ̇(2π/ω, t)− v0) + µ2γ̇(2π/ω, t)− µ3 sinω(t+ α)

a.e. on [0, 2π/ω]
}
.
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Lemma 5.5. of [10] gives that γ̇(2π/ω, 0) = 0, γ̇(2π/ω, π/ω) = 0 and γ̇(2π/ω, t) 6=
0 ∀ t ∈ (0, 2π/ω) \ {π/ω}. Since γ̈ + g(γ) = 0, we see that γ̈(2π/ω, 0) 6= 0,
γ̈(2π/ω, π/ω) 6= 0. Consequently for v0 > 0 sufficiently small, γ̇(2π/ω, t) = v0

has the only solutions t1(v0) + k2π/ω, t2(v0) + k2π/ω, t1(v0) < t2(v0), where
k ∈ Z. Moreover, either t1(0) = 0, t2(0) = π/ω or t1(0) = π/ω, t2(0) = 2π/ω,
and t1,2 are smooth and γ̇(2π/ω, t) > v0 on (t1(v0), t2(v0)); γ̇(2π/ω, t) < v0 on
(t2(v0), t1(v0) + 2π/ω). Hence we obtain

Mµ,v0(α) =µ2

2π/ω∫
0

γ̇2(2π/ω, t) dt+ 2µ1(γ(2π/ω, t2(v0))− γ(2π/ω, t1(v0))

− µ3

2π/ω∫
0

sinω(t+ α)γ̇(2π/ω, t) dt .

We note

Mµ,0(α) = µ2

2π/ω∫
0

γ̇2(2π/ω, t) dt+ 2µ1

∣∣γ(2π/ω, π/ω)− γ(2π/ω, 0)
∣∣− µ3B(α) .

The assumptions of our theorem imply that Mµ,v0 changes the sign on R for v0

sufficiently small and for µ given in the theorem. Consequently, Corollary 3.2 of
[10] can be applied to (10.fec). The proof is finished. ut

We refer the reader for more examples to [10].

4 Systems with Small Relay Hysteresis

In this section, we deal with relay hysteresis [2,24,25]. So there is given a pair of real
numbers α < β (thresholds) and a pair of real-valued continuous functions ho ∈
C([α,∞),R), hc ∈ C((−∞, β],R) such that ho(u) ≥ hc(u)∀u ∈ [α, β]. Moreover,
we suppose that ho, hc are bounded on [α,∞), (−∞, β], respectively.

For a given continuous input u(t), t ≥ t0, one defines the output v(t) = f(u)(t)
of the relay hysteresis operator as follows

f(u)(t) =


ho(u(t)) if u(t) ≥ β ,
hc(u(t)) if u(t) ≤ α ,
ho(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = β ,

hc(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = α ,

where τ(t) = sup {s : s ∈ [t0, t], u(s) = α or u(s) = β}. If τ(t) does not exist (i.e.
u(σ) ∈ (α, β) for σ ∈ [t0, t]), then f(u)(σ) is undefined and we have to initially set
the relay open or closed when u(t0) ∈ (α, β). Of course, when either ho(β) > hc(β)
or ho(α) > hc(α) then f(u) is generally discontinuous.
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Let us consider the problem
...
y − ÿ + ẏ − y = µf(y) , (12.fec)

where µ ∈ R and f is of the form

α = −δ, β = δ, δ > 0, ho = g + p, hc = g − p
with p > 0 constant and g ∈ C1(R,R).

Theorem 7. If θ0 > δ is a simple root of the function

4p
(√

1− δ2

θ2
− δ

θ

)
+

2π∫
0

g(θ sin t) sin t dt ,

then there is a constant K > 0 such that for any µ sufficiently small there are θµ,
ωµ, |θ0 − θµ| ≤ K|µ|, |ω0 − ωµ| ≤ K|µ|, ω0 = − 2δp

πθ2
0

and a 2π(1 + µωµ)-periodic
solution yµ of (12.fec) satisfying

sup
t∈R

∣∣∣yµ(t)− θµ sin
t

1 + µωµ

∣∣∣ ≤ K|µ| .
Proof. We apply Theorem 2.2 of [15], by taking

O = (δ,∞), φ1(t) = ψ1(t) = sin t, θ > δ ,

φ2(t) = ψ2(t) = cos t, η(θ, t) = θ sin t, t0 = arcsin
δ

θ
.

The formula (2.8) of [15] has the form

M(ω, θ) =
(
M1(ω, θ),M2(ω, θ)

)
,

where

M1(ω, θ) =

2π∫
0

ω(θ cos t+ 2θ sin t− 3θ cos t) sin t dt+

t0+π∫
t0

(g(θ sin t) + p) sin t dt

+

t0+2π∫
t0+π

(g(θ sin t)− p) sin t dt = 2πθω + 4p

√
1− δ2

θ2
+

2π∫
0

g(θ sin t) sin t dt ,

M2(ω, θ) =

2π∫
0

ω(θ cos t+ 2θ sin t− 3θ cos t) cos t dt+

t0+π∫
t0

(g(θ sin t) + p) cos t dt

+

t0+2π∫
t0+π

(g(θ sin t)− p) cos t dt = −2πθω − 4
δp

θ
.

Clearly (ω0, θ0) is a simple zero of M . Consequently, [15, Theorem 2.2] implies the
result. The proof is finished. ut

More examples are given in [15].
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11. Fečkan, M., Bifurcation from homoclinic to periodic solutions in singularly perturbed

differential inclusions, Proc. Royal Soc. Edinburgh, 127A (1997), 727–753
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1 Introduction

In the recent paper [3, Filo–Luckhaus] we have determined the first two terms in
the asymptotic expansion (with respect to a small parameter ε) of the solution
uε = uε(x, t) to the following problem:

∂uε
∂t

= ∆uε + f(x, t) in Ω × (0, T ),

∂uε
∂ν

= ϑ(x, t)− σ(x, t)uε on nε × (0, T ),

uε = 0 on dε × (0, T ),

uε = ϕ on Ω × {t = 0}.

(1.fil)
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Here Ω ⊂ R2 is a bounded domain whose boundary is given by a C3 simple closed
curve Γ ,

Γ = {(p(τ), q(τ)); 0 ≤ τ ≤ π}, (p′(τ))2 + (q′(τ))2 = 1,

a is 2π periodic function such that

a(σ) =
{

0 : σ ∈ [π − δ, π + δ]
1 : σ ∈ [0, π − δ) ∪ (π + δ, 2π]

for some δ ∈ (0, π),

nε =
{
x ∈ Γ ; x = (p(τ), q(τ)), a

(τ
ε

)
= 1, 0 ≤ τ ≤ π

}
,

dε =
{
x ∈ Γ ; x = (p(τ), q(τ)), a

(τ
ε

)
= 0, 0 ≤ τ ≤ π

}
and

ε−1 is an even integer .

We have shown, under certain smoothness assumptions on the data f , σ, ϑ and
ϕ, that

uε = u+ εu1 + εO(ε) , (2.fil)

where

O(ε) −→ 0 strongly in Lp(Ω × (0, T )) if ε→ 0

for any p, 1 ≤ p < 4 and

uε − u
ε

⇀ ω0(ϑ− ∂νu) weakly in L2(Γ × (0, T )) . (3.fil)

The functions u and u1 are solutions of the problems

∂u

∂t
= ∆u+ f(x, t) in Ω × (0, T ),

u = 0 on Γ × (0, T ),

u = ϕ on Ω × {t = 0},

(4.fil)

and

∂u1

∂t
= ∆u1 in Ω × (0, T ),

u1 = ω0

(
ϑ− ∂u

∂ν

)
on Γ × (0, T ),

u1 = 0 on Ω × {t = 0},

(5.fil)
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respectively. Here

ω0 =
1
π

∫ π

0

ω(x1, 0) dx1 ,

where ω = ω(x1, x2) is the unique nonnegative 2π periodic (in the x1 variable)
solution of the following boundary value problem

∆ω = 0 in R2
+,

a(x1)
(
∂ω

∂x2
(x1, 0) + 1

)
+ (1 − a(x1))ω(x1, 0) = 0 for x1 ∈ R,

satisfying

‖ω‖L∞(R2
+) +

∫ ∞
0

∫ π

0

|∇ω|2(x1, x2) dx1dx2 <∞ .

Moreover, we have demonstrated, that∥∥∥∥uε − uε
− wε(ϑ− ∂νu)

∥∥∥∥
L2(Γ×(0,T ))

≤ C
√
ε

for

wε(x) ≡ ω
(
τ(x)
ε
,
δ(x)
ε

)
where the functions τ, δ are defined for x ∈ Ω sufficiently close to Γ such that
δ(x) = dist(x, Γ ) and

p′(τ(x))(x1 − p(τ(x))) + q′(τ(x))(x2 − q(τ(x))) = 0 .

In addition,

uε − u
ε
− wεG ⇀ u1 − ω0G

weakly in V 1,0
2 (Ω × (0, T )), where

G(x, t) ≡ ϑ(x, t)− ξ(x)∂νu(p(τ(x)), q(τ(x)), t)

and ξ is a cutoff function that equals 1 in a neighbourhood of Γ and ξ(x) = 0 for
any x ∈ Ω, dist(x, Γ ) ≥ δ0 for some positive δ0.
For definitions of function spaces we refer to [5, Ladyzenskaja at al.].

It is the aim of this contribution to present a generalization of the previous
result to the case of more space dimensions developed in [4, Luckhaus–Filo].
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2 Motivation

Our original goal was to study flow problems in porous media with a part of the
boundary covered by a fluid. For one incompressible fluid in porous medium one
has to solve the equation

∂θ(p)
∂t

= ∇ · (k(θ(p))(∇p + e)), (6.fil)

where p is the unknown pressure, θ the water content, k the conductivity of the
porous medium, and −e the direction of gravity (see [1, Bear], for mathematical
treatment of (6.fil) [2, Alt - Luckhaus], for example).

The part of the boundary, which is covered by the fluid and where the infil-
tration takes place is supposed to behave like a impervious layer with many small
holes. It is assumed that the holes are distributed uniformly and create a periodic
structure with period ε. The pressure is supposed to be 0 on the holes, where the
fluid infiltrates into the porous medium, and the condition (k(θ(p))(∇p+e))·ν = 0
is assumed to be satisfied on the impervious part of the boundary. As the period
and the diameter of the hole is of order ε and the domain occupied by the porous
medium is large, it is natural to let ε→ 0 and to ask on the behaviour of solutions
to (6.fil).

However, since this nonlinear problem was not yet treatable, we have studied
the heat equation, i.e. equation (6.fil) with

θ(p) ≡ p, k(θ(p)) ≡ 1 and e = 0 .

3 Model Problem in R3

Let Λ be the square in R2, i.e. Λ ≡ (0, 2`) × (0, 2`) for some positive ` and
θ : R2 → R+, R+ ≡ (0,∞) be a smooth function, say, C3(R2), even and 2`-periodic
in each of its variable. Points in R3 are denoted by x = (x̄, x3) x̄ = (x1, x2) and
we define

Ω ≡ {x ∈ R3 | x̄ ∈ Λ, θ(x̄) < x3 < d}

for some positive d greater than the maximum of the function θ and define

Γ ≡ {x ∈ ∂Ω | x3 = θ(x̄), x̄ ∈ Λ}.

Now let F = {x̄ ∈ Λ | |x̄− ¯̀| ≤ δ}, ¯̀= (`, `) for some 0 < δ < ` and set

a(x̄) =
{

0 : x̄ ∈ F
1 : x̄ ∈ Λ \ F .

Denote by a(x̄) for x̄ ∈ R2 the 2`-periodic extension of the function a on the whole
R2. Let ε−1 = 2k for k ∈ {0, 1, 2, · · · }, define

Dε ≡ {x ∈ Γ | a(ε−1x̄) = 0}, DεT ≡ Dε × (0, T ),
N ε ≡ {x ∈ Γ | a(ε−1x̄) = 1}, N ε

T ≡ N ε × (0, T ),
D ≡ {x̄ ∈ R2 | a(x̄) = 0}, N ≡ {x̄ ∈ R2 | a(x̄) = 1}.
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and for simplicity of notation we put ∂tu ≡ ∂u/∂t, ∂νu ≡ ∂u/∂ν etc.

Consider now the problem

∂tuε = ∆uε + fε(x, t) in ΩT ,

∂νuε = ϑε(x, t) − σε(x, t)uε on N ε
T ,

uε = 0 on DεT ,

∂νuε = 0 on (∂Ω \ Γ )T ,

uε = uε0 on Ω × {t = 0}

(7.fil)

under the following assumptions:

(A) fε, f, f
1 ∈ L2(ΩT ) and such that

fε − f
ε

⇀ f1 in L2(ΩT );

(B) σε, ∂tσε ∈ L∞(ΓT ) for any ε and there exists a positive constant C indepen-
dent of ε such that ‖σε‖L∞(ΓT ) ≤ C;

(C) ϑε, ϑ, ∂tϑε ∈ L2(ΓT ) and such that

ϑε ⇀ ϑ in L2(ΓT );

(D) uε0, u0 ∈ W 1
2 (Ω), u0 = 0 on Γ , uε0 = 0 on Dε, u1 ∈ L2(Ω) and such that

uε0 − u0

ε
⇀ u1

0 in L2(Ω).

We prove that asymptotic expansion (2.fil) holds in the sense that

O(ε) −→ 0

weakly in L2(ΩT ) and strongly in L2(Ω∗T ) for any subdomain Ω∗ ⊂ Ω with a
positive distance from Γ , and, comparing to (3.fil),

uε − u
ε

(x, t) ⇀ ω0(x) (ϑ(x, t) − ∂νu(x, t)) (8.fil)

(weakly in) in L2(ΓT ). Here, similarly as above (see (4.fil) and (5.fil) above) u is the
unique solution of the problem

∂tu = ∆u+ f(x, t) in ΩT ,

u = 0 on ΓT ,

∂νu = 0 on (∂Ω \ Γ )T ,

u = u0 on Ω × {t = 0},

(9.fil)
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u1 is the unique very weak solution of the problem

∂tu
1 = ∆u1 + f1(x, t) in ΩT ,

u1 = ω0(x) (ϑ(x, t)− ∂νu(x, t)) on ΓT ,

∂νu
1 = 0 on (∂Ω \ Γ )T ,

u1 = 0 on Ω × {t = 0},

(10.fil)

and the function ω0(x) is defined for x ∈ Γ as follows:

ω0(x) ≡ 1
`2

∫ `

0

∫ `

0

$(x; ȳ, 0) dȳ ,

$ = $(x; y) is the unique bounded nonnegative solution of the problem

3∑
k=1

∂

∂yk

( 3∑
j=1

γjk(x)
∂$

∂yj
(x; y)

)
= 0 y ∈ R3

+ ,

$(x; ȳ, 0) = 0 ȳ ∈ D , (11.fil)

− ∂$
∂y3

(x; ȳ, 0) = 1 ȳ ∈ N ,

where

C(x) = (γjk)j,k=1,2,3 ,

C(x) ≡ 1√
1 + a2

1 + a2
2


1 + a2

2 −a1a2 0

−a2a1 1 + a2
1 0

0 0 1

 ,

and

aj ≡
∂θ

∂xj
(x̄) .

The function $ is 2`-periodic in each of its variables y1, y2 and it is demonstrated
that

$(x; y) = ω(x; E−1(x)y) ,

where ω(x; z) is for each x ∈ Γ the harmonic function in z ∈ R2
+ such that

a(Ê(x)z̄)
(
∂ω

∂z3
(x; z̄, 0) + λ

)
+
(

1− a(Ê(x)z̄)
)
ω(x; z̄, 0) = 0 (12.fil)
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and

E−1(x) ≡


λ−1 0 0

0 λ 0

0 0 λ




a2√
a2

1+a2
2

− a1√
a2

1+a2
2

0

a1√
a2

1+a2
2

a2√
a2

1+a2
2

0

0 0 1

 ,

Ê(x) ≡


a2√
a2

1+a2
2

a1√
a2

1+a2
2

− a1√
a2

1+a2
2

a2√
a2

1+a2
2


λ 0

0 λ−1

 ,

λ(x) =
(
1 + a2

1 + a2
2

)1/4
.

4 A priori estimates

The first and basic step to prove the validity of the expansion (2.fil) consists of a
priori estimates, that can be summarized in the following

Theorem 1. Assume that (A)–(D) are satisfied. Then there exists a positive con-
stant C, independent of ε, such that

max
0≤t≤T

∫
Ω

|uε − u|2(x, t) dx +
∫ T

0

∫
Ω

|∇(uε − u)|2(x, t) dx dt ≤ Cε ,

∫ T

0

∫
Γ

|uε − u|2(x, t) dH2(x) dt +
∫ T

0

∫
Ω

|uε − u|2(x, t) dx dt ≤ Cε2 ,

max
0≤t≤T

∫
Ω

|uε − u|2(x, t)φ(x) dx

+
∫ T

0

∫
Ω

|∇(uε − u)|2(x, t)φ(x) dx dt ≤ Cε2

and

ess sup
0≤t≤T

∫
Ω

|∇(uε − u)|2(x, t)φ3(x) dx

+
∫ T

0

∫
Ω

|∂t(uε − u)|2(x, t)φ3(x) dx dt ≤ Cε2 ,
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where φ is the principal eigenfunction of the problem

∆φ+ µφ = 0 in Ω,

φ = 0 on Γ,

∂νφ = 0 on ∂Ω \ Γ,

with the corresponding principal eigenvalue µ = µ1 > 0.

In the proof of Theorem 1 the following proposition plays an important role.

Proposition 2. Let v ∈W 1,0
2 (ΩT ) be such that v = 0 on DεT . Then∫ T

0

∫
Γ

|v(x, t)|2dH2(x)dt ≤ Cε
∫ T

0

‖v‖2
W

1/2
2 (Γ )

(t) dt

and

‖v‖L2(ΓT ) ≤ c‖v‖W 1,0
2 (ΩT )

√
ε ,

where the positive constants C, c do not depend on ε and v.

Proof (of Proposition 2). We set

V (y, t) ≡ v(x(y), t), x(y) = (y1, y2, θ(ȳ) + (d− θ(ȳ))y3/(d− θ0))

for ȳ = (y1, y2) ∈ Λ, y3 ∈ (0, d− θ0) and θ0 = maxx̄∈Λ θ(x̄). Note that

v(x, t) = V (y(x), t), y(x) = (x1, x2, (d− θ0)(x3 − θ(x̄))/(d− θ(x̄)))

and V (ȳ, 0, t) = 0 for any ȳ ∈ Λ such that a(ε−1ȳ) = 0. Then it is not difficult to
see that∫ T

0

∫
Λ

|V (ȳ, 0, t)|2dȳ dt ≤ ε`3

δ2π

∫ T

0

∫
Λ

∫
Λ

|V (ȳ, 0, t)− V (z̄, 0, t)|2
|ȳ − z̄|3 dȳ dz̄ dt .

As ∫ T

0

∫
Γ

|v(x, t)|2dH2(x) dt =
∫ T

0

∫
Λ

|V (ȳ, 0, t)|2
√

1 + |∇θ(ȳ)|2 dȳ dt

and ‖V ‖2
W

1/2
2 (Λ)

≤ c‖v‖2
W

1/2
2 (Γ )

≤ C‖v‖2
W 1

2 (Ω)
, the assertion of Proposition 2 fol-

lows.

Proof (of Theorem 1). Note first that uε − u is a solution of the problem

∂t(uε − u) = ∆(uε − u) + (fε − f)(x, t) in ΩT ,

∂ν(uε − u) = gε(x, t) on N ε
T ,

uε − u = 0 on DεT ,

∂ν(uε − u) = 0 on (∂Ω \ Γ )T ,

uε − u = uε0 − u0 on Ω × {t = 0},

(13.fil)
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where gε(x, t) = ϑε(x, t) − σε(x, t)uε − ∂νu. Testing the problem (13.fil) by uε − u
and applying Proposition 2 we arrive at

|uε − u| ≡ max
0≤t≤T

‖(uε − u)(t)‖L2(Ω) + ‖∇(uε − u)‖L2(ΩT ) ≤

‖uε0 − u0‖L2(Ω) + 2‖fε − f‖L2(ΩT ) + C‖gε‖L2(ΓT )

√
ε .

As, however, ‖uε− u‖L2(ΓT ) ≤ C|uε − u|
√
ε , due to our assumptions (A) and (D)

we get ‖uε − u‖L2(ΓT ) ≤ Cε.
Multiplying now the equation in the problem (13.fil) by (uε−u)φ and integrating

over Ω one easily gets the third estimate of Theorem 1. Denote next

U(y, t) ≡ (uε − u)(x(y), t) for y ∈ Ω∗ ≡ Λ× (0, d− θ0) .

Then we obtain∫
Ω∗
|U(y, t)|2dy ≤ Cη

∫
Λ

∫ d−θ0

η

|U(ȳ, y3, t)|2y3 dy3 dȳ + C

∫
Ω∗
|∂y3U(y, t)|2y3 dy

for any t ∈ (0, T ) and fixed η ∈ (0, d − θ0). It is very well known that there exist
positive constants c, C such that c ≤ −∂νφ ≤ C on Γ . This together with the
above estimate yield the estimate ‖uε − u‖L2(ΩT ) ≤ Cε. The last estimate we
obtain by multiplying the equation in the problem (13.fil) by φ3∂t(uε − u) and by
integrating.

The essentiall part of the proof of the convergence (8.fil) is the uniqueness of the
problem

∆zω(x; z) = 0 in R3
+ (14.fil)

with the boundary condition (12.fil) in the following class of solutions.

Definition 3. By a solution of Problem (14.fil), (12.fil) we mean a function
ω ∈W 1,2

loc (R3
+) satisfying∫ R

0

∫
B2(ȳ,L)

|∇ω|2(x̄, x3) dx̄dx3 ≤ CL2,∫ R

0

∫
B2(ȳ,L)

|ω|2(x̄, x3) dx̄dx3 ≤ CL2(R2 +R), (15.fil)∫
B2(ȳ,L)

|ω|2(x̄, 0) dx′ ≤ CL2

for any ȳ ∈ R2 (the positive constant C does not depend on ȳ,L,R), and the
integral identity ∫

R3
+

∇ω(x)∇ψ(x) dx = µ

∫
R2
ψ(x̄, 0) dx̄
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for any ψ ∈ W 1
2,loc(R3

+), ψ = 0 on ΓD ≡ {x = (x̄, 0) | a(Ê(x̄)) = 0} with compact

support in R3

+. Note that B2(ȳ, L) = {x̄ ∈ R2 | |x̄− ȳ| < L}.

This problem was obtained as a limit as ε→ 0 after applying rescaling arguments
for (uε − u)/ε in any point x ∈ Γ .
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Abstract. We shall consider periodic problems for ordinary differential
equations of the form {

x′(t) = f(t, x(t)),

x(0) = x(a),
(I.gor)

where f : [0, a]×Rn → Rn satisfies suitable assumptions.
To study the above problem we shall follow an approach based on the
topological degree theory. Roughly speaking, if on some ball of Rn, the
topological degree of, associated to (I.gor), multivalued Poincaré operator P
turns out to be different from zero, then problem (I.gor) has solutions.
Next by using the multivalued version of the classical Liapunov-Krasno-
selsǩı guiding potential method we calculate the topological degree of the
Poincaré operator P . To do it we associate with f a guiding potential V
which is assumed to be locally Lipschitzean (instead of C1) and hence, by
using Clarke generalized gradient calculus we are able to prove existence
results for (I.gor), of the classical type, obtained earlier under the assumption
that V is C1.
Note that using a technique of the same type (adopting to the random
case) we are able to obtain all of above mentioned results for the following
random periodic problem:{

x′(ξ, t) = f(ξ, t, x(ξ, t)),

x(ξ, 0) = x(ξ, a),
(II.gor)

where f : Ω × [0, a] × Rn → Rn is a random operator satisfying suitable
assumptions.
This paper stands a simplification of earlier works of F. S. De Blasi, G. Pi-
anigiani and L. Górniewicz (see: [7], [8]), where the case of differential
inclusions is considered.
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1 Background in geometric topology

Throughout this note Rn, n ≥ 1, is an n-dimensional real Euclidean space, with
inner product 〈 · , ·〉 and induced norm ‖ · ‖. A closed (resp. open) ball in Rn with
center x and radius r ≥ 0 is denoted by Bn(x, r) (resp. Bn0 (x, r)). Furthermore we
put:

Bn(r) = Bn(0, r), Bn0 (r) = Bn0 (0, r),

Sn−1(r) = Bn(r) \Bn0 (r), Pn = Rn \ {0}.

Z stands for the set of all integers.
For A ⊂ Rn we denote by A, the closure of A. If A ⊂ Rn is nonempty, we put

|A|− = inf{‖a‖ | a ∈ A}.

As usual, ϕ : X → Y (resp. ϕ : X ( Y ) denotes a single valued (resp. multivalued)
map ϕ from X to Y .

In the sequel, any topological space X we consider is always supposed to be
metric. When the clarity is not affected, by “space X” we mean “topological metric
space X”.

A space X is called contractible if there is a continuous homotopy h : X ×
[0, 1]→ X and a point x0 ∈ X such that:

h(x, 0) = x for every x ∈ X,
h(x, 1) = x0 for every x ∈ X.

A nonempty compact space X is called an Rδ-set if there is a decreasing sequence
{Xk} of compact contractible spaces Xk such that

X =
+∞⋂
k=1

Xk.

A space X is called an absolute neighbourhood retract (X ∈ ANR) if, for every
space Y and any closed set C ⊂ Y and any continuous map f : C → X , there is
an open neighbourhood U of C in Y and a continuous map g : U → X such that:

g(x) = f(x) for every x ∈ C. (3.gor)

A space X is called an absolute retract (X ∈ AR) if, for any space Y and any
closed C ⊂ Y and any continuous map f : C → X , there is a continuous map
g : Y → X satisfying (3.gor).
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Clearly X ∈ AR implies X ∈ ANR (the converse is not true). Moreover, if
X,Y ∈ ANR then X × Y ∈ ANR. It is also easy to verify that any X ∈ AR is
contractible.

A multivalued map ϕ : X ( Y with nonempty values is called upper semicon-
tinuous (u.s.c.), if {x ∈ X | ϕ(x) ⊂ U} is open in X for each open U ⊂ Y .

As usual C([a, b],Rn) stands for the Banach space of all continuous maps x :
[a, b] → Rn, endowed with the norm of uniform convergence. Clearly it holds
C([a, b],Rn) ∈ AR.

Now, following [11], (see also [6,7,10]), we recall some definitions of the topo-
logical degree for multivalued maps. Applications to periodic problems (comp. (9.gor))
will be given later, in Sections 3 and 4.

For any X ∈ ANR we set

J(Bn(r), X) = {F : Bn(r)( X | F is u.s.c. with Rδ-values}.

For any continuous f : X → Rn, when X ∈ ANR, we put

Jf (Bn(r),Rn) = {ϕ : Bn(r)( Rn | ϕ = f ◦ F for some F ∈ J(Bn(r), X),

and ϕ(Sn−1(r)) ⊂ Pn}.

Finally, we define

CJ(Bn(r),Rn) =
⋃
{Jf(Bn(r),Rn) | f : X → Rn is continuous,

with X ∈ ANR}.

It is well known (see: [11,6,7,10]) that the notion of topological degree for mul-
tivalued maps in the class CJ(Bn(r),Rn) is available. To define it we need an
appropriate notion of homotopy in CJ(Bn(r),Rn).

Definition 1. Let ϕ1, ϕ2 ∈ CJ(Bn(r),Rn) be two maps of the form

ϕ1 = f1 ◦ F1 Bn(r)
F1(X

f1−→Rn

ϕ2 = f2 ◦ F2 Bn(r)
F2(X

f2−→Rn.

We say that ϕ1 and ϕ2 are homotopic in CJ(Bn(r),Rn) if there exists an u.s.c. Rδ-
valued homotopy χ : Bn(r) × [0, 1] ( X and a continuous homotopy h : X ×
[0, 1]→ Rn satisfying:

(i) χ(u, 0) = F1(u), χ(u, 1) = F2(u) for every u ∈ Bn(r),
(ii) h(x, 0) = f1(x), h(x, 1) = f2(x) for every x ∈ X ,

(iii) for every (u, λ) ∈ Sn−1(r) × [0, 1] and x ∈ χ(u, λ) we have h(x, λ) 6= 0.

The map H : Bn(r) × [0, 1]( Rn given by

H(u, λ) = h(χ(u, λ), λ)

is called a homotopy in CJ(Bn(r),Rn) between ϕ1 and ϕ2.
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By using approximation results for multivalued maps (see: [11,6,7,10]) one can
prove the following theorem concerning the construction of a degree for maps
ϕ ∈ CJ(Bn(r),Rn).

Theorem 2. There exists a map

Deg : CJ(Bn(r),R)→ Z,

called topological degree function, satisfying the following properties:

(i) If ϕ ∈ CJ(Bn(r),Rn) is of the from ϕ = f ◦ F with F single valued and
continuous, then Deg (ϕ) = deg (ϕ), when deg (ϕ) stands for the ordinary
Brouwer degree of the single valued continuous map ϕ : Bn(r)→ Rn.

(ii) If Deg (ϕ) 6= 0, where ϕ ∈ CJ(Bn(r),Rn), then there exists u ∈ Bn0 (r) such
that 0 ∈ ϕ(u).

(iii) If ϕ ∈ CJ(Bn(r),Rn) and {u ∈ Bn(r) | 0 ∈ ϕ(u)} ⊂ Bn0 (r̃) for some
0 < r̃ < r, then the restriction ϕ̃ of ϕ to Bn(r̃) is in CJ(Bn(r̃),Rn) and
Deg (ϕ̃) = Deg (ϕ).

(iv) Let ϕ1, ϕ2 ∈ CJ(Bn(r),Rn) be two maps of the form

ϕ1 = f1 ◦ F1, Bn(r)
F1(X

f1−→Rn

ϕ2 = f2 ◦ F2, Bn(r)
F2(Y

f2−→Rn,

where X,Y ∈ ANR. If there exists a continuous map h : X → Y such that
the diagram

X
f1

hBn(r)

◦
F1

◦
F2

Rn

Y

f2

is commutative, that is F2 = h ◦ F1 and f1 = f2 ◦ h, then Deg (ϕ1) =
Deg (ϕ2).

(v) If ϕ1, ϕ2 are homotopic in CJ(Bn(r),Rn), then Deg (ϕ1) = Deg (ϕ2).

2 Construction of a random topological degree

For details concerning this section we recommend [8] where the present state of a
random topological degree and a random periodic problem for differential inclu-
sions is presented.

Let (Ω,Σ) be a measurable space and ϕ : Ω ( X be a multivalued mapping
with nonempty values; ϕ is called measurable if {ω ∈ Ω | ϕ(ω) ⊂ A} ∈ Σ for every
closed A in a metric space X .
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If X is a metric space we shall use the symbol B(X) to denote the Borel σ-
algebra on X . Then Σ ⊗ B(X) denotes the smallest σ-algebra on Ω × X which
contains all the sets A × B, where A ∈ Σ and B ∈ B(X). We say that a single
valued map v : X → Y is a selection of ϕ : X ( Y (written v ⊂ ϕ) provided
v(x) ∈ ϕ(x) for every x ∈ X .

The following lemma is crucial in what follows:

Lemma 3 ([8]). Let X be a separable metric space, A be a closed subset of X
and ϕ : Ω × A ( X be a measurable mapping (with respect to the σ-algebra
Σ ⊗ B(A)) with compact nonempty values. Assume further that for every ω ∈ Ω
the set Fixϕω = {x ∈ X | x ∈ ϕ(ω, x)} is compact and nonempty. Then the map
F : Ω ( X defined by:

F (ω) = Fixϕω for every ω ∈ Ω,

has a measurable selection, where ϕω(x) = ϕ(ω, x) for every x ∈ A.

Sketch of proof. First, let us define the function f : Ω ×A→ [0,+∞) as follows:

f(ω, x) = dist (x, ϕ(ω, x)) = inf{d(x, y) | y ∈ ϕ(ω, x)}

for every ω ∈ Ω and x ∈ A. Since ϕ is measurable one can get that f is measurable.
Now, it is obvious that the graph

ΓF = {(ω, x) ∈ Ω ×X | x ∈ F (ω)}

of F is equal to
f−1(0) = {(ω, x) ∈ Ω ×A | f(ω, x) = 0}.

It implies that ΓF is a measurable subset of Ω ×X and consequently by virtue of
Aumann’s selection theorem there exists a measurable selection of F . ut

Definition 4. A multivalued map ϕ : Ω×Y ( X with compact nonempty values
is called a random operator provided ϕ is measurable and satisfies the following
condition:

ϕ(ω, · ) : Y ( X is u.s.c.for every ω ∈ Ω. (4.gor)

Now, assume that Y ⊂ X and ϕ : Ω × Y ( X is a random operator. We say
that ϕ has a random fixed point provided there exists a single valued measurable
map ξ : Ω → Y , called the random fixed point of ϕ, such that:

ξ(ω) ∈ ϕ(ω, ξ(ω)) for every ω ∈ Ω.

We let
Fix ra(ϕ) = {ξ : Ω → Y | ξ is a random fixed point of ϕ}.
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In view of Lemma 3 it is easy to see that in many cases existence of deterministic
fixed points implies existence of random fixed points. Namely, we have:

Proposition 5. Let X be a separable AR-space and ϕ : Ω×X ( X be a random
operator. Assume further that ϕ has Rδ-values and ϕω(X) is compact for every
ω ∈ Ω. Then ϕ has a random fixed point.

Sketch of proof. In fact, in view of Schauder Fixed Point Theorem (see [10]) we get
that Fixϕω is compact and nonempty. Then the map F : Ω( X, F (ω) = Fixϕω
has a measurable selection ξ ⊂ F (comp. Lemma 3). Of course, ξ ∈ Fix ra(ϕ). ut

Note (comp. [4,10,11]) that Proposition 5 can be formulated in many other cases.
Below, we would like to show that the topological degree theory considered in

Section 1 can be taken up onto the random case (see: [7,8]).
According to Section 1 we shall use the following notations.
For any X ∈ ANR we let:

Jra(Ω ×Bn(r), X) =

{F : Ω × Bn(r)( X | F is random operator with Rδ-values};

for any continuous f : X → Rn we let

Jraf (Ω ×Bn(r),Rn) = {ϕ : Ω ×Bn(r)( Rn | ϕ = f ◦ F for some

F ∈ Jra(Ω ×Bn(r), X) and ϕ(Ω × Sn−1(r) ⊂ Pn};

finally, we define

CJra(Ω ×Bn(r),Rn) =
⋃
{Jraf (Ω ×Bn(r),Rn) | f : X → Rn is continuous

and X ∈ ANR}.

In the set CJra(Ω×Bn(r),Rn) we can introduce the appropriate notion of homo-
topy (comp. Section 1 for deterministic case or [8]).

Now, observe that if ϕ ∈ CJra(Ω×Bn(r),Rn), then ϕω ∈ CJ(Ω×Bn(r),Rn)
for every ω ∈ Ω and, consequently, topological degree Deg (ϕω) of ϕω is well
defined (see Section 1 or [7]). Therefore we are allowed to define:

Definition 6. We define a multivalued map D : CJra(Ω × Bn(r),Rn) ( Z by
putting

D(ϕ) = {Deg (ϕω) | ω ∈ Ω}.
Then the map D is called the random topological degree on CJra(Ω×Bn(r),Rn);
we say that the random topological degree D(ϕ) of ϕ is different from zero (written
D(ϕ) 6= 0) if and only if Deg (ϕω) 6= 0 for every ω ∈ Ω.

Finally, let us remark that Theorem 2 holds true for random operators. We recom-
mend also [6] and [10] for further possible consequences of the random topological
degree.
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3 The Poincaré operator

In this section we define the Poincaré translation map along trajectories of ordinary
differential equations ([1,2,3,4,5,7,8,9,10,11,12]): A map f : [0, a] × Rn → Rn is
called Carathéodory if it satisfies:

t→ f(t, x) is measurable for every x ∈ Rn, (5.gor)
x→ f(t, x) is continuous for almost all t ∈ [0, a], (6.gor)
‖f(t, x)‖ ≤ µ(t)(1 + ‖x‖) for every (t, x) ∈ [0, a]× Rn,
where µ : [0, a]→ [0,+∞) is an integrable function. (7.gor)

For a Carathéodory map f : [0, a]× Rn → Rn we shall consider the following
two problems:
Cauchy problem {

x′(t) = f(t, x(t)),
x(0) = x0,

(8.gor)

and
Periodic problem {

x′(t) = f(t, x(t)),
x(0) = x(a),

(9.gor)

where a solution x : [0, 1]→ Rn is an absolutely continuous map such that:

x′(t) = f(t, x(t)) for almost all t ∈ [0, a].

For each x0 ∈ Rn we denote by

Sf (x0) = {x : [0, 1]→ Rn | x is a solution of (8.gor)}

and by
P f = {x : [0, a]→ Rn | x is a solution of (9.gor)}.

We recall the well known result so called Aronszajn Theorem (comp. [7,10,12]).

Theorem 7 (Aronszajn). If f : [0, a]× Rn → Rn is a Carathéodory map, then
the map

Sf : Rn ( C([0, a],Rn)

defined by Sf (x) = Sf (x), for every x ∈ Rn, is an u.s.c. map with Rδ-values, where
C([0, a],Rn) is a Banach space of continuous mappings with the usual max-norm.

Now, we wish to study problem (9.gor). To do it we shall consider the diagram:

Rn
Sf
(C([0, a],Rn) et−→Rn,

where for every t ∈ [0, a] the map et is defined by et(x) = x(0)− x(t).
For any t ∈ [0, a] the map P tf = et ◦ Sf is called the Poincaré translation map

associated to the problem (8.gor).
The following proposition is self-evident:
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Proposition 8. Problem (9.gor) has a solution if and only if there is x ∈ Rn such
that 0 ∈ P af (x).

In what follows we can assume, without loss of generality, that 0 6∈ P af (x) for every
x ∈ Rn such that ‖x‖ = r for some r > 0. Then we have:

Theorem 9. If Deg (P af ) 6= 0, then P f 6= ∅, where we consider P af as a mapping
in CJ(Bn(r),Rn) for r given above.

Proof. Since Sf is u.s.c. with Rδ-values and ea is continuous, we have that

P af ∈ CJ(Bn(r),Rn), for X = C([0, a],Rn)

being an AR-space. ut

Therefore by our assumption Deg (P af ) on Bn(r) is well defined. Consequently, our
result follows from Theorem 2, (ii) and Proposition 8.

In order to show that Deg (P af ) 6= 0 we shall use the guiding potential intro-
duced by Liapunov (comp. [16,17,18]) and subsequently developed by Krasnoselsǩı
(comp. [13]), Mawhin [14] and others (see: [7,8,10,15]).

4 Guiding potentials

The guiding potential method has been recently employed in [10,15] to study peri-
odic problems (9.gor). Unlike these papers, where the guiding potential V is supposed
to be C1, here we assume that V is only locally Lipschitzean (see: [7]). We recall
some notions of Clarke generalized gradient calculus [9] we shall need later.

Let V : Rn → R be a locally Lipschitzean function. For x0 ∈ Rn and v ∈ Rn,
let V 0(x0, v) be the generalized directional derivative of V at x0 in the direction v,
that is

V 0(x0, v) = lim sup x→x0
t→0+

V (x+ tv)− V (x0)
t

.

Then the generalized gradient ∂V (x0) of V at x0 is defined by

∂V (x0) = {y ∈ Rn | 〈y, v〉 ≤ V 0(x0, v) for every v ∈ Rn}.

The map ∂V : Rn ( Rn defined by the above equality is u.s.c. with nonempty
compact convex values ([9, pp. 27, 29]). If, in addition, V is also convex, then
∂V (x0) coincides with the subdifferential of V at x0 in the sense of convex analysis
([10, p. 36]), that is

∂V (x0) = {y ∈ Rn | 〈y, x− x0〉 ≤ V (x) − V (x0) for every x ∈ Rn}.

If V is C1, then ∂V (x0) reduces to the singleton set {gradV (x0)} ([10, p. 33]).
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Definition 10. Let V : Rn → Rn be locally Lipschitzean. If, for some r0 > 0,
V satisfies

〈∂V (x), ∂V (x)〉− > 0 for every ‖x‖ ≥ r0, (10.gor)

then V is called a direct potential, where 〈∂V (x), ∂V (x)〉− = inf{〈u, v〉 | u, v ∈
∂V (x)}. If, in addition, V is convex and instead of (4.1) satisfies

0 6∈ ∂V (x) for every ‖x‖ ≥ r0, (11.gor)

then V is called a direct convex potential.

Observe that Definition 10 implies (11.gor), the converse is not true in general. More-
over, if V is C1, then either (10.gor) or (11.gor) is equivalent to saying that gradV (x) 6= 0
for every ‖x‖ ≥ r0. In view of that, the above definition can be interpreted as a
generalization of the definition of a direct potential V in the sense of Krasnoselskǐı
[13] (see also [14,15,18]), where V is assumed to be a C1 function.

Let V : Rn → Rn be a direct potential. Observe that ∂V ∈ CJ(Bn(r),Rn) if
r ≥ r0, and thus, by Theorem 2, the topological degree Deg (∂V ) is well defined
and independent of r. Hence, it makes sense to define the index Ind (V ) of the
direct potential V , by putting

Ind (V ) = Deg (∂V ),

when ∂V stands for the restriction of ∂V to Bn(r), r ≥ r0. Of course the definition
of Ind (V ) is analogous if V is direct convex potential.

Proposition 11 ([6]). If V : Rn → Rn is a direct potential (or a direct convex
potential) satisfying lim‖x‖→+∞ V (x) = +∞, then Ind (V ) = 1.

A connection between the notion of direct potential and ordinary differential equa-
tions is given by the following:

Definition 12. Let f : [0, a] × Rn → Rn be a Carathéodory map. A direct po-
tential V : Rn → R is called a guiding potential for f if there exists r0 > 0 such
that:

〈f(t, x), ∂V (x)〉− ≥ 0 for every t and ‖x‖ ≥ r0. (12.gor)

Our main result of this section is the following:

Theorem 13. Assume that f : [0, a] × Rn → Rn is a Carathéodory map and
V : Rn → R is a guiding potential for f such that Ind (V ) 6= 0. Then P f 6= ∅.

In the proof of Theorem 13 we proceed analogously as in the proof of (4.4) in [12]
(comp. also [6]). By the homotopy property of the topological degree finally we
obtain Deg (P af ) = |Ind (V )| and therefore our result follows from Theorem 9.

All technical details are omitted here and we left them to the reader.



102 Lech Górniewicz

5 The random case

In this section we would like point out that all results of section 3 and 4 can be
formulated in the random case. We shall restrict our considerations to showing
formulations and some ideas of the proofs (we recommend for more details [8]).

Definition 14. Let f : Ω × [0, a]× Rn → Rn be a single valued map such that

f( · , · , x) : Ω × [0, a]→ Rn is measurable, (13.gor)
f(ω, t, · ) : Rn → Rn is continuous, (14.gor)
‖f(ω, t, x)‖ ≤ µ(ω, t)(1 + ‖x‖) for every t, ω and x, where
µ : Ω × [0, a]→ [0,+∞) is a map such that µ( · , t) is mea-
surable and µ(ω, · ) is Lebesgue integrable. (15.gor)

Then f is called a random Carathéodory operator.

Now, for given random Carathéodory operator and a measurable map ξ0 : Ω → Rn
we consider the following Cauchy problem:{

x′(ω, t) = f(ω, t, x(ω, t))
x(ω, 0) = ξ0(ω),

(16.gor)

where the solution x : Ω × [0, a] → Rn is a map such that x( · , t) is measur-
able, x(ω, · ) is absolutely continuous and the derivative x′(ω, t) is considered with
respect to t.

Moreover we consider the following random periodic problem:{
x′(ω, t) = f(ω, t, x(ω, t)),
x(ω, t) = x(ω, a).

(17.gor)

To solve it we need the random Poincaré translation operator. Observe that for
every ω ∈ Ω and y ∈ Rn we can consider the following Cauchy problem:{

x′(t) = fω(t, x(t)) = f(ω, t, x(t)),
x(0) = y.

(18.gor)

Now, we define the following map:

P : Ω × Rn( C([0, a],Rn),

P (ω, y) = Sfω(y).

We have:

Proposition 15 ([8]). Under the above assumptions the map P is a random op-
erator.



Periodic Problems for ODE’s 103

Note that for the proof of Proposition 15 we need the Fubini and Kuratowski
Ryll-Nardzewski Selection Theorem (see [8]).

Consequently, the map

Pa = ea ◦ P (19.gor)

is called the random Poincaré operator associated to (17.gor).
Now we are able to formulate Proposition 8, Theorem 9 and results of Section 4

for the random periodic problem. We refer to do it to the reader (comp. [8]).
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Abstract. In this paper a new finite element approach is presented
which allows the discretization of PDEs on domains containing small
micro-structures with extremely few degrees of freedom. The appli-
cations of these so-called Composite Finite Elements are two-fold.
They allow the efficient use of multi-grid methods to problems on
complicated domains where, otherwise, it is not possible to obtain
very coarse discretizations with standard finite elements. Further-
more, they provide a tool for discrete homogenization of PDEs with-
out requiring periodicity of the data.
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1 Introduction

Before the mid-sixties the finite difference method was the standard discretization
method for differential equations. The following two severe drawbacks of finite
differences lead to the development of the finite element method. First, the use
of Cartesian difference quotients made the treatment of complicated and curved
boundaries difficult and many technical tricks have to be employed to overcome
this problem. Furthermore, it turned out that only the variational setting of the
continuous problem leads to satisfactory existence and uniqueness results in ap-
propriate function spaces, usually the convergence results of FDM require too
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much smoothness. Nowadays, we know that the question whether a discretization
method is a FDM or a FEM is often only a matter of interpretation. In numeri-
cal linear algebra where one is interested in the algebraic properties of the linear
system as, e.g., the M -matrix property, it is, in many case, very useful to inter-
pret the discretization as a discrete, FD-like method while for the estimates of the
discretization error the powerful apparatus of finite elements is employed.

An advantage, however, of FDM is the easy regular structure of the grid. Hence,
the matrix pattern has a very regular structure, too. We know that this is very
essential in the performance of iterative solvers as, e.g. ILU-like methods, while in
an a priori unstructured FE mesh, sometimes, big effort has to be spent to find an
advantageous numbering of the grid points. Furthermore, the simple structure of
the matrix pattern makes the implementation of FDM much easier compared to
FEM. Additionally, the efficient use of high performance computers as, e.g., vector
computers, favorites such simple data structures.

On the other hand, the FEM has big advantages compared to FDM, namely,
it provides a powerful apparatus for convergence analysis and is very flexible with
respect to an appropriate geometric discretization of the domain allowing adaptive
refinement strategies and proper resolution of the boundary.

However, the latter mentioned feature is true, only, if the grid size is small
enough resolving essentially all micro-structures of the domain and differential
equation. Very coarse discretizations (step size much larger than the geometric
details) are not possible. In the context of homogenization and in order to apply
multi-grid methods where the efficiency depends on how coarse the coarsest grid
can be chosen this is a severe drawback. The Shortley-Weller FDM [14] which is
in the literature since 1938 allows that the Cartesian grid overlap the boundary
and appropriate weights are introduced in the difference quotients. The first multi-
grid computations [3] use this discretization method in order to get very coarse
coarse-grid approximations.

Since recently, various approaches have been presented in the literature con-
cerning coarsening strategies for finite element spaces or, more general, discretiza-
tions with only few degrees of freedom which have already the asymptotic accuracy.
In [1], [2], and [9], approaches are presented which can be used in the context of
BPX-multigrid methods and hierarchical basis multigrid methods.

An approach which is based on pure algebraic considerations is the so-called
Algebraic Multigrid Method (AMG) where only the information of the system ma-
trix is used to obtain matrices of lower dimension. For details see [11]. A further
related paper in this context is [10].

Composite Finite Elements were first presented by the authors in [8] and [6]
where the aim was to define finite element spaces which have the asymptotic
approximation property and the possibly low number of unknowns is independent
of the shape of the domain. They can be used for both pure Galerkin discretization
and in combination with standard multigrid methods and are not necessarily linked
to a special solver.
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In the present paper, we will, in the light of the Shortley-Weller discretization,
define a new class of finite elements which is appropriate to resolve complicated
geometries with very few degrees of freedom.

The paper is organized as follows. First, we recapitulate the principle of the
Shortley-Weller method within an elementary setting. Then, we will introduce the
new class of finite elements called Composite Finite Elements which resolves com-
plicated boundaries with a very small number of degrees of freedom satisfying the
usual asymptotic approximation property. We will show that the implementation
of this method is very easy and the application to 3-d problems does not involve
further difficulties compared to the 2-d version.

2 Shortley-Weller Finite Difference Discretization

In this section we recall the principles of the Shortley-Weller method for finite
difference discretization of partial differential equations (PDEs) on domains having
complicated boundary. The basic principles of this method will be used for the
design of the new class of Composite Finite Elements.

In order to approximate the second derivative of a function u at a point x ∈ R
using a non-uniformly spaced grid, Newton’s divided second differences are em-
ployed

−u′′ (x) ≈ 2
h1 + h2

(
u (x)− u (x− h1)

h1
− u (x+ h2)− u (x)

h2

)
= − 2

(h1 + h2) h2
u (x+ h2) +

2
h1h2

u (x)− 2
(h1 + h2)h1

u (x− h1)

Symbolically, the matrix stencil is given by

Lh =
[
− 2

(h1 + h2)h2
,

2
h1h2

,− 2
(h1 + h2)h1

]
. (1.sau)

The use of non-uniform spaced Cartesian grids for finite difference approximation
is necessary if non-rectangular geometries as depicted in Figure 1 occur. A coarse

Ω
Ω

h

h1

h2

Fig. 1. Domain Ω with curved boundary and a small hole. The Cartesian grid
does not fit in the domain and defines local stepsizes hj near the boundary.

Cartesian grid will overlap the domain substantially. Instead of deforming the
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Cartesian grid we use 2-d analogues of (1.sau). The arising system matrix Lh has
favorable properties. Lh is an M-matrix and has special stability properties (see
[5, Theorem 4.8.4]) which can be expressed by∥∥L−1

h

∥∥
∞ ≤

d2

8
.

However, difficulties arise if the micro-structures of the grid are not visible on the
coarse grid. This would arise if, e.g., a hole lies in the interior of a grid cell and no
Cartesian line of the grid intersects the hole. To overcome this problem we consider
a hierarchy of Cartesian grids τ` of step size h` satisfying

h0 = O (1) ≈ diam (Ω) ,
h` = 2−`h0.

We assume that `max is such that τ`max resolves all necessary details of the do-
main. Hence, the matrix L`max can be generated by using the Shortley-Weller
scheme. Matrices corresponding to coarser grids are then extracted from the fine
grid matrix by introducing prolongations p`←`−1 and restrictions r`−1←` linking
grid functions on different grids τ`−1 and τ` with each other. Having defined these
operators the coarse grid matrices are given recursively by the Galerkin product

L`−1 = r`−1←`L`p`←`−1.

In standard cases, the prolongation and restriction can be defined, e.g., via inter-
polation in the following way. First, we consider the one-dimensional case which
is illustrated in Figure 2.

A Bx
1

x
2

x
N- 1

x
N

:  coarse grid points

:  f ine grid points

Fig. 2. Domain Ω = [A,B] with non-fitting fine and coarse grids.

The prolongation in the case of homogeneous Dirichlet boundary conditions
is given for all fine grid points xi by interpolating the neighbouring coarse grid
values.

[p`←`−1u] (xi) =


u (xi) if xi is also a coarse grid point,
1
2 (u (xi−1) + u (xi+1)) otherwise and i 6= 1, N,
‖x1−A‖
‖x2−A‖u (x2) i = 1,
‖xN−1−B‖
‖xN−B‖ u (xN−1) i = N.
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In more than one-dimension one has to interpolate sequentially in all directions.
We state that in regular situation, i.e., in the case of domain-fitting grids, the
prolongation is the bilinear interpolation. In any case the restriction r`−1←` is
defined as the adjoint of p`←`−1 with respect to the weighted Euclidean scalar
product:

〈u, v〉 =
1
N

N∑
i=1

u (xi) v̄ (xi) .

An important feature of the prolongation and restriction above is that the sparsity
of the system matrix is preserved and the regular distribution of the non-zero
entries as well. If L` is given by a 9-point stencil, i.e., 9 non-vanishing entries per
matrix line, then, the same is true for L`−1.

Using these system matrices {L`}0≤`≤`max
in a multi-grid method one observes

the typical convergence rates even if the coarse grid contains only one degree of
freedom and the domain contains many very small geometric details (cf. [3]).

The purpose of this section was to elucidate some key principles how very coarse
discretizations of domains having complicated micro-structures can be obtained.
The consideration was quite elementary but it will turn out that the principles can
be used to define a new class of finite elements which includes the advantages of
the Shortley-Weller FDM but can be applied to a much bigger class of problems.

3 Composite Finite Elements

In this section we will introduce so-called Composite Finite Elements. First, we
will explain how grids can be generated such that geometric coarsening is straight-
forward. Then, the finite element spaces are defined on these coarsened grids as
subspaces of the fine grid space by specifying appropriate inter-grid prolongations.
The following considerations do not depend on the space dimension and hence are
formulated in an abstract way.

We start recalling some basic definitions of finite element spaces. Let τ denote
a partitioning of a domain Ω into small elements {Kj}1≤j≤n. The finite element
space V corresponding to this grid is defined as

V =
{
u ∈ Ck (Ω) : u |K is a polynomial of maximal degree p for all K ∈ τ

}
.

Let Θ = {xj}1≤j≤N denote the set of nodal points and {Φi}1≤i≤N the correspond-
ing Lagrangian nodal basis of V given by

Φi ∈ V,

Φi (xj) =
{

1 i = j,
0 otherwise. (2.sau)

Then, each function u ∈ V has a unique basis representation by

u (x) =
N∑
i=1

uiΦi (x) (3.sau)
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with ui = u (xi). Equation (3.sau) provides a canonical interpretation of a (discrete)
vector of nodal values u ∈ RN as a finite element function.

In the following we will describe a method how a sequence of grids can be
constructed such that geometric coarsening is straightforward.

3.1 Construction of the Grids and Definition of Composite Finite
Elements

The following formal setting is illustrated in Figures 3-6.

Ω

Fig. 3. Domain Ω containing a rough boundary piece.

First, we have to construct a sequence of auxiliary grids {τ̃`}0≤`≤`max
. Let

Q0 be a rectangle resp. a cuboid containing the domain Ω. Choose an arbitrary
partitioning of Q0 as the initial grid τ̃0. Refine τ̃0 for several times by any com-
mon refinement strategy as, e.g., combining the midpoint of triangles, the faces
of hexahedrons, etc. to obtain a physically and logically nested sequence of grids
{τ̃`}0≤`≤`max

.
This means that any element K of τ̃` has a certain numbers of children given

by

K ′ ∈ τ̃` is a child of K ⇔ K ′ ⊂ K

and, vice versa, each element of τ̃`+1 has a uniquely determined parent in τ̃`. Note
that the definition of τ̃` does not include any adjustment process of the grids to the
physical domain. However, in practical computations, one would generate grids τ̃`
which contain small elements in or near parts of Ω where a higher resolution is
required. This can be done, e.g., by using error estimators or an a priori known
grading function which controls the refinement strategy. We assume that τ`max is
fine enough such that nodal points lying close to the boundary of Ω can be moved
onto the boundary without distorting the elements too much. Furthermore, we
assume that there exists a subset of elements of the resulting grid which is a
proper FE grid of the domain Ω. This mesh is denoted by τ`max . Note that the
movement of grid points of τ`max also is changing the shape of the elements on
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τ0
∼(a) τ1

∼(b)

τ2
∼(c) τ3

∼(d)

Fig. 4. Auxiliary grids {τ̃`}0≤`≤3 which arise by refining a coarse grid with an ap-
propriate refinement strategy. Note that no adjustment of the grid to the boundary
of the domain takes place.

coarser levels. These distorted coarser grids are further reduced by cancelling all
elements having zero cut with Ω. The resulting meshes are denoted by τ`.

The construction above implies that the elements are no longer physically
nested. The situation, depicted in Figure 6, typically arise near the boundary
where fine grid points have been moved.

Definition 1. An elementK ∈ τ` is said to be regular if the union of the (iterated)
sons of K on the finest level is K.

Since τ`max is a proper FE grid of Ω, the system matrix L`max on this level is
generated in the standard way. The coarser systems are defined recursively via the
Galerkin product

L`−1 = r`−1←`L`p`←`−1. (4.sau)

Since the restriction is again defined as the adjoint of p`←`−1 we have to specify
only an appropriate choice of the inter-grid prolongation p`←`−1. This is done by
using the interpretation (3.sau) of a nodal vector as a grid function. A nodal vector
u`∈ RN` on level ` defines a continuous function u` by using the grid τ` and
corresponding standard FE basis functions

{
Φ`i
}

1≤i≤N`
(see (2.sau)). The evaluation
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Fig. 5. Fine grid τ`max with `max = 3. All triangles which lie outside of the domain
are rejected. Note that in this example no movement of grid points was necessary.

(a ) (b)

K
K 1

K 3

K 2
K 0

Fig. 6. Triangle K of τ` and logical children {Ki}0≤i≤3 of the finer level `+ 1.

of u` at the nodal points of the finer grid associates to any u` ∈ RN` a nodal
vector u`+1 ∈ RN`+1. This defines the mapping p`+1←` : RN` → RN`+1.

This prolongation can be interpreted as a convex interpolation in the following
way. Let x be a nodal point of the grid τ`+1 which lies in a coarser element K ∈ τ`.
Then, the prolonged nodal value at x is given by standard FE interpolation on K
using the coarse-grid nodal values on K

u`+1 (x) =
∑

y∈Θ`∩K̄

αy (x) u` (y)

where αy (x) are the coefficients of the FE interpolation.
In the case of homogeneous Dirichlet boundary conditions, we have to modify

p`←`−1 such that x ∈ ∂Ω implies that u`+1 (x) = 0 (see [12]).
The FE system matrices were generated recursively by using (4.sau). Alternatively,

it is possible to define a finite element space along with an appropriate basis such
that the corresponding stiffness matrix equals L`. For this, let us consider the grid
τ` and let xj denote a nodal point of τ`. Define the unit nodal vector corresponding
to this point by

ei =
{

1 i = j,
0 otherwise.
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Using the prolongation operators iteratively we can associate a fine grid nodal
vector ẽi with ei by

ẽi = p`max←`max−1p`max−1←`max−2 · · · p`+1←`ei.

The finite element interpolation of the fine grid vector ẽi links any ei with a
continuous function on Ω by

ei (x) :=
N`max∑
i=1

ẽiΦ`max
i (x) . (5.sau)

Note that ei is a polynomial on each fine-grid element (provided Φ`max
i are piece-

wise polynomials) while this is not true in general for the coarse grid elements.
The Composite Finite Element Space is defined by

V` = span {ei (x) : 1 ≤ i ≤ N`} .

Remark 2. From the definition it follows that the Composite Finite Element Spa-
ces are nested: V` ⊂ V`+1.

3.2 Approximation Property of V`

In many cases, the error analysis of Galerkin discretizations of PDEs leads to an
estimate of the form

‖u− u`‖H1(Ω) ≤
(

1 +
CS
γ

)
dist (u, V`) ,

where u` denotes the solution of the Galerkin discretization and

dist (u, V`) := inf
w`∈V`

‖u− w`‖H1(Ω) .

The stability constant γ and continuity constant CS mainly depend on the PDE
on the continuous level. Obviously, the approximation property of the FE space,
which is employed for the Galerkin discretization, plays a key role in the error
estimate. In the following, we state that under relatively weak assumptions the
asymptotic approximation property of finite elements carries over to composite
finite element spaces independent of the (low) dimension of V`. The proof of the
theorem was worked out in detail in [8] while more general situations as, e.g., the
3-d case and more general elements are treated in [13].

Theorem 3. Let Ω be a 2-d domain with Lipschitz boundary, τ` denote a trian-
gulation, and h` := max

∆∈τ`
diam∆ the step size of τ`. We assume that Φi of (2.sau) are

the piecewise linear “hat”-functions and

(a) τ` is quasi-uniform, i.e., h` ≤ C diam∆, for all ∆ ∈ τ`,
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(b) τ` is shape-regular, i.e., sup {diamS : S is a ball contained in ∆} ≥ Ch` for
all ∆ ∈ τ`,

(c) h`+1 ≤ 2
3h`

(d) the prolongation process is local, i.e., diam (supp ei) ≤ Ch` with ei given by
(5.sau),

with constants independent of ` and `max.
Then, for all u ∈ H2 (Ω) there exists u` ∈ V` such that

‖u− u`‖Hm(Ω) ≤ Ch
2−m
` ‖u‖H2(Ω) , m ∈ {0, 1} . (6.sau)

Proof. The proof is essentially given in [8]. The only thing to check is that As-
sumption (d) above implies Assumption 2 in [8]. Since this is purely technical but
straightforward we skip this detail here.

Hence, we have shown that V` has the asymptotic approximation property
starting with extremely few degrees of freedom. In view of Figure 4(a), this means
that the Galerkin discretization with composite finite elements on the grid τ0 for
the Poisson problem on Ω (cf. fig. 3) with Neumann boundary conditions satisfies

‖u− u0‖1 ≤ Ch0 ‖u‖2

with h0 = diamΩ. The function u0 is a function which lives only on the physical
domain Ω, while the four degrees of freedom associated with u0 are located at
the corners of the square formed by the two coarse-grid triangles. Estimate (6.sau)
means that one is already in the asymptotic range, i.e., the error on the grid τ1 is
expected to be only half of the error of u0.

Since the spaces V` are nested they are also well-suited to be used for defining
coarse-grid approximations for multi-grid methods. The approximation property
for multi-grid methods (cf. [4, Chapter 6]) directly follows from this fact.

3.3 Complexity of Composite Finite Elements

In this subsection we will investigate the complexity of generating the system
matrix corresponding to the space V`. We recall that we assumed that the step
sizes of the sequence of grids τ` satisfy

O (diamΩ) = h0 > h1 =
h0

2
> h2 =

h0

4
> . . . > h` =: H > . . . > h`max =: h.

We assumed here for simplicity that the step size is reduced by a factor 2 in each
step, while other contraction rates can be treated in the same way. If one is inter-
ested in the generation of the whole sequence of system matrices {L`}0≤`≤`max

one
could use the Galerkin products. The complexity of generating the system matrix
on the finest level is O

(
h−d`max

)
where d = 2, 3 denotes the space dimension. Since

the prolongation and restriction operators are local in the sense that the evaluation
per nodal point requires O (1) operations, we obtain that the generation of L`−1
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from L` needs O
(
h−d`

)
operations. Together one obtains that the complexity of

generating all system matrices is given by

`max∑
`=0

h−d` = O
(
h−d`max

)
,

i.e., does not increase the asymptotic complexity.
In some situations, however, one is interested only in the generation of a coarse-

grid matrix L` corresponding to a step size H = h` but would like to resolve the
geometric details with a smaller step size h = h`max . The following observation
plays the key role. In the regular situation, where no grid points have been moved
in the adjustment of the auxiliary fine grid τ̃`max to the domain, the matrix L`
defined by the Galerkin product coincides with the matrix assembled directly on
the grid τ` using the standard “coarse” finite element basis functions Φ`i . Hence,
the complexity of generating L` is of order H−d. This means that for elements
K ∈ τm which are not distorted during the refinement process, i.e., are regular
in the sense of Definition 1, the corresponding portions of L`, can be generated
directly by using the standard FE basis function Φ`i on K. Since the adjustment of
elements to the boundary only takes place near the boundary nearly all elements
are not distorted during the refinement process and there, the system matrix can
be generated without prolonging up to the finest level `max.

In typical situation, only O
(
h1−d
m

)
elements of τm intersects the boundary of Ω

and have to be refinement further. The computation of the so-called element matrix
on an element K ∈ τm requires O (1) operations. Symbolically, the algorithm reads
as follows.

1. On τ` : O
(
h−d`

)
elements are regular, i.e., not distorted on finer levels and the

computation of the corresponding portions (element matrices) of L` requires
O
(
h−d`

)
operations. O

(
h1−d
`

)
elements have to be refined further.

2. On τ`+1 : O
(
h1−d
`

)
elements are involved. The computation of O

(
h1−d
`

)
corre-

sponding portions of L`+1 needs O
(
h1−d
`

)
operations, while O

(
h1−d
`+1

)
elements

have to be refinement further.
...

3. On τ`max : O
(
h1−d
`max−1

)
elements are involved. The computation of O

(
h1−d
`max

)
remaining element matrices needs O

(
h1−d
`max−1

)
operations.

The total operation count for generating L` sums up to O
(
H−d

)
+O

(
h1−d). A

typical mesh which arise by this procedure is depicted in Figure 7. For a detailed
study of the complexity of composite finite elements and implementation details,
we refer to [7].
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László Hatvani? and László Stachó
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Abstract. We consider the equation

x′′ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, for k = 1, 2, . . . ,

where {ak} is a given increasing sequence of positive numbers, and {tk} is
chosen at random so that {tk− tk−1} are totally independent random vari-
ables uniformly distributed on interval [0, 1]. We determine the probability
of the event that all solutions of the equation tend to zero as t→∞.
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1 Introduction

The linear second order differential equation

x′′ + a2(t)x = 0 (1.hat)

describes the oscillation of a material point of unit mass under the action of the
restoring force −a2(t)x; function a : [0,∞) → (0,∞) is the square root of the
varying elasticity coefficient a2.
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Definition 1 (Ph. Hartman [8]). A function t 7→ x0(t) existing and satisfying
equation (1.hat) on the interval [0,∞) is called a small solution of (1.hat) if

lim
t→∞

x0(t) = 0 (2.hat)

holds. The zero solution is called the trivial small solution of (1.hat).

It is easy to see [10, p. 510] that if a is nondecreasing, then every solution of
(1.hat) is oscillatory and the successive amplitudes of the oscillation are decreasing.
M. Biernacki [2] raised the question of the existence of a (nontrivial) solution whose
amplitudes tend to zero, i.e., a small solution. H. Milloux answered this question
by proving

Theorem A (H. Milloux [15]). If a : [0,∞)→ (0,∞) is differentiable, nonde-
creasing, and satisfies

lim
t→∞

a(t) =∞, (3.hat)

then equation (1.hat) has a non-trivial small solution.

Milloux also provided an example of a step function a to show that one cannot
conclude that all solutions are small.

Biernacki [2] raised also the following question: what additional conditions
on a function a monotonously tending to infinity as t goes to infinity guarantee
that all solutions are small? The first answer to this question was the famous
Armellini-Tonelli-Sansone theorem (see, e.g., in [10]). It has been followed by many
generalizations and improvements in the literature [3,9,10,13,14,16,17]. All of them
require of the coefficient a to tend to infinity regularly. Roughly speaking this
means that the growth of a cannot be located to a set with a small measure.

In this paper we are concerned with the case when the damping coefficient
a in equation (1.hat) is a step function. As is known such equations often serve as
mathematical models in applications.

For example, let us consider the motion of the mathematical plain pendulum
whose length changes by a given law ` = `(t). The position of the material point
in the plain is described by the length `(t) of the thread and the angle ϕ between
the axis directed vertically downward and the thread. It is known [1,11] that the
equation of the motion is

ϕ′′ +
g

`(t)
sinϕ = 0, (4.hat)

where g denotes the constant of gravity. (No friction, the force of gravity acts only.)
The “small oscillations” [1] are described by the linear second order differential
equation

ϕ′′ +
g

`(t)
ϕ = 0. (5.hat)
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Consider the case when ` is a step function and `(t)→ 0 monotonously as t→∞.
This is the situation when one has to lift a weight by a pulley and rope through a
gape. The purpose is to guarantee limt→∞ ϕ(t) = 0.

In [12] the first author showed that the Milloux theorem can be generalized
to step function coefficients, thus the existence of at least one solution with the
desired property is guaranteed. However, this knowledge is useless from practical
point of view. We would need a theorem guaranteeing all solutions to tend to zero
as t goes to infinity. The Armellini-Tonelli-Sansone theorem cannot be applied be-
cause any step function can increase only irregularly: the growth of the function
is located to a countable set, the function increases with jumps. Very recently the
Armellini-Tonelli-Sansone theorem was generalized to impulsive systems [7] and
step functions [5,6]. These theorems contain sophisticated conditions with requests
of certain connections between different parameters of the step function coefficient.
It is almost impossible to use these conditions for controlling the motions even if
one can observe and measure the state variables during the motions, what, in gen-
eral, cannot be assumed. (It is enough to mention the problem of pulling out used
up graphit bars from a nuclear reactor, which can be modelled by equations simi-
lar to (5.hat).) For this reason the first author [12] formulated the following practical
problem: How many solutions are small if we do not require any additional con-
dition on `(t) beyond limt→∞ `(t) = 0? In other words, how often does it happen
that limt→∞ ϕ(t) = 0?

To be more precise, let us suppose that the length `(t) is of the form

`(t) := `k, if tk−1 ≤ t < tk, k = 1, 2, . . . ,

where {`k}∞k=1 is given, limk→∞ `k = 0, and the sequence {tk}∞k=0 of the mo-
ments of pulling the rope is chosen “at random” such that limk→∞ tk = ∞.
For an arbitrarily fixed pair of initial data ϕ0, ϕ

′
0, what is the probability, that

limt→∞ ϕ(t) = 0?
In this paper we give an answer to this problem in the case when the differences

tk − tk−1 (k = 1, 2, . . . ) are independent random variables uniformly distributed
on interval [0, 1]. Namely, we prove that in this case limt→∞ ϕ(t) = 0 is almost
sure (it is an event of probability 1).

2 Preliminaries and Results

Let {tk}∞k=1 be an increasing sequence of positive numbers tending to infinity as k
goes to infinity, and define t0 := 0. Let {ak}∞k=1 be a sequence of positive numbers
such that

0 < a0 ≤ a1 ≤ . . . ≤ ak ≤ ak+1 ≤ . . . ,
and consider the equation

x′′ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, for k = 1, 2, . . . . (6.hat)

A function x : [0,∞)→ (−∞,∞) is a solution of (6.hat) if it is continuously differen-
tiable on [0,∞) and it solves the equation on every (tk−1, tk) for k = 1, 2, . . . .
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Write (6.hat) as a system of first order differential equations for a 2-dimensional
vector (x, y), where y := x′/ak. The resulting system is

x′ = aky, y′ = −akx (tk−1 ≤ t < tk; k = 1, 2, . . . ). (7.hat)

One has to be careful defining what it means that a function t 7→ (x(t), y(t)) is a
solution of (7.hat) on the interval [0,∞). The function t 7→ x′(t) = aky(t) has to be
continuous, so we require that the function t 7→ y(t) is continuous to the right for
all t ≥ 0 and satisfies aky(tk − 0) = ak+1y(tk) for k = 1, 2, . . . , where y(tk − 0)
denotes the left-hand side limit of y at tk. Accordingly, the system of first order
differential equations for (x, y) equivalent with (6.hat) is

x′ = aky, y′ = −akx (tk−1 ≤ t < tk)

y(tk) =
ak
ak+1

y(tk − 0), k = 1, 2, . . . .
(8.hat)

It is easy to see that introducing the polar coordinates (r, ϕ) by the equations
x = r cosϕ, y = r sinϕ, we can rewrite system (7.hat) into the form

r′ = 0, ϕ′ = −ak (tk−1 ≤ t < tk, k = 1, 2, . . . ).

So, system (8.hat) turns the plane uniformly around the origin for t ∈ [tk−1, tk), and
then contracts it along the y-axis by ak/ak+1 at t = tk. Introduce the notations

τk := tk − tk−1, ϕk := akτk, αk :=
ak
ak+1

,

Tk :=
(

1 0
0 αk

)(
cosϕk sinϕk
− sinϕk cosϕk

)
, k = 1, 2, . . . ; T0 :=

(
1 0
0 1

)
.

Then from (8.hat) we obtain

ξk :=
(
x(tk)
y(tk)

)
= TkTk−1 . . . T2T1

(
x(0)
y(0)

)
∈ R2, k = 0, 1, 2, . . . . (9.hat)

Since αk ≤ 1, k = 1, 2 . . . , for every solution t 7→ (x(t), y(t)) the limit

ω := lim
t→∞

(x2(t) + y2(t)) = lim
k→∞

‖ξk‖2 (10.hat)

exists and is finite, where ‖ · ‖ denotes the Euclidean norm in R2.
Suppose that τ1, τ2, . . . , τk, . . . are totally independent random variables uni-

formly distributed on interval [0, 1]. Limit ω is a function of the sequqnce {τk}∞k=1,
so it is also random. Now we introduce the probability space where ω can be
defined as a random variable.

For every natural number n, let Pn = (Ωn,An, µn) be the probability space
with Ωn :=

∏n
k=1[0, 1], the class An of Lebesgue measurable subsets of Ωn, and

the Lebesgue measure µn in Ωn. By the Fundamental Theorem of Kolmogorov [4]
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there exists the infinite product probability space P = (Ω :=
∏∞
k=1[0, 1],A, µ),

having the following property:

µ

(
H ×

∞∏
k=n+1

[0, 1]
)

= µn(H) for every H ∈ An. (11.hat)

Limit ω defined by (10.hat) is a random variable on probability space P . Our purpose
is to determine the probability

P(ω = 0 for all ξ0 ∈ R2).

Obviously, the event (ω = 0 for all ξ0 ∈ R2) is independent of the choices {τk}nk=1

for every finite n. By Kolmogorov’s Zero-Or-One Law, the probability of such an
event equals either zero or one. The following theorems are in accordance with this
law.

Theorem 2. If limk→∞ ak = ∞, then it is almost sure (i.e., it is an event of
probability 1 in probability space P) that

lim
t→∞

(
x2(t) +

(x′(t))2

a2(t)

)
= 0

for all solutions of equation (6.hat).

Corollary 3. If limk→∞ ak = ∞, then it is almost sure (i.e., it is an event of
probability 1 in probability space P) that

lim
t→∞

x(t) = 0

for all solutions of equation (6.hat).

Theorem 4. If limk→∞ ak <∞, then

lim
t→∞

(
x2(t) +

(x′(t))2

a2(t)

)
> 0

for every non-trivial solution x of equation (6.hat).

Corollary 5. If limk→∞ ak < ∞, then it is an impossible event in probability
space P that there exists a non-trivial solution x of equation (6.hat) with

lim
t→∞

x(t) = 0.
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3 Proofs

3.1 Proof of Theorem 2

Let (x(0), y(0)) ∈ R2 be fixed, and consider the solution of equation (8.hat) starting
from this point. If 〈·, ·〉 denotes the scalar product in R2, then for a fixed k ≥ 1 we
have

‖ξk‖2 = 〈ξk, ξk〉 = 〈Tkξk−1, Tkξk−1〉 = 〈T ∗kTkξk−1, ξk−1〉 ≤ Λk‖ξk−1‖2,

where T ∗k denotes the transposed of matrix Tk, and Λk denotes the greater eigen-
value of the symmetric matrix T ∗kTk. The random variables ξ1, ξ2, . . . , ξk are in-
dependent; consequently, for the expected values we obtain the inequality

E(‖ξk‖2) ≤ E(Λk)E(‖ξk−1‖2). (12.hat)

Now we compute E(Λk). First we determine the expected value of matrix T ∗k Tk:

E(T ∗kTk) =
∫ 1

0

(
cos akτ − sinakτ
sin akτ cos akτ

)(
1 0
0 α2

k

)(
cos akτ sin akτ
− sinakτ cos akτ

)
dτ

=
∫ 1

0

cos2 akτdτ

(
1 0
0 α2

k

)
+
∫ 1

0

sin2 akτdτ

(
α2
k 0

0 1

)
+
∫ 1

0

sin akτ cos akτdτ
(

0 α2
k − 1

α2
k − 1 0

)
=

1 + α2
k

2

(
1 0
0 1

)
+

sin 2ak
4ak

(1− α2
k)
(

1 0
0 −1

)
+

sin2 ak
2ak

(α2
k − 1)

(
0 1
1 0

)
.

It is easy to check that the greater eigenvalue of a symmetric matrix (dik)2
i,k=1

is determined by the formula

d11 + d22 +
√

(d11 − d22)2 + (2d12)2

2
.

Λk is the greater eigenvalue of matrix E(T ∗kTk); therefore,

Λk =
1
2

(
1 + α2

k + (1− α2
k)
∣∣∣ sin ak
ak

∣∣∣) . (13.hat)

Applying inequality (12.hat) for k = 1, 2, . . . we obtain the estimate

E(‖ξn‖2) ≤
( n∏
k=1

Λk

)
‖ξ0‖2. (14.hat)
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Now we prove
∞∏
k=1

Λk = 0. (15.hat)

This assertion is equivalent with
∞∑
k=1

ln
[
1− 1− α2

k

2

(
1−

∣∣∣ sin ak
ak

∣∣∣)] = −∞.

This is obviously satisfied if lim infk→∞ αk < 1. If limk→∞ αk = 1, then it is
enough to show that

∞∑
k=1

(1− α2
k)
(

1−
∣∣∣ sinak
ak

∣∣∣) =∞,

i.e.,
∑∞

k=1(1− αk) =∞. But this is equivalent with
∑∞

k=1 lnαk = −∞, i.e.,

lim
n→∞

n∏
k=1

αk = lim
n→∞

a0

an+1
= 0,

which was assumed.
From (14.hat) and (15.hat) it follows that limn→∞E(‖ξn‖2) = 0. Then by Fatou’s

Lemma [4] and property (11.hat) we have

E(ω) = E( lim
n→∞

(‖ξn‖2) =
∫
Ω

lim
n→∞

(‖ξn‖2 dµ ≤ lim
n→∞

∫
Ω

‖ξn‖2 dµ

= lim
n→∞

∫
Ωn

‖ξn‖2 dµn = lim
n→∞

E(‖ξn‖2) = 0.

We have proved that for every fixed individual solution of (6.hat) there holds
P(ω = 0). Since all solutions of the linear equation (6.hat) can be represented as
linear combinations of two fixed linearly independent solutions of the equation,
this implies that

P(ω = 0 for all solutions of (6.hat)) = 0,
which completes the proof of Theorem 2.

3.2 Proof of Theorem 4

Suppose that limn→∞ an =: a∞ <∞. From the representation (9.hat) and the defini-
tion of Tk we have

‖ξk‖2 = 〈ξk, ξk〉 = 〈Tkξk−1, Tkξk−1〉 = 〈T ∗k Tkξk−1, ξk−1〉 ≥ α2
k‖ξk‖2.

Iterating this estimate we obtain the inequality

ω = lim
n→∞

‖ξn‖2 ≥
(

lim
n→∞

n∏
k=1

α2
k

)
‖ξ0‖2 =

(
lim
n→∞

a2
0

a2
n+1

)
‖ξ0‖2 =

a2
0

a2
∞
‖ξ0‖2 > 0,

whenever ‖ξ0‖2 > 0. This completes the proof.
The proofs of Corollaries 3 and 5 are trivial, so they are omitted.
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1 Introduction

The present paper is aimed at investigation of systems with deviating argument
of delay type. The investigation is carried out using the second Lyapunov method.
The following differential system with delay is considered

ẋ(t) = f(x(t), x(t − τ)), τ > 0 . (1.khu)

Suppose that x(t) ≡ 0 is a solution of system (1.khu), i.e. f(0, 0) ≡ 0.
As opposed to ODE’s, for which the Cauchy problem consists of finding a

solution passing through the given point, equations with delay have an initial
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function. Thus, for (1.khu) the Cauchy problem consists of finding a solution x(t) that
satisfies the initial condition x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, where ϕ(t) is a given
initial function. Therefore, initial perturbations of the function ϕ(t), −τ ≤ t ≤ 0
are required to be small according to the definition of stability.

Definition 1. The solution x(t) ≡ 0 of system (1.khu) is called stable according to
Lyapunov if for an arbitrary ε > 0 there exists such δ(ε) > 0 that |x(t)| < ε when
t > 0 if ‖x(0)‖τ < δ(ε). Here ‖x(0)‖τ = max−τ≤s≤0 {|x(s)|}.

Definition 2. The solution x(t) ≡ 0 is called asymptotically stable if it is stable
and the following condition holds

lim
t→∞

|x(t)| = 0 .

Definition 3. The solution x(t) ≡ 0 is exponentially stable if there exist such
constants N > 0 and γ > 0 that for an arbitrary solution of the system the
following estimate holds

|x(t)| ≤ N‖x(0)‖τ exp{−γt}, t ≥ 0 .

System (1.khu) cannot provide precise description of real objects. By using differen-
tial equations it is usually impossible to take into account all different factors that
influence the system. Therefore, it is appropriate to consider a perturbed system
in the form

ẋ(t) = f(x(t), x(t − τ)) + q(x(t), x(t − τ)) . (2.khu)

The following definitions of stability account for the influence of perturbation.

Definition 4. The solution x(t) ≡ 0 of system (1.khu) is called stable under constantly
acting perturbations when for an arbitrary ε > 0 there exist δ(ε) > 0 and η(ε) > 0
such that for an arbitrary solution xQ(t) of (2.khu) the condition |xQ(t)| < ε when
t > 0 holds if ‖xQ(0)‖τ < δ(ε) and |q(xQ(t), xQ(t− τ))| < η(ε).

Differential equations with delay (1.khu) have many things in common with cor-
responding equations without delay. Therefore, many results from the movement
stability theory for systems without delay were extended and adjusted to the equa-
tions in the form (1.khu). One of the basic methods for investigation of system stability
is the second Lyapunov method. Its application to systems with delay has been
developed in two directions:

1. The first direction implies use of finite dimensional functions with an ad-
ditional condition for the derivative. This is a so called B. S. Razumikhin condi-
tion [1,4].

2. The second method is a Lyapunov-Krasovskiy functional method, which has
had more comprehensive theoretical ground [2,3,4].

Geometrical meaning of the Lyapunov function method involves finding the
system of closed surfaces that contain the origin and are converging to it. The
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vector field of motion equations should be directed inside the areas limited by
such surfaces. If a solution gets into such area limited by the surface, then it will
never leave it again. These surfaces form level surfaces of a Lyapunov function.

For systems without argument deviation the speed vector on level surfaces is
determined only by the present moment of time, i.e. by the point lying on the
given surface. The speed in equations with deviating argument depends on the
previous history as well; i.e. it depends on the point x(t − τ), which is usually
hard to find. Therefore, it is logical to require negative definiteness of Lyapunov
function derivative uniformly by the variable x(t − τ). However, this leads to
an excessively sufficient character of the theorems, which in turn makes them
inefficient for applications. Because of this, B. S. Razumikhin suggested to consider
a previous history x(t− τ) to lie inside the level surface v(x, t) = α in order to be
able to estimate the full derivative along system solutions. The standard technique
of proving Lyapunov theorems on stability made such assumption both natural and
logical. This led to an additional Razumikhin condition for the Lyapunov theorems,
which included estimation of the character of Lyapunov function derivative on the
curve that satisfies [1]

v(s, x(s)) < v(t, x(t)), s < t.

The second approach was introduced by N. N. Krasovskiy. He suggested to con-
sider sections x(t+s), −τ ≤ s ≤ 0 of the trajectory at each fixed time t > 0 instead
of functions with finite number of variables. Definitions of positive definiteness of
corresponding functionals and of their derivatives on system solutions were intro-
duced as well. Main Lyapunov theorems on stability (as well as asymptotic and
exponential stability) were stated in terms of functionals and their derivatives [2].

Both methods are thought to have certain advantages and disadvantages. How-
ever, both methods have capacity for existence and further development according
to opinions of many scientists.

2 Lyapunov-Krasovskiy Functional Method

Let us consider the basic idea of Lyapunov-Krasovskiy functional method. De-
note vector-function defined on the interval −τ ≤ s ≤ 0 for each fixed t > 0 by
x(t + s). The functional V [x(t), t] is determined on the vector-functions x(t + s),
−τ ≤ s ≤ 0. Using introduced functionals N. N. Krasovskiy obtained theorems on
stability and asymptotic stability of zero solution of system (1.khu) with delay, which
was analogous to the well known Lyapunov theorems.

In the theorems on stability (asymptotic stability, unstability) stated in terms
of Lyapunov-Krasovskiy functional the following value (called right upper deriva-
tive number)

D̄+V = lim
∆t→+0

sup
1
∆t
{V [x(t+ ∆t), t+∆t]− V [x(t), t]}

played role of a function derivative dv/dt along solutions x(t) of a system with
delay.
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We should draw our attention to the two steps in development of the Lya-
punov-Krasovskiy functional method. The first step included development of a
theoretical ground for the method. The second step used theoretical results to
make theorems more applicable to construction of the functionals. Let us consider
these two stages in more details.

The first step was to formulate theorems on stability and asymptotic stability,
and invert them. All conditions of the theorems were formulated in terms of a
uniform norm

‖x(t)‖τ = sup
−τ≤s≤0

{|x(t+ s)|}

for a zero solution of system (1.khu) with delay, which was similar to the well known
Lyapunov’s theorem.

The main results are as follows

Theorem 5 (Stability by Lyapunov). Let differential equations of system (1.khu)
be such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(‖x(t)‖τ ) ≤ V [x(t), t],
2. D̄+V [x(t), t] ≤ 0.

Here a(r) is a continuous non-decreasing function positive for all r > 0 and
a(0) = 0. Then the zero solution x(t) ≡ 0 of system (1.khu) is stable according to
Lyapunov’s definition.

Theorem 6 (Asymptotic stability). Let differential equations of system (1.khu) be
such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(‖x(t)‖τ ) ≤ V [x(t), t] ≤ b(‖x(t)‖τ ),
2. D̄+V [x(t), t] ≤ −c(‖x(t)‖τ ).

Here a(r), b(r), c(r) are continuous non-decreasing functions positive for all r > 0
and equal to zero at r = 0. Then the zero solution x(t) ≡ 0 of system (1.khu) is
asymptotically stable.

It should be noted that the conditions of the above formulated theorems use
the uniform metric, which essentially limits the number of differential systems for
which functionals can be constructed in an explicit form. For example, for a linear
stationary system

ẋ(t) = Ax(t) +Bx(t− τ) (3.khu)

with constant matrices A and B and a functional in a quadratic form

V [x(t)] = xT (t)Hx(t) +
∫ 0

−τ
xT (t+ s)Gx(t+ s)ds,

where H,G are constant positive definite matrices it is impossible to find functions
a(r) and c(r) that would satisfy theorem’s conditions.

Therefore, the second step formulated stability theorems in terms of such
norms, that are more convenient for constructing the functionals.
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Theorem 7 (Asymptotic stability). Let differential equations of system (1.khu) be
such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(|x(t)|) ≤ V [x(t), t] ≤ b(‖x(t)‖τ ),
2. D̄+V [x(t), t] ≤ −c(|x(t)|).

Then the zero solution x(t) ≡ 0 of system (1.khu) is asymptotically stable.

2.1 Quadratic Functionals in a General Form

Let us consider constructive methods for construction of Lyapunov-Krasovskiy
functionals for linear stationary systems with delay (3.khu). It is obvious that the
natural form of a functional is a quadratic one, the same as for systems without
delay. Yu. M. Repin constructed quadratic functionals in the following general
form [5]

V [x(t)] = xT (t)Hx(t) +
∫ 0

−τ
xT (t+ s)K(s)x(t)dt

+
∫ 0

−τ
xT (t+ s)G(s)x(t + s)ds

+
∫ 0

−τ

∫ 0

−τ
xT (t+ s1)M(s1, s2)x(t+ s2)ds1ds2 . (4.khu)

Here H is a constant quadratic n×n positive definite matrix; K(s), G(s), M(s1, s2)
are continuous matrices, and H and M(s1, s2) are symmetric matrices. Functionals
are chosen in such a way that

d

dt
V [x(t)] = W [x(t)],

where

W [x(t)] = xT (t)Qx(t) + xT (t− τ)Rx(t) + xT (t− τ)Sx(t − τ)

+
∫ 0

−τ
xT (t+ s)D(s)x(t)ds +

∫ 0

−τ
xT (t+ s)E(s)x(t + s)ds (5.khu)

+
∫ 0

−τ

∫ 0

−τ
xT (t+ s1)F (s1, s2)x(t+ s2)ds1ds2

for given matrices Q,R, S,D(s), E(s), F (s1, s2). These matrices satisfy conditions
ensuring negative definiteness of W [x(s)] on system’s solutions.

By taking a derivative of the functional (4.khu) we obtain a system of algebraic
equations that consists of ordinary matrix differential equations and partial differ-
ential equations

HA+ATH +
1
2

[K(0) +KT (0)] +G(0) = Q ,
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ATK(s)− d

ds
K(s) +M(s, 0) = D(s), − d

ds
G(s) = E(s),

∂M(s1, s2)
∂s1

+
∂M(s1, s2)

∂s2
= −F (s1, s2), (6.khu)

2HB −K(−τ) = R, BTK(s)−M(−τ, s) = 0 .

In some cases solutions of system (3.khu) can be found, however in a general case the
question of existence of a solution for such system cannot be addressed.

Simplified quadratic functional was proposed in the form [6]

V [x(t)] = xT (t)H(0)x(t) + 2xT (t)
∫ t

t−τ
H(s− t+ τ)Bx(s)ds

+
∫ t

t−τ

∫ t

t−τ
xT (s1)BTH(s2 − s1)Bx(s2)ds1ds2 .

Theorem 8. Let there exist a matrix function H(t), a solution of the matrix
differential equation

Ḧ(t) = AT Ḣ(t)− Ḣ(t)A+ATH(t)A−BTH(t)B, t ≥ 0,

and let it satisfy

1. Ḣ(t) = ATH(t) +BTH(t− τ), t ≥ 0,
2. H(t) = HT (−t), H(0) = HT (0),
3. ATH(0) +H(0)A+BTHT (τ) +H(τ)B = −C ,

where C is a positive definite matrix. If H(t) is such that the functional V [x(t)]
satisfies bilateral estimates

a(|x(t)|) ≤ V [x(t)] ≤ b1(|x(t)|) + b2(‖x(t)‖τ ),

then the system is asymptotically stable.

The important fact about this theorem is that the theorem can be reversed.

Theorem 9. Let a linear system with a delay be asymptotically stable. Then there
exists a quadratic functional V [x(t)]. Let a matrix function H(t) be a solution of
the ordinary differential equation

Ḧ(t) = AT Ḣ(t)− Ḣ(t)A+ATH(t)A−BTH(t)B, t ≥ 0,

and let it satisfy

1. Ḣ(t) = ATH(t) +BTH(t− τ), t ≥ 0,
2. H(t) = HT (−t), H(0) = HT (0),



Differential Equations with Deviations 133

3. ATH(0) +H(0)A+BTHT (τ) +H(τ)B = −C ,

where C is a positive definite matrix. Then on solutions x(t) of the system the
functional V [x(t)] satisfies bilateral estimates

a(|x(t)|) ≤ V [x(t)] ≤ b1(|x(t)|) + b2(‖x(t)‖τ ),

and its full derivative satisfies

V̇ [x(t)] ≤ −λmin(C)|x(t)|2 .

If we consider a functional in the form

V [x(t)] = xT (t)Hx(t) +
∫ 0

−τ
xT (t+ s)Gx(t+ s)ds,

then for an asymptotic stability of system (3.khu) it is sufficient that such positive
matrices H and G exist that the matrix

C[G,H ] =
[
−ATH −HA−G −HB

−BTH G

]
is also positive definite.

Let us transform the problem of finding matrices H and G into an optimiza-
tional problem [7,8]

(G0, H0) = arg inf
(G,H)∈L̄1

G×L̄1
H

{ϕ0(G,H)},

where ϕ0(G,H) = −λmin[C(G,H)], λmin(•) is minimal eigenvalue of the matrix
C[G,H ]; L̄1

G, L̄
1
H are sets of positive definite matrices G and H that lie within a

unit circle.
The Lagrange function is constructed in the form

L(G,H, u) =ϕ0(G,H) + u1ϕ1(G) + u2ϕ2(G) + u3ϕ3(H)

+ u4ϕ4(H), ui ≥ 0, i = 1, 4;
ϕ1(G) =λmax(G)− 1, ϕ2(G) = −λmin(G),
ϕ3(H) =λmax(H)− 1, ϕ4(H) = −λmin(H) .

Theorem 10. For a function ϕ0(G,H) to reach its minimal value, it is necessary
and sufficient for the point (G0, H0, u0), uT0 = (u0

1, u
0
2, u

0
3, u

0
4) to be a saddle point

of the Lagrange function.

The following theorem provides constructive conditions for finding matrices G0

and H0 such that the Lyapunov-Krasovskiy functional from a given class resolves
a stability question.
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Theorem 11. The Lyapunov-Krasovskiy functional with matrices G0, H0 resolves
a problem of stability within a given class of functionals (i.e. it is the optimal
functional in a given class) if and only if the vector uT0 = (u0

1, u
0
2, u

0
3, u

0
4) exists

such that

1. A gradient set R0
L of the Lagrange function L(G,H, u) on variables (G,H) at

the point G0, H0, u0 contains a pair of zero matrices, i.e. (θ, θ) ∈ R0
L.

2. Conditions of additional non-stiffness hold:

u0
1ϕ1(G0) = 0, u0

2ϕ2(G0) = 0, u0
3ϕ3(H0) = 0, u0

4ϕ4(H0) = 0 .

3 Lyapunov Function Method with Razumikhin Condition

Proofs of main Lyapunov’s theorems are based on estimate of a speed vector
direction at the moment x(t) on level surfaces v(x, t) = α of the Lyapunov function
v(x, t). In other words, the sign of v̇(x, t) is studied, where

dv(x(t), t)
dt

=
∂v(x(t), t)

∂t
+ gradTx v(x(t), t)f(x(t), x(t − τ)) . (7.khu)

For systems with argument deviation this expression is a functional that de-
pends on the previous history x(t − τ). On the basis of the stability definition
we can assume that points lie inside the area limited by level surfaces before
points of the previous history leave the level surfaces. In other words, the condi-
tion v(x(t − τ),t− τ) < v(x(t), t) holds.

B. S. Razumikhin proposed to find the estimate of functional (7.khu) not for all
curves that correspond to solutions x(t) of the system, but only for those that
leave areas limited by level surfaces, i.e. v(x(s), s) < v(x(t), t), s < t.

Theorem 12. Let for system (1.khu) a continuously differentiable function v(x, t)
exist and satisfy the conditions:

1. a(|x|) ≤ v(x, t),
2. dv(x(t))

dt ≤ 0 for curves x(t) that satisfy v(x(s), s) < v(x(t), t), s < t.

Here a(r) is a continuous non-decreasing function positive for all r > 0 and
a(0) = 0. Then the zero solution x(t) ≡ 0 of the system (1.khu) is stable according to
Lyapunov.

Theorem 13. Let for the system (1.khu) a continuously differentiable function v(x, t)
exist and satisfy the conditions:

1. a(|x|) ≤ v(x, t) ≤ b(|x|),
2. dv(x(t))

dt ≤ −c(|x(t)|) for curves x(t) that satisfy v(x(s), s) < v(x(t), t), s < t.

Here a(r), b(r), c(r) are continuous non-decreasing functions positive for all r > 0
and equal to zero at r = 0. Then the zero solution x(t) ≡ 0 of the system (1.khu) is
asymptotically stable.
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3.1 Asymptotic Stability of Systems with One Delay

Suppose that the system without deviation (3.khu)

ẋ(t) = (A+B)x(t) (8.khu)

is asymptotically stable. Stability investigation is performed using Lyapunov func-
tion in the form v(x) = xTHx, where H is a solution of the equation

(A+B)TH +H(A+B) = −C . (9.khu)

Here C is an arbitrary positive definite matrix.
Denote ϕ(H) = λmax(H)/λmin(H), where λmax(•), λmin(•) are maximal and

minimal eigenvalues of the matrix H [9,10].

Theorem 14. Let the system (8.khu) be asymptotically stable. If there exists a positive
definite matrix H, which is a solution of (9.khu), and if the inequality

λmin(C) − 2|HB|(1 +
√
ϕ(H) ) > 0 (10.khu)

is satisfied, then the system (3.khu) is asymptotically stable for an arbitrary τ > 0.
Moreover, for an arbitrary solution x(t) of the system (3.khu) the condition |x(t)| < ε,
t > 0 holds only if ‖x(0)‖τ < δ(ε), where δ(ε) = ε/

√
ϕ(H) .

Conditions of the Theorem 14 provide exponential decay of solutions of the system
(3.khu).

Theorem 15. Let the system (8.khu) be asymptotically stable. If a positive definite
matrix H, which is a solution of the equation (9.khu), exists and if an inequality (10.khu)
holds, then for solutions x(t) of the system (3.khu) the following inequality holds

|x(t)| <
√
ϕ(H) ‖x(0)‖τ exp{−γt/2}, t > 0,

where

γ =

{
2
τ

ln−1

[
λmin(C) − 2|HB|

2|HB|
√
ϕ(H)

]
+

λmax(H)
λmin(C)− 2|HB|(1 +

√
ϕ(H) )

}−1

.

Let the system (8.khu) be asymptotically stable, but there is no suchH that satisfies
the inequality (10.khu).

Theorem 16. Let the system (8.khu) be asymptotically stable. If τ < τ0, where

τ0 =
λmin(C)

2(|A|+ |B|)|HB|
√
ϕ(H)

, (11.khu)

then the system (3.khu) is also asymptotically stable. Also |x(t)| < ε, t > 0, only if
‖x(0)‖τ < δ(ε, τ), where

δ(ε, τ) = (1 + |B|τ)−1 exp{−|A|τ}ε/
√
ϕ(H) .
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Theorem 17. Let the system (8.khu) be asymptotically stable. If τ < τ0, where τ0 is
defined in (11.khu), then the following inequality holds

|x(t)| <
{√

ϕ(H) (1 + |B|τ)‖x(0)‖τ exp{|A|τ}, 0 ≤ t ≤ τ,√
ϕ(H) (1 + |B|τ)‖x(0)‖τ exp{|A|τ − γt/2}, t > τ ,

where

γ =
(

1− τ

τ0

)[λmax(H)
λmin(C)

− (1− τ/τ0)τ
ln(τ/τ0)

]−1

.

3.2 Estimation of Delay Influence on System Solution

A system in the form

ẋ(t) = Ax(t) +Bx(t− τ) +Q(x(t), x(t − τ)) (12.khu)

is called “perturbed” to (3.khu) [11].

Theorem 18. Let the system (8.khu) be asymptotically stable and let there exist a
positive definite matrix H such that it is a solution of the equation (9.khu) and the
inequality (10.khu) holds. Then for an arbitrary solution xQ(t) of the system (12.khu) the
following holds: |xQ(t)| < ε, t > 0, if ‖xQ(0)‖τ < δ(ε) and |Q(xQ(t), xQ(t −
τ))| < η(ε), where

δ(ε) = ε/
√
ϕ(H) , η(ε) =

λmin(C) − 2|HB|(1 +
√
ϕ(H) )

2|H |
√
ϕ(H)

ε .

Let there be no such matrix H that satisfies the inequality (10.khu).

Theorem 19. Let the system (8.khu) be asymptotically stable. Then if τ < τ0, where
τ0 is defined in (11.khu), the following holds for a solution xQ(t) of the system (12.khu):
|xQ(t)| < ε, t > 0, only if ‖xQ(0)‖ < δ(ε, τ), and |Q(xQ(t), xQ(t− τ)| < η(ε, τ),
where

δ(ε, τ) = (1 − ζ)(1 + |B|τ)−1 exp{−|A|τ}ε/
√
ϕ(H) ,

η(ε, τ) = min
{
ζ

τ
e−|A|τ ,

λmin(C)(1 − τ/τ0)
2(|HB|τ + |H |)

}
ε√
ϕ(H)

,

where 0 < ζ < 1 is an arbitrary fixed constant.

Let us estimate the maximum deviation τ = τmax, such that the divergence
|x(t) − x0(t)| < ε, t > 0 holds. Denote x0(t) to be a solution (8.khu), and

q = |B(A+B)||x0(0)| .
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Theorem 20. Let the system (8.khu) be asymptotically stable, and let there exist H
— a solution of (9.khu) — satisfying (10.khu). Then for an arbitrary ε > 0, δ < ε/

√
ϕ(H)

the following is true: |x(t)− x0(t)| < ε, t > 0 only when ‖x(0)− x0(0)‖τ < δ, and
τ ≤ τmax, where

τmax =
λmin(C) − 2|HB|(1 +

√
ϕ(H) )

2|H |qϕ(H)
ε .

Let us introduce the following notations

M1 = 1− δ
√
ϕ(H) /ε, M2 = |A|+ |B|

√
ϕ(H) δ/ε,

N1 = ελmin(C)/ϕ(H)q, N2 = |H |+ ελmin(C)/2ϕ(H)qτ0.

Theorem 21. Let the system (8.khu) be asymptotically stable. Then for any ε > 0
and δ < ε/

√
ϕ(H) we have |x(t)− x0(t)| < ε, t > 0 only if ‖x(0)− x0(0)‖τ < δ

and τ ≤ τmax, where

τmax = min

{
2M1

[√
M2

2 + 4M1ϕ(H)q/ε+M2

]−1

,

N1

[√
N2

2 + 2N1|HB|+N2

]−1
}

.

3.3 Absolute Stability of “Direct” Control Systems with Delay

Consider the following system{
ẋ(t) = Ax(t) +Bx(t− τ) + b0f(σ[t]) + b1f(σ[t− τ ]),
σ[t] = cT0 x(t) + cT1 x(t − τ) .

(13.khu)

Function f(σ) satisfies the Lipshitz condition with a constant L and a sector (0, k);
i.e.

f(σ)(Kσ − f(σ)) > 0 . (14.khu)

Lyapunov function is used in the form

v(x) = xTHx+ β

∫ σ(x)

0

f(ξ)dξ, σ(x) = cTx, c = c0 + c1 .

Matrix H is found from the equation (9.khu). For the function v(x) the following
condition holds:

λmin(H̃)|x|2 ≤ v(x) ≤ λmin(H̃)|x|2,



138 Denis Khusainov

where

λmin(H̃) =

{
λmin(H), β ≥ 0,
λmin(H + βkccT /2), β < 0 ;

λmax(H̃) =

{
λmax(H + βkccT /2), β ≥ 0,
λmax(H), β < 0 .

Definition 22. The system (13.khu) is absolutely stable if the solution x(t) ≡ 0 is
stable for an arbitrary function f(σ) that satisfies (14.khu).

Denote

ϕ(H̃) = λmax(H̃)/λmin(H̃), p1 = 2(|HB|+ L|Hb0||c1|+ L|Hb1||c0|),

p2 = |βcTB|+ |βcT b0|L|c1|+ |βcT b1|L|c0|, b = b0 + b1,

q1 = 2L|Hb1||c1|, q2 = |βcT b1|L1|c1|, c = c0 + c1,

C̃1 =



−[(A+B)TH +H(A+ B)]
... −[Hb+ (β(A +B)T + E)c/2]

−(p1 + q1 + (p2 + q2)/2ξ2)
...

×(1 +
√
ϕ(H̃))E

...

· · · · · · · · ·

−[Hb+ (β(A +B)T + E)c/2]T
... 1/k − βbT c− (p2 + q2)ξ2

... ×(1 +
√
ϕ(H̃))/2


.

Theorem 23. Let matrix H and a parameter β be such that λmin(H̃) > 0, and let
there exist such ξ that C̃1 is positive definite. Then the system (13.khu) is absolutely
stable for any τ > 0. In such case |x(t)| < ε, t > 0 only when ‖x(0)‖τ < δ(ε),

where δ(ε) = ε/
√
ϕ(H̃).

When conditions of the theorem hold, solutions of the system decay.

Theorem 24. Let matrix H and a parameter β be such that λmin(H̃) > 0 and
C̃1 exists and is positive definite. Then for solutions x(t) of the system (13.khu) the
following holds

|x(t)| <
√
ϕ(H̃)‖x(0)‖2τ exp{−γt/2}, t > 0,
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where

γ = min

{
γ1λmin(C̃1)

γ1λmax(H̃) + λmin(C̃1)
, γ2

}
,

γ1 =
2
τ

ln

{[√
[(p1 + p2) + 2(q1 + q2)]2 + 4λmin(C̃1)(q1 + q2)/

√
ϕ(H̃)

− (p1 + p2)

]
/2(q1 + q2)

}
,

Introduce the following designations

M(0) = |A|+ |B| |K|(|b0|+ |b1|)(|c0|+ |c1|),
N(0) = p1 + 2q1 +

√
(p1 + 2q1)2 + (p2 + 2q2)2,

C̃2 =

 −[(A+B)TH +H(A+ B)]
... −[Hb+ (β(A +B)T + E)c/2]

· · · · · · · · ·

−[Hb+ (β(A +B)T + E)c/2]T
... 1/k − βbT c

 .

Theorem 25 ([13]). Let matrix H and a parameter β be such that λmax(H̃) > 0,
and let C̃2 be positive definite. Then, when τ < τ0, where

τ0 =
2λmax(C̃2)

M(0)N(0)
√
ϕ(H̃)

, (15.khu)

the system (13.khu) is absolutely stable. Moreover, |x(t)| < ε, t > 0 if ‖x(0)‖2τ <
δ(ε, τ), where

δ(ε, τ) = [(1 + R̄τ)eL̄τ ]−2ε/

√
ϕ(H̃)

Theorem 26. Let matrix H and a parameter β be such that λmin(H̃) > 0 and
C̃2 is positive definite. Then if τ < τ0, where τ0 is defined in (15.khu), the following
inequality holds for solutions x(t) of the system (13.khu)

|x(t)| <


√
ϕ(H̃)‖x(0)‖2τ (1 +Rτ)2 exp{2L̄τ}, 0 ≤ t ≤ 2τ,√
ϕ(H̃)‖x(0)‖2τ (1 +Rτ)2 exp{2L̄τ − γt/2}, τ > 2τ,

where

γ =
γ1λmin(C̃2)(1− τ/τ0)

γ1λmax(H̃) + λmin(C̃2)(1 − τ/τ0)
,
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and γ1 is a root of the equation

1− [M(γ)N(γ)][M(0)N(0)]−1eγτ/2 = 0,

M(γ) = |A|+ |B|eγτ/2 +K(|b0|+ |b1|eγτ/2)(|c0|+ |c1|eγτ/2),

N(γ) = (p1 + 2q1eγτ/2) +
√

(p1 + 2q1eγτ/2)2 + (p2 + 2q2eγτ/2)2,

R̄ = |B|+K(|b0||c1|+ |b1||c0|+ |b1||c1|),
L̄ = |A|+K|b0||c0| .

3.4 Differential Systems with a Quadratic Right-Hand Side

Difference-differential equation with a quadratic right-hand side

ẋ(t) = Ax(t) +Bx(t− τ) +XT (t)D1x(t) +XT (t)D2x(t− τ)
+X(t− τ)D3x(t− τ) (16.khu)

recently became very popular. Here X(t), Di, i = 1, 3 are rectangular n2 × n ma-
trices in the form

X(t) = {X1(t), X2(t), . . . , Xn(t)}
DT
j = {D1j, D2j , . . . , Dnj} .

Here Xk(t), where k = 1, n, are quadratic matrices that have a vector x(t) =
(x1(t), x2(t), . . . , xn(t))T in place of a k th column, and other elements are zero.
Dij are symmetric matrices that define quadratic ith rows.

Theorem 27. Let there exist such a matrix H that (10.khu) holds. Then the solution
x(t) ≡ 0 of the system (3.khu) is asymptotically stable at any τ > 0. The sphere UR
that lies in the area of asymptotic stability has the radius

R =
λmin(C)− 2|HB|(1 +

√
ϕ(H) )

2λmax(H)
∑3

i=1 |Di|(
√
ϕ(H) )i

.

For solutions x(t) from the sphere UR the following convergence estimate holds:

|x(t)| < R
√
ϕ(H) ‖x(0)‖τ exp{−γt/2}

R − ‖x(0)‖τ [1− exp{−γt/2}] , t > 0,

γ = [λmin(C)− 2|HB|(1 +
√
ϕ(H) )]/λmax(H) .

Theorem 28. Let the system (8.khu) be asymptotically stable. Then for τ < τ0, where
τ0 is denoted in (11.khu), solution x(t) ≡ 0 of the system (16.khu) will also be asymptoti-
cally stable. For such solutions x(t) that satisfy the condition ‖x(τ)‖τ < R̄ζ, 0 <
ζ < 1 the following convergence estimate holds:

|x(t)| ≤

‖x(t)‖τ , 0 ≤ t ≤ τ,
R̄ζ
√
ϕ(H) ‖x(τ)‖τ exp{−γt/2}

R̄ζ−‖x(τ)‖τ [1−exp{−γt/2}] , t > τ .
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Here

R̄ =
λmin(C)(1 − τ/τ0)

2
∑3
i=1

[
|HB||Di|(

√
ϕ(H) )3 + λmax(H)|Di|(

√
ϕ(H) )i

] ,
γ is a solution of a special equation.

3.5 Differential Systems with Rational Right-Hand Sides

Recently developed mathematical models of ordinary differential equations with
rational right-hand sides were found adequate for description of various models in
biology and medicine. The systems have the form [15,16]

ẋ(t) = [E +X(t)D1 +X(t− τ)D2]−1[Ax(t) +Bx(t− τ)]. (17.khu)

Theorem 29. Let there exist a symmetric positive definite matrix H that satisfies
(10.khu). Then the solution x(t) ≡ 0 of the system (17.khu) is asymptotically stable for an
arbitrary delay τ > 0. The asymptotic stability region contains the ball UR = {x :
|x| ≤ R}, where

R =
[λmin(C)− 2|HB|(1 +

√
ϕ(H) )]/

√
ϕ(H)

(|D1|+ |D2|
√
ϕ(H) )[[λmin(C)− 2|HB|(1 +

√
ϕ(H) )] + 2|H |(|A|+ |B|

√
ϕ(H) )]

.

Theorem 30. Let the system (8.khu) be asymptotically stable. Then for all τ < τ0,
where

τ0 =
λmin(C)(1 − ζ)3

2(|A|+ |B|)|H |
√
ϕ(H) [|B|+ (|D2||A1| − |D1||B|)Rζ]

.

Then the solution x(t) ≡ 0 of the system (17.khu) is asymptotically stable. The asymp-
totic stability region contains a ball with the radius

R = min

{
1

(|D1|+ |D2|)
√
ϕ(H)

,
λmin(C)/

√
ϕ(H)

[2|HB|+ λmin(C)]|D1 +D2|

}
.
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Abstract. In this paper we give a survey on the theory of quadratic func-
tionals. Particularly the relationships between positive definiteness and the
asymptotic behaviour of Riccati matrix differential equations, and between
the oscillation properties of linear Hamiltonian systems and Rayleigh’s
principle are demonstrated. Moreover, the main tools form control the-
ory (as e.g. characterization of strong observability), from the calculus of
variations (as e.g. field theory and Picone’s identity), and from matrix
analysis (as e.g. l’Hospital’s rule for matrices) are discussed.
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1 Introduction

This article presents a survey on the theory of quadratic functionals as described
in a recent book by W. Kratz [13]. This theory is based mainly on the work by
M. Morse and W. T. Reid (see [16] and [18]). We introduce the necessary notions
and formulate the central results, but without any proofs. The setup of the paper
is as follows.

In the next section we introduce the necessary notation and basic concepts,
namely: We consider quadratic functionals for state and control functions, which

http://www.mathematik.uni-ulm.de/m5/persons/kratz.html
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satisfy a linear differential system (called the equations of motion), and for which
the state function satisfies additionally some linear and homogeneous boundary
condition. Classical methods of the calculus of variations lead to a self-adjoint
eigenvalue problem consisting of a linear Hamiltonian system and boundary condi-
tions (including the corresponding Euler equation and the natural boundary con-
ditions). These eigenvalue problems contain e.g. the well-known Sturm-Liouville
problems. The study of oscillation properties of the Hamiltonian system requires
the concept of conjoined bases and their focal points, which includes in a certain
sense the basic notion of disconjugacy. Moreover, the central notions of controlla-
bility and strong observability (or observability with unknown inputs) from control
theory play a key role in the theory as well as Riccati matrix differential equations
corresponding to linear Hamiltonian systems.

In Section 3 we formulate the main results concerning the positivity of quad-
ratic functionals. Theorem 4 states a Reid Roundabout Theorem, which includes
e.g. the well-known Jacobi condition from the calculus of variations as a special
case. Theorem 5 concerns the positivity of a quadratic functional depending on
a parameter. It states essentially that the positivity of the functional for small
values of the parameter is equivalent to a certain asymptotic behaviour of the cor-
responding Riccati equation, and that it is also equivalent to strong observability
of the underlying linear system.

In Section 4 we present in Theorem 7 the central oscillation theorem for Hamil-
tonian systems. The next Theorem 9 states the basic properties of the correspond-
ing eigenvalue problem, i.e., existence of eigenvalues, Rayleigh’s principle, and the
expansion theorem.

Finally, we describe in Section 5 the main tools for the proofs. These tools in-
clude results from the calculus of variations (as e.g. Picone’s identity), from matrix
analysis (as e.g. properties of monotone matrix-valued functions), from linear con-
trol theory (as e.g. a canonical form for controllable systems), and from functional
analysis (Ehrling’s lemma). We formulate explicitly two basic results, namely a
substitute of l’Hospital’s rule for matrices in Theorem 10 and a characterization
of strong observability for time-dependent systems in Theorem 11.

2 Notation and basic concepts

First we introduce quadratic functionals

F(x) :=

b∫
a

{
xTCx+ uTBu

}
(t)dt+

(
−x(a)
x(b)

)T
S1

(
−x(a)
x(b)

)
, (1.kra)

and bilinear forms

〈x, y〉0 :=

b∫
a

{
xTC0y

}
(t)dt , 〈x, y〉 := 〈x, y〉0 +

(
−x(a)
x(b)

)T
S0

(
−y(a)
y(b)

)
, (2.kra)
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where x (or (x, u)) is (A,B)-admissible , i.e., the so-called equations of motion
ẋ = Ax + Bu hold on I := [a, b] for some control u with Bu ∈ Cs(I) (i.e., Bu is
piecewise continuous on I), and where it satisfies boundary conditions of the form(
−x(a)
x(b)

)
∈ V , we write x ∈ R̃, and where the same holds for y. Throughout we

impose the following assumptions on the given data:

(A) A(t), B(t), C(t), C0(t) are real n×n-matrix-valued functions, which are piece-
wise continuous on R, B(t), C(t), C0(t) are symmetric, and B(t), C0(t) are
non-negative definite (we write B(t) ≥ 0, C0(t) ≥ 0) for t ∈ R. V ⊂ R2n is
a subspace of R2n, S0 and S1 are real and symmetric 2n × 2n-matrices, and
S0 ≥ 0.

Let R2, S2 be 2n × 2n-matrices, such that V = Im RT2 and S2R
T
2 = 0,

rank (R2, S2) = 2n (see [13, Corollary 3.1.3]). We put

R1(λ) := R2(S1 − λS0) + S2 , R1 := R1(0) (3.kra)

for λ ∈ R. By Im, rank, ker we denote the image, rank, kernel of a matrix, and I
denotes the identity matrix of corresponding size.

The pair (x, u) is stationary for the functional F if it satisfies the natural
boundary conditions and the Euler equations u̇ = Cx−ATu. These Euler equations
lead together with the equations of motion to the linear Hamiltonian system

ẋ = Ax+Bu , u̇ = Cx−ATu , (H.kra)

and the natural boundary conditions together with the given boundary conditions
R̃ lead to the self-adjoint boundary conditions (Bλ.kra) below with λ = 0.

We need the following basic notions (see [13]).

Definition 1.

(i) (X,U) is called a conjoined basis of (H.kra), if X(t), U(t) are real n× n-matrix-
valued solutions of (H.kra) with

rank (XT (t), UT (t)) ≡ n , XT (t)U(t) − UT (t)X(t) ≡ 0 on R .

(ii) Two conjoined bases (X1, U1) and (X2, U2) are called normalized conjoined
bases of (H.kra) if XT

1 (t)U2(t) − UT1 (t)X2(t) ≡ I on R; and (X̃1, Ũ1), (X̃2, Ũ2)
denote the special normalized bases of (H.kra), which satisfy the initial conditions

X̃1(a) = Ũ2(a) = 0 , Ũ1(a) = −X̃2(a) = I ,

and then (X̃1, Ũ1) is called the principal solution at a .
(iii) A point t0 ∈ R is called a focal point of X (or (X,U)) for a conjoined basis

(X,U), if X(t0) is non-invertible, and the dimension of the kernel of X(t0) is
called its multiplicity.
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(iv) The pair (A,B) is called controllable on J , if v̇ = −AT (t)v, BT (t)v(t) ≡ 0 on
some non-degenerate interval J̃ ⊂ J always implies that v(t) ≡ 0 on J̃ (see
also [6, Definition 1.2.4] for “uniformly controllable”).

(v) The triple (A,B,C0) (or the linear system

ẋ = Ax+Bu , y = C0 x (LS.kra)

with state x, input u, and output y) is called strongly observable on J if
ẋ = A(t)x+B(t)u, C0(t)x(t) ≡ 0 on some non-degenerate interval J̃ ⊂ J for
some function u with Bu ∈ Cs(J̃ ) always implies that x(t) ≡ 0 on J̃ .

Given any conjoined basis (X,U) of (H.kra) there exists another conjoined basis
(X2, U2) such that (X1 = X,U1 = U), (X2, U2) are normalized conjoined bases
(see [13, Proposition 4.1.1]). By [13, Theorem 4.1.3] controllability of (A,B) is the
same as saying that the focal points of every conjoined basis of (H.kra) are isolated.
Obviously, strong observability of (A,B,C0) means that the bilinear form 〈·, ·〉0
is an inner product on the space of all (A,B)-admissible functions. Moreover, it
is well-known (see [19] or [13]) that, for any conjoined basis (X,U) of (H.kra), the
quotient Q(t) := U(t)X−1(t) satisfies the Riccati matrix differential equation

Q̇+ATQ+QA+QBQ− C = 0 , (R.kra)

whenever X(t) is invertible.

The investigation of extremal values if the so-called Rayleigh quotient R(x) :=
F(x)/〈x, x〉 leads to functions x and reals λ, where the functional

F(x, λ) := F(x)− λ〈x, x〉 (4.kra)

is stationary. Hence, these values λ are the eigenvalues of the eigenvalue problem
(E), which consists of the Hamiltonian system

ẋ = Ax+Bu , u̇ = (C − λC0)x−ATu , (Hλ.kra)

and of the 2n linear and homogeneous boundary conditions

R1(λ)
(
−x(a)
x(b)

)
+R2

(
u(a)
u(b)

)
= 0 , i.e. , (x, u) ∈ R(λ) . (Bλ.kra)

Note that (H.kra)=(H0), and that (x, u) ∈ R(λ) implies that x ∈ R̃. Moreover, as
above, there corresponds to (Hλ.kra) a Riccati equation, namely:

Q̇+ATQ+QA+QBQ− C + λC0 = 0 . (Rλ.kra)

Remark 2. If the matrix B(t) is positive definite for t ∈ I, then the functional F
and the equation of motion, i.e., u = B−1(ẋ − Ax), reduce to a quadratic func-
tional occurring as second variation in the classical calculus of variations, which
satisfies the strengthened Legendre condition. Moreover, our eigenvalue problems
(E) include the self-adjoint Sturm-Liouville problems of even order as a special
case, where e.g. rank B(t) = rank C0(t) ≡ 1.
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3 Positivity

In this section we derive criteria for the positive definiteness of the functionals
F(·) and F(·, λ).

Definition 3. The functional F is called positive definite, we write F > 0, if
F(x) > 0 for all (A,B)-admissible x with x ∈ R̃ and x(t) 6≡ 0 on I.

Our first result includes the classical Jacobi condition from the calculus of
variations, and it is often called “Reid Roundabout Theorem” (see [1], [2], [4], [5],
[18]).

Theorem 4. Assume (A), and suppose that the pair (A,B) is controllable on I.
Then F > 0 if and only if the following two assertions hold:

(i) X̃1(t) possesses no focal point in (a, b].

(ii) The matrix M := R2{S1 + M̃}RT2 is positive definite on Im R2, where the
matrix M̃ is defined by

M̃ :=

(−X̃−1
1 X̃2 X̃−1

1(
X̃−1

1

)T
Ũ1X̃

−1
1

)
(b) . (5.kra)

This result is [13, Theorem 2.4.1]. Note that the matrices M̃ and M are sym-
metric and that assertion (ii) is empty (i.e., always satisfied), if R2 = 0. The
connection between the Hamiltonian system (H.kra) and the Riccati equation (R.kra)
yields quite easily that the assertion (i) is equivalent with:

(i’) The Riccati equation (R.kra) possesses a symmetric solution Q(t) on I.

Moreover, in the case of so-called “separated boundary conditions” there is an-
other result [13, Theorem 2.4.2], which uses only one conjoined basis (rather
than (X̃1, Ũ1) and (X̃2, Ũ2) as above) depending on the boundary conditions (see
also [5]).

Our next result concerns the positivity of F(·, λ) for sufficiently small values
of λ, and it is contained in the recent paper [15, Theorem 2]. It requires additional
smoothness assumptions on the given data, i.e., for n ≥ 2,

A ∈ C2n−3
s (R) , B ∈ C2n−3

s (R) , C0 ∈ C2n−2
s (R) . (A1.kra)

Theorem 5. Assume (A), (A1.kra), and suppose that the pair (A,B) is controllable
on R. Then the following statements are equivalent:

(i) The linear system (LS.kra) is strongly observable on R.



148 Werner Kratz

(ii) For all non-degenerate intervals I = [a, b] and symmetric matrices Q0 the
solution Q(t;λ) of (Rλ.kra) with the initial condition Q(a;λ) ≡ Q0 exists on I,
if λ is sufficiently small, and

lim
λ→−∞

Q(b;λ) = ∞

(i.e., all eigenvalues of the symmetric matrix Q(b;λ) tend to infinity as λ→
−∞).

(iii) For all non-degenerate intervals I = [a, b], subspaces V ⊂ R2n, symmetric
matrices S1 and S0 with S0 ≥ 0, there exists λ0 ∈ R such that (see (4))

F(·, λ) > 0 for all λ ≤ λ0 ,

and then, moreover,

min{R(x) = F(x)/〈x, x〉 : x is (A,B)-admissible , x ∈ R̃ , x 6≡ 0}

exists.

Remark 6. The assertion (iii) has the following interpretation in terms of the “op-
timal linear regulator problem” in control theory (see [10]), namely:
For given data the following LQ-problem with output energy constraints possesses
a minimum. Minimize the quadratic functional F(x) for (A,B)-admissible x ∈ R̃
under the additional “output energy” constraint 〈x, x〉 = 1.

4 Oscillation and Rayleigh’s principle

In this section we formulate the main results on the oscillation of solutions of
the Hamiltonian system (H.kra) and on the eigenvalue problem (E). The oscillation
theorem follows immediately from [13, Theorem 7.2.2] by using assertion (ii) or
(iii) of Theorem 5.

Theorem 7 (Oscillation). Assume (A), (A1.kra), and suppose that the pair (A,B)
is controllable on I and that the linear system (LS.kra) is strongly observable on I.
Let (X,U) be any conjoined basis of (H.kra), such that X(a) and X(b) are invertible.
Then

n1 + n2 = n3 + n ,

where n1 denotes the number of focal points of X (including multiplicities)
in (a, b) ;

n3 denotes the number of eigenvalues (E) (including multiplicities),
which are less than zero; and where

n2 denotes the number of negative eigenvalues of the symmetric
3n× 3n-matrix M, which is defined by
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M := R2

 ∆ −X−1(a) −X−1(b)
−(X−1)T (a) −U(a)X−1(a) 0
−(X−1)T (b) 0 U(b)X−1(b)

RT2 +R1RT2 ,

where R1 :=
(

0 0
0 R1

)
, R2 :=

(
I 0
0 R2

)
, ∆ := X−1(a)X2(a)−X−1(b)X2(b)

with conjoined basis (X2, U2) such that (X,U) and (X2, U2) constitute normalized
conjoined bases of (H.kra).

Remark 8. If the matrix X(a) or X(b) is not invertible, then the same result
holds but with a more complicated matrix M, the definition of which needs more
notation (see [13, Theorem 7.2.2]).

By using a generalized “Picone identity” [13, Theorem 1.2.1] this oscillation
theorem is the main tool to derive Rayleigh’s principle for our eigenvalue (E) (see
[13, Theorem 7.7.1 and Theorem 7.7.6]), namely:

Theorem 9 (Rayleigh’s principle). Assume (A), (A1.kra), and suppose that the
pair (A,B) is controllable on I and that the linear system (LS.kra) is strongly observ-
able on I. Then the following statements hold:

(i) There exist infinitely many eigenvalues λk of the eigenvalue problem (E) with
λk → ∞ (let −∞ < λ1 ≤ λ2 ≤ · · · denote these eigenvalues including multi-
plicities with corresponding orthonormal eigenfunctions (x1, u1), (x2, u2), . . . ,
so that 〈xk, x`〉 = δk`).

(ii) Rayleigh’s principle holds, i.e. for k = 0, 1, 2, . . . ,

λk+1 = min
{
R(x) =

F(x)
〈x, x〉 : x is (A,B)-admissible , x ∈ R̃ , x 6≡ 0 ,

and 〈x, xν 〉 = 0 for ν = 1, . . . , k
}
.

(iii) The expansion theorem holds, i.e.

x =
∞∑
ν=1

〈xν , x〉xν , i.e., lim
k→∞

∥∥∥x− k∑
ν=1

〈xν , x〉xν
∥∥∥ = 0 ,

for all (A,B)-admissible x with x ∈ R̃, where ‖ · ‖ =
√
〈·, ·〉.

5 Tools

In this section we discuss the main tools for the proof of our theorems cited above.
As already mentioned in the previous section a generalization of an identity

due to Picone [17] (see also [21]) is the basis of the proof of Rayleigh’s principle,
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i.e., Theorem 9, given in [13]. This extended version of Picone’s formula can be
derived from field theory (see e.g. [18]) as discussed in [13, Section 1.3].

The basic tools for the proof of the oscillation theorem, i.e., Theorem 7, come
from matrix analysis (see [13, Chapter 3]). These results concern in particular limit
and rank theorems for monotone matrix-valued functions (see [8], [11]). The basis
for the limit theorem is a substitute of l’Hospital’s rule for matrices [7, Theorem 1],
namely:

Theorem 10. Suppose that X,U are real n × n-matrices such that it is fulfilled
rank (XT , UT ) = n and XTU = UTX. Then

lim
S→0+

X(X + SU)−1 = 0 ,

where S → 0+ stands for S → 0 and S > 0.

This theorem together with monotonicity properties of the Riccati matrix dif-
ferential equation (R.kra) [13, Section 5.1] leads to the asymptotic behaviour of solu-
tions of (R.kra) (see [9] or [13, Chapter 6]).

Moreover, there are needed results from linear control theory. The asymptotics
of Riccati equations requires, besides the results from matrix analysis above, in
particular a certain canonical form of controllable pairs. While the Reid Round-
about Theorem, i.e., Theorem 4, may be proven by using mainly Picone’s identity,
the proof of Theorem 5 given in [15] depends essentially on two results. The first
result is the following characterization of strong observability for time-dependent
systems [14, Theorem 2].

Theorem 11. Assume (A1.kra). Then the linear system (LS.kra) is strongly observable
on some interval I if and only if

rank S(t) = n+ rank T (t)

for t ∈ I except on a nowhere dense subset of I, where the matrix-valued func-
tions S : R → Rn2×n2

, T : R → Rn2×n(n−1) are defined as follows: First denote
recursively Ck = Ck(t), Bµν = Bµν(t) by

C1 := C0 , Cµ+1 := Ċµ + CµA for µ = 1, . . . , n− 1,
Bµ+1,µ := C0B for 0 ≤ µ ≤ n− 1 ,
Bµ+1,0 := Cµ+1B + Ḃµ0 for 1 ≤ µ ≤ n− 1 ,
Bµ+1,ν := Bµ,ν−1 + Ḃµν for 1 ≤ ν < µ ≤ n− 1 ;

and (in block form) S := [Q, T ] with

Q :=


C1

C2

C3

...
Cn

 , T :=


0 0 . . . 0
B10 0 . . . 0
B20 B21 . . . 0

...
...

. . .
...

Bn−1,0 Bn−1,1 . . . Bn−1,n−2

 .
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This result reduces to [12, Theorem 2] or [13, Theorem 3.5.7] for time-invariant
systems. In case B = 0, the theorem gives a characterization of controllabil-
ity/observability (see [14, Theorem 1] and [6, Theorem 1.3.2 and Theorem 1.4.4]).

The second tool for the proof of Theorem 5 is a result from functional analy-
sis, namely an application of the so-called Ehrling lemma (see [20, Lemma 8] or
[3, 8.3]).
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Abstract. The paper presents a review of some recent results on unique-
ness of invariant measures for stochastic differential equations in infinite-
dimensional state spaces, with particular attention paid to stochastic par-
tial differential equations. Related results on asymptotic behaviour of solu-
tions like ergodic theorems and convergence of probability laws of solutions
in strong and weak topologies are also reviewed.
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1 Introduction

The aim of the present paper is to review some recent results on uniqueness of
invariant measures (that is, strictly stationary solutions) for nonlinear stochastic
evolution equations (or, more generally, for stochastic differential equations in
infinite-dimensional state spaces). Related asymptotic and ergodic properties of
solutions like convergence of their probability laws to the invariant measure and
ergodic theorems are also discussed.

The paper is divided into three parts: In Section 2, some existing results on
strong and weak asymptotic stability of the invariant measure and its ergodic
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properties are recalled. By the strong asymptotic stability we mean convergence
of probability laws of all solutions to the invariant measure in the norm defined
by total variation of measures while the weak asymptotic stability means an anal-
ogous convergence in the weak (narrow) topology of the space of measures. It is
obvious that both strong and weak asymptotic stability imply uniqueness of the
invariant measure. Sections 3 and 4 contain more precise descriptions of some
methods of proofs used in the papers listed in Section 2 for the respective cases
of strong and weak asymptotic stabilities. In order to illustrate those methods,
some typical statements and results are given. Note that the problem of existence
of the invariant measure is not treated in the present paper; see for instance the
monograph [20] by G. Da Prato and J. Zabczyk and the references therein.

It should be pointed out that the statements contained in Sections 3 and 4 are
not always formulated in full generality. The authors’ intention was to discuss some
basic mathematical tools available and to avoid technical complications as much
as possible. Some generalizations, improvements and applications of the presented
results are referred to subsequently.

2 Review of existing results

A standard possibility to show uniqueness as well as the strong asymptotic stability
(or the strong mixing property) of an invariant measure for a finite-dimensional
nondegenerate stochastic differential equation is to utilize the usual correspondence
between SDE’s and PDE’s; under suitable conditions (including, in particular,
a sufficient nondegeneracy of the diffusion matrix of the SDE) the transitional
densities coincide with the fundamental solution to a linear parabolic PDE (the
Kolmogorov equation), which yields the strong Feller property (SFP) and the
(topological) irreducibility (I) of the Markov process defined by the stochastic
equation. Then the classical results of the ergodic theory of Markov processes, as
developed by J. L. Doob, G. Maruyama and H. Tanaka, R. Z. Khas’minskĭı and
others (see e.g. [21], [48], [37], [22]) and later extended to more general state spaces
(see the references in Section 3 and, in particular, Theorem 4), can be applied to
obtain uniqueness of the invariant measure (provided it exists) as well as the the
strong asymptotical stability.

For infinite-dimensional state spaces such mathematical tools are not easily
available; the Lebesgue measure does not exist and equivalence of measures is in a
sense a “rare” event (see, for instance, the discussion following Proposition 2 and
the example at the beginning of Section 4). On the other hand, in the linear case
when the transition probabilities are Gaussian measures it is possible to verify by
direct computation (cf. Proposition 1) that in some important examples (typically,
stochastic parabolic or parabolic-like equations) the strong asymptotic stability
takes place.

There are several methods which have been used to prove similar results for
nonlinear infinite-dimensional stochastic systems. At first, let us mention the ap-
proach based on verification of the strong Feller property and irreducibility of the
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induced Markov process which has been used in numerous papers that have ap-
peared in recent years. We describe this method in detail in Section 3 while here we
restrict ourselves to some bibliographical remarks. In early papers by B. Maslowski
and R. Manthey ([50], [44]) the SFP has been proven via finite-dimensional ap-
proximations for semilinear systems under rather restrictive assumptions. Also, a
controllability method to prove (I) was developed there. Those results were further
extended by B. Maslowski in [52], in particular, certain smoothing properties of
mild solutions to the infinite-dimensional backward Kolmogorov equation proven
by G. Da Prato and J. Zabczyk ([15], see also [18]) were utilized to get the SFP
for reaction-diffusion equations with additive noise. Alternatively, under differ-
ent set of assumptions, the problem of equivalence of transition probabilities has
been solved by means of a Girsanov type theorem in [51] and [52], cf. also [27]
for an analogous but more difficult argument applied to the stochastic quanti-
zation equation. Let us mention that infinite-dimensional Kolmogorov equations
have been treated very recently by many authors, their link to invariant measures
of fairly general SPDE’s was investigated in depth by A. Chojnowska-Michalik,
B. Goldys and D. Ga̧tarek, see [8], [28].

Another way of proving the SFP has emerged in the paper [11] by G. Da Prato,
K. D. Elworthy and J. Zabczyk where a formula for directional derivatives of a
Markov transition semigroup involving the L2-derivative of the solution with re-
spect to initial condition has been derived (cf. Proposition 9). This approach has
been later extended by S. Peszat and J. Zabczyk [60] to be applicable to stochastic
parabolic equations with multiplicative noise term, cf. also the already cited paper
[28]. It also turned out to be useful in asymptotic analysis of various important
particular systems studied in physics and chemistry, like stochastic Burgers and
Navier-Stokes equations or stochastic Cahn-Hilliard equation (cf. [12], [10], [24] or
[23]).

Tools from the Malliavin calculus were employed to establish the regularity of
the transition semigroup (in particular the SFP) by M. Fuhrman in [26] (cf. also
[14]).

Let us briefly mention some other methods of proving the strong asymptotic
stability of invariant measures. S. Jacquot and G. Royer [36] used a general theory
of Markov operators to prove geometric ergodicity (i.e. strong exponential stability
of an invariant measure) for a particular but important stochastic parabolic equa-
tion. C. Mueller in [59] used an approach based on coupling techniques to prove
strong asymptotic stability of the invariant measure for a nonlinear heat equation
with multiplicative noise, defined on a circle (uniqueness of the invariant measure
for this case had been proven earlier by R. Sowers in [62] by establishing suitable
asymptotic stability of paths).

Very little seems to be known in the case of nonautonomous SPDE’s, where the
standard methods of ergodic theory are no longer available. A lower bound mea-
sure method developed in context of statistical analysis of deterministic dynamical
systems has been used by B. Maslowski and I. Simão in [57] to investigate the limit
behaviour (in variational norm) of Markov evolution operators corresponding to
nonautonomous stochastic infinite-dimensional systems (cf. also a methodologi-
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cally related paper [34]). Simulated annealing for stochastic evolution equations
has been studied by S. Jacquot, see e.g. [35] where references to previous papers
of the author can be found.

Results on the strong asymptotic stability, when available, usually provide us
with a fairly complete description of the qualitative behaviour of solutions to the
considered SPDE’s. On the other hand, many stochastic equations with reasonable
long-time behaviour can be never treated using the tools described above. So we
shall discuss now methods for investigating the weak asymptotic stability that
apply to different classes of SPDE’s, including those with a degenerate noise.

As is known from the finite-dimensional case, uniqueness of an invariant mea-
sure may be obtained as a consequence of pathwise stability of the process, which,
in turn, is often investigated by means of well developed Lyapunov techniques (see
e.g. [38]). The Lyapunov functions methods were extended to semilinear SPDE’s
by A. Ichikawa in [32] (see also [31] for slight modifications), who found suffi-
cient conditions for uniqueness, and further strengthened in [49] to yield stability
as well. Later, these methods proved themselves applicable to nonhomogeneous
boundary value problems for stochastic parabolic equations ([53], [54]). G. Leha
and G. Ritter developed a rather general Lyapunov approach for establishing exis-
tence, uniqueness and attractiveness of invariant measures for Markov processes in
topological spaces, that covers also some classes of stochastic infinite-dimensional
differential equations (see [42], [43]). A recent paper [4] on uniqueness of an invari-
ant measure for a stochastic parabolic variational inequality is virtually based on
the same technique. We discuss the Lyapunov method in some detail in Section 4.

A special attention must be paid to the dissipativity method (sometimes also
called “the remote start method”) since most of recent results on invariant mea-
sures for SPDE’s (both abstract theorems and results about important particular
equations) seem to have been obtained using this procedure. The method was
developed by G. Da Prato and J. Zabczyk in [16], [17], [19] for equations with
additive noise and by them together with D. Ga̧tarek in [13] for the multiplicative
noise case; see the monographs [18], Chapter 11.5, [20] for a systematic account.
(We list here only papers dealing with uniqueness and weak asymptotic stability,
not the copious articles concerning applications of the dissipativity method to ex-
istence of invariant measures.) More factual description of the method is provided
in Section 4.

Finally, we are going to list briefly other papers containing related results.
R. Marcus in the early papers [45], [46], [47] considered stochastic parabolic equa-
tions with an additive noise under rather restrictive hypotheses and sketched a
proof of the weak asymptotic stability of an invariant measure (using a proce-
dure that can be viewed as a variant of the remote start trick). In particular,
he investigated the case of the drift term having a potential, when the invariant
measure may be given explicitly, see also [40] and [25] for uniqueness results in
this direction. (These results are now partly covered by those based on the equiv-
alence of transition kernels.) I. D. Chueshov and T. V. Girya proved existence and
weak asymptotic stability of an invariant measure as a consequence of their re-
sults on inertial manifolds for parabolic SPDE’s driven by additive noise ([9], [30]).
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Uniqueness and stability theorems on invariant measures for semilinear stochas-
tic parabolic equations, proved in the framework of the variational approach to
SPDE’s, can be found in [33] and [29], see also the book [65], §XII.7 and the
references therein.

An analytic approach to invariant measures for infinite-dimensional stochastic
systems, using logarithmic Sobolev inequalities (see the surveys [64] or [67] for
references) or Dirichlet forms techniques (see [6], [5], [1], [7]), has found many
applications to lattice systems (cf. e.g. [2], [3]). Applications to stochastic partial
differential equations are up to now less frequent, see, however, the papers [58] and
[39] in which ergodic properties of invariant measures for SPDE’s are dealt with
by means of Dirichlet forms.

3 Strong asymptotic stability

In the present section, some basic results on uniqueness, ergodicity and strong
asymptotic stability of an invariant measure for stochastic evolution equations are
listed and basic methods of their proofs are explained. By the strong asymptotic
stability we understand convergence of probability laws of all solutions to a given
stochastic evolution equation to the corresponding invariant measure in norm de-
fined by the total variation of measures. In what follows, we denote by |||%||| the
total variation of a signed measure % and by N (m,U) the Gaussian measure with
mean m and covariance operator U .

We start with the linear equation in which case the problem of strong asymp-
totic stability is in a sense much simpler than for the nonlinear equation. How-
ever, some “typical” difficulties (as well as differences between finite- and infinite-
dimensional stochastic equations) can be seen already in that case.

Consider a linear stochastic equation of the form

dZt = AZt dt+ dWt, (1.mas)

in a real separable Hilbert space H = (H, 〈·, ·〉, ‖·‖) where A : Dom(A) ⊆ H −→ H
is an infinitesimal generator of a strongly continuous semigroup (eAt, t ≥ 0) on
H , Wt is a Wiener process on H defined on a probability space (Ω,F ,P ) with
an incremental covariance operator Q ∈ L(H). The operator Q is not necessarily
nuclear (which means that Wt may be just cylindrical, not really H-valued, Wiener
process). In the sequel we shall assume∫ T

0

∥∥eAtQ1/2
∥∥2

HS
dt <∞ (2.mas)

for some T > 0, where ‖ · ‖HS stands for the Hilbert-Schmidt norm of an operator
on H . It is well known that under the condition (2.mas) the equation (1.mas) has for any
initial datum Z0 = x ∈ H a unique mild solution defined as a continuous H-valued
process satisfying the variation of constants formula

Zt = eAtx+
∫ t

0

eA(t−r) dWr , t ≥ 0, (3.mas)
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whose transition probabilities Pt(x, ·) are Gaussian measuresN (eAtx,Qt) for t ≥ 0,
x ∈ H , where

Qt =
∫ t

0

eArQeA
∗r dr

is a nuclear operator (cf. [18] for basic results on the semigroup theory of stochastic
evolution equations). An invariant measure µ∗ for the Markov process induced by
the equation (1.mas) exists if and only if

sup
t≥0

TrQt <∞ (4.mas)

in which case µ∗ = N (0, Q∞), where Q∞ = limt→∞Qt. In general, it can happen
that µ∗ is not the only invariant measure; the problem of uniqueness and char-
acterization of all invariant measures has been treated in [66] (see also [18] and
the references therein). As far as the strong asymptotic stability is concerned we
expose the following result the proof of which can be found in [49] (for simplicity,
we consider only the case Q > 0):

Proposition 1. Assume (2.mas) and let K be a linear subspace of H such that

eAtx ∈ Im
(
Q

1/2
t

)
, t > t0(x) ≥ 0 (5.mas)

and

‖Q−1/2
t eAtx‖ −→ 0, t→∞, (6.mas)

for x ∈ K. Then

|||Pt(x, ·) − Pt(y, ·)||| −→ 0, t→∞ (7.mas)

for each x, y ∈ K. If, moreover, (4.mas) holds true and µ∗(K) = 1 then

|||Pt(x, ·)− µ∗||| −→ ∞, t→∞ (8.mas)

for any x ∈ K. In particular, µ∗ is the only invariant probability measure concen-
trated on K.

In particular examples, the condition (5.mas) can be usually verified for t0 = 0 (or
for some t0 independent of x) and for K = H . In this case the assumptions of
Proposition 1 can be simplified as follows:

Proposition 2. Assume (2.mas) and (4.mas) and let

Im
(
eAt
)
⊆ Im

(
Q

1/2
t

)
(9.mas)

be satisfied for t > 0. Then (8.mas) holds true and, in particular, µ∗ is the only invari-
ant probability measure for the problem (1.mas).
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Note that Proposition 1 has been proven in [49] by direct computation using the
Cameron-Martin formula for density of a Gaussian measure while Proposition 2 is
a corollary of a more general statement given below (Theorem 4). The assumption
(9.mas) is an if and only if condition on the Gaussian transition probabilities Pt(x, ·)
to be equivalent (i.e., mutually absolutely continuous) for t > 0, as can be seen
easily by the Hájek-Feldman theorem. In some cases, (9.mas) can be shown to be a
necessary condition for the strong asymptotic stability (8.mas) (see the example at
the beginning of Section 4) and since it is rather restrictive (for example, the
semigroup eAt satisfying (9.mas) is necessarily Hilbert-Schmidt) it can be expected
that the cases when the strong asymptotic stability takes place in the infinite-
dimensional space H are rather “rare”. However, it turns out that parabolic and
parabolic-like stochastic equations with enough nondegenerate diffusion term are
natural field for applications of Propositions 1 and 2 as may be seen from the
simple example below.

Example 3. Assume that A is self-adjoint, negative, and has compact resolvent
and denote by {ej}j≥1 the orthonormal basis of H such that

Aej = −αjej , (10.mas)

where 0 < αj −→ ∞, j ∈ N. Assume that A, Q are such that for some 0 < λj ≤
λ0 <∞, we have

Qej = λjej , j ∈ N. (11.mas)

Then it is easy to check that the conditions (2.mas) and (4.mas) are satisfied if

∞∑
i=1

λi
αi

<∞, (12.mas)

which is sufficient for the mild solution Zt of the equation (1.mas) and the corresponding
invariant measure µ∗ to exist. The condition (9.mas) verifying the strong asymptotic
stability is now equivalent to the requirement that the sequence{

αi
λi

exp(−2αit)
}
i∈N

(13.mas)

is bounded for each t > 0.
In particular, the process Zt in the present example can represent a solution

to a linear stochastic parabolic equation like, for instance, the equation

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) + η(t, ξ), (t, ξ) ∈ R+ × (0, 1), (14.mas)

with an initial condition u(0, ξ) = x(ξ), ξ ∈ (0, 1), and the Dirichlet boundary
conditions u(t, 0) = u(t, 1) = 0, t ∈ R+, where η is a space-dependent noise, white
in time. This can be achieved by the particular choice H = L2(0, 1), and A = ∂2

∂ξ2
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with Dom(A) = H1
0 (0, 1) ∩ H2(0, 1). Now (13.mas) can be viewed as a condition on

the noise term (the covariance operator Q) for the strong asymptotic stability to
hold. For example, if η represents a noise white in both space and time then we
can take for Q the identity I and (13.mas) is satisfied.

Our next aim is to describe a method based on the general ergodic theory of
Markov processes that allows to prove the strong asymptotic stability (and, also,
ergodic theorems) for nonlinear stochastic evolution equations. We shall utilize an
abstract result stated in Theorem 4 below which was obtained independently by
Stettner [63] and Seidler [61].

Theorem 4. Let
(
(Xt)t≥0, (P x)x∈H

)
be a Markov process in a Polish space H

with a transition probability function Pt(x, ·), t ≥ 0, x ∈ H, having an invariant
probability measure µ∗. Assume that all the measures Pt(x, ·), t > 0, x ∈ H, are
equivalent. Then

(i) for each bounded Borel function φ : H −→ R and every x ∈ H we have

lim
T→∞

1
T

∫ T

0

φ(Xt) dt =
∫
H

φdµ∗ P x-a.s. (15.mas)

(ii) for every x ∈ H we have

|||Pt(x, ·)− µ∗||| −→ 0, t→∞. (16.mas)

In particular, both (i) and (ii) imply that the invariant measure µ∗ is unique.

The assertion (15.mas) is known as the pointwise ergodic theorem (or the strong
law of large numbers). As mentioned above, the condition (9.mas) is an if and only
if condition for the equivalence of transition probability functions for the linear
equation (1.mas). The simplest nonlinear case into which Theorem 4 can be applied
is the one allowing reduction of the nonlinear problem to a linear one by means
of a Girsanov type theorem. We shall present a simple result of this type now.
Consider a stochastic semilinear equation

dXt = AXt dt+ f(Xt) dt+ dWt, (17.mas)

in the Hilbert space H , where A and W have the same meaning as in the equation
(1.mas) and f : H −→ Im

(
Q1/2

)
satisfies

‖Q−1/2
(
f(x)− f(y)

)
‖ ≤ K‖x− y‖ (18.mas)

for a K <∞ and all x, y ∈ H .

Theorem 5. Assume (2.mas), (9.mas) and (18.mas). Then Pt(x, ·) and P̃t(x, ·) are equivalent
measures for every t > 0, x ∈ H, where P and P̃ denote the transition probability
functions for the solutions of the equations (17.mas) and (1.mas), respectively. If, more-
over, there exists an invariant measure µ∗ for the equation (17.mas) then the strong
asymptotic stability (16.mas) holds true.
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Theorem 5 can be proven as a corollary of Theorem 4; note that (9.mas) yields
the equivalence of measures P̃t(x, ·) for t > 0, x ∈ H , and the equivalence
Pt(x, ·) ∼ P̃t(x, ·) follows from the Girsanov theorem. The condition (18.mas) appears
here because the Girsanov factor has the form

exp
{∫ T

0

〈
Q−

1
2 f(Zt), dWt

〉
− 1

2

∫ T

0

∥∥Q− 1
2 f(Zt)

∥∥2 dt
}

(19.mas)

for T > 0 (cf. [18]). Theorem 5 can be generalized to cover also nonlinear terms
which are not Lipschitz continuous or even only densely defined in H (cf. [52], [18]).
The main disadvantage of this approach is that the inclusion Im(f) ⊆ Im

(
Q1/2

)
is

required which makes the abstract results easily applicable only if Q is boundedly
invertible, that is, just for a cylindrical Wiener process W (typically it can repre-
sent a space-time white noise; see however [56] for examples of stochastic parabolic
equations in which a nonlinear term of the form Q1/2f occurs in a natural way in
the drift part of the equation).

For equations of the form (17.mas) where the covariance Q is “too degenerate”
for the Girsanov theorem to be applied, it is sometimes possible to verify the
equivalence of transition probability functions by means of Lemma 6 below which
holds true even if the state space H is an arbitrary Polish space. Recall that
a Markov process is called strongly Feller if its transition probability function
Pt(x, Γ ) is continuous in the variable x for each fixed t > 0 and every Borel set Γ
in H . Furthermore, the Markov process is called irreducible if Pt(x, U) > 0 holds
for each t > 0, x ∈ H and U 6= ∅, U open in H .

Lemma 6. Assume that a Markov process is strongly Feller and irreducible. Then
the measures Pt(x, ·) are equivalent for t > 0, x ∈ H.

Note that both the strong Feller property and irreducibility are of independent
interest (for example, to investigate recurrence of the process, cf. [55] and [61]).

In the rest of the section we shall illustrate some methods which allow to verify
irreducibility or the strong Feller property for stochastic evolution equations. At
first we describe a method based on an argument of approximate controllability for
a deterministic evolution equation, which yields the irreducibility property for the
corresponding stochastic evolution equation. We again shall illustrate the method
in the simple case (17.mas) where A and W are as above and f : H −→ H is assumed
to be Lipschitz continuous. Note that the mild solution to the equation (17.mas) with
initial condition X0 = x ∈ H (which exists and is unique in this case) can be
written Xt = u(t, x; Z̃), t ≥ 0, where Z̃ solves the linear equation (1.mas) with initial
condition Z̃0 = 0 and u(t, x;φ) is the solution of the integral equation

u(t, x;φ) = eAtx+
∫ t

0

eA(t−r)f(u(r, x;φ)) dr + φ(t), t ∈ [0, T ], (20.mas)

with φ ∈ C0([0, T ];H) := {g ∈ C([0, T ];H); g(0) = 0}. The method consists in
finding a suitable space X of trajectories such that the paths of the Gaussian
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process Z̃ belong a.s. to X , Z̃ induces a full Gaussian measure (that is, a mea-
sure whose closed support is the whole space) in X , and u(·, x;φn) → u(·, x;φ)
in C([0, T ];H) as φn → φ in X . The irreducibility of the transition probability
function Pt(x, ·) for the equation (17.mas) follows easily. If the nonlinear term f is
(globally) Lipschitz continuous on H it is natural to take X = C0([0, T ];H) and
it only remains to find conditions under which the measure induced by Z̃ in X
is full. Since the closed support of a Gaussian measure is just the closure of its
reproducing kernel we have a following result:

Theorem 7. Define a mapping K : L2(0, T ;H) −→ C0([0, T ];H) by

Kψ(t) :=
∫ t

0

eA(t−r)Q1/2ψ(r) dr, t ∈ [0, T ].

If f is Lipschitz continuous and Im(K) is dense in C0([0, T ];H) then the transition
probability function Pt(x, ·) corresponding to the equation (17.mas) is irreducible.

Theorem 7 is a particular case of a result proven in [52] for the case of non-
Lipschitz and densely defined nonlinear terms f , which is applicable to stochastic
reaction-diffusion equations. More sophisticated versions of this method have been
applied, for example, to stochastic Burgers equation [12], stochastic Cahn-Hilliard
equation [10] and stochastic Navier-Stokes equation [24], [23].

Now we focus our attention on the strong Feller property of solutions to stochas-
tic evolution equations. The usual procedure of verification of the strong Feller
property in the finite-dimensional case utilizes the smoothing properties of the
Kolmogorov equation. A similar theory for Kolmogorov backward equation in in-
finite dimensions is being developed in recent years ([18], [8], and others). The
main tool to prove both existence and uniqueness of solutions and the required
smoothing properties is the concept of mild solutions to the backward Kolmogorov
equation, which we shall recall now. Basically, we follow the paper [8]. Assume
(2.mas), (4.mas) and let µ = N (0, Q∞) be the invariant measure for the linear equation
(1.mas) and Tt its Markov transition semigroup considered on the space L2(H,µ), i.e.,
Ttφ(x) = Exφ(Zt), t ≥ 0, x ∈ H , φ ∈ L2(H,µ). Further, denote by Pt the Markov
transition semigroup defined by the nonlinear equation (17.mas). Analogously to the
finite-dimensional case it can be expected that, under suitable conditions, the
semigroup Pt corresponds to solutions of the mild backward Kolmogorov equation

u(t, ·) = Ttφ+
∫ t

0

Tt−s〈f,Du(s, ·)〉ds, t > 0, (21.mas)

where D denotes the Fréchet derivative. A precise statement is formulated now
(Cb(H) and C1

b (H) denote the space of bounded continuous functions on H and
its subspace of functions having bounded and continuous Fréchet derivative on H ,
respectively).
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Theorem 8. Let f be bounded and continuous, assume (2.mas), (4.mas), (9.mas) and∫ T

0

∥∥Q−1/2
t eAt

∥∥
L(H)

dt <∞ (22.mas)

for some T > 0. Then for every bounded Borel function φ on H there exists a
unique solution u to (21.mas) and u(t, ·) ∈ C1

b (H), t > 0. Moreover, u(t, x) = Ptφ(x) ≡
Exφ(Xt), t > 0, x ∈ H, provided φ ∈ Cb(H). In particular, we have

|||Pt(x, ·)− Pt(y, ·)||| ≤ γ(t)‖x− y‖, t > 0, x, y ∈ H, (23.mas)

where γ(t) := sup{‖DPtφ(z)‖; z ∈ H, φ ∈ Cb(H), |φ| ≤ 1} <∞, hence the strong
Feller property holds true.

For the proof see [8] or (in certain earlier version) [18], [15]. The assumption
of boundedness of f is not always essential for the strong Feller property and can
be weakened by suitable truncation procedures (see [52], [28]) so that stochastic
parabolic equations with polynomial-type nonlinearities could be included. The
important assumption is (22.mas) which is further strengthening of (9.mas) and means
certain “nondegeneracy of the noise” which, of course, is needed (even in finite-
dimensional state space) for the strong Feller property to hold. It can be shown
([15]) that if the covariance Q is boundedly invertible then (22.mas) is satisfied.

Theorem 8 is applicable only to equations with additive noise (if the diffusion
term is a constant operator). Now we shall mention another method of establishing
the strong Feller property, which is useful also in the case of multiplicative noise.
The method was developed in [11] and is based on the so-called Elworthy formula
which we present in the simple case of equation (17.mas) where Q is assumed to be
boundedly invertible and f is Lipschitz continuous and Gateaux differentiable on
H with the Gateaux derivative continuous as a mapping from H into the space
L(H) endowed with the strong operator topology.

Proposition 9. Under the above hypotheses, we have that Ptφ ∈ C1(H) for each
t > 0, φ bounded Borel, and

〈DPtφ(x), h〉 =
1
t
Ex

(
φ(Xt)

∫ t

0

〈Q−1/2Xh
s , dWs〉

)
(24.mas)

holds for x, h ∈ H, where Xh
t denotes the directional derivative in the L2-sense of

the solution Xt to (17.mas) in the direction h ∈ H.

For the proof see [11]. The usefulness of the formula (24.mas) lies with the fact that
it allows to estimate the value of ‖DPtφ(x)‖ for a fixed t > 0, independently of
φ ∈ Cb(H), |φ| ≤ 1 and the strong Feller property follows in the same way as in
(23.mas).

In fact, the method is applicable to more general cases as well as to some
special equations which are rather difficult to handle (usually it is possible to use
suitable approximations of the equation, which can be typically finite-dimensional
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approximations or approximations by smooth nonlinearities). Thus, in [60] the
strong Feller property has been proven for stochastic semilinear equations with
multiplicative noise (with boundedly invertible diffusion coefficients). In [12] and
[10] the stochastic Burgers and Cahn-Hilliard, respectively, equations are treated.
The 2-dimensional stochastic Navier-Stokes equation is dealt with in [24] and [23].
In all those cases the limit and ergodic properties of solutions listed in Theorem 4
are proved in respective state spaces.

4 Weak asymptotic stability

However efficient are the methods of investigating the long time behaviour of
Markov processes based on the strong Feller property, they are relevant for a rather
limited class of equations that are, roughly speaking, subject to a sufficiently non-
degenerated noise. But such a nondegeneracy is necessary neither for the existence,
nor for uniqueness and attractiveness of invariant measures. To indicate what may
happen, let us consider a simple linear equation

dZ = AZ dt+ dW (25.mas)

in a separable Hilbert space H , where W is a Wiener process in H with a covari-
ance operator Q and A : Dom(A) −→ H is a self-adjoint operator. Assume that
the hypotheses (10.mas)–(12.mas) of Example 3 are satisfied. Denote by P = Pt(x, ·) the
transition function of the Markov process defined by (25.mas). As above we set

Qt =
∫ t

0

eArQeAr dr, 0 ≤ t ≤ ∞.

If (9.mas) holds, that is

Im
(
eAt
)
⊆ Im

(
Q

1/2
t

)
for each t > t0 (26.mas)

for a t0 ≥ 0, then the kernels Pt(x, ·) are strong Feller and the theory discussed in
Section 3 applies, so let us assume that (26.mas) is violated. (Note that this is possible
only in the “degenerate” case when Q is noninvertible, cf. [18], Remark B.9.) Then
we can always find an x0 ∈ H satisfying

eAtx0 /∈ Im
(
Q

1/2
t

)
for every t > 0. (27.mas)

The semigroup (eAt) is exponentially stable, so there exists a unique invariant
measure µ∗ for (25.mas), namely µ∗ = N (0, Q∞), see e.g. [18], Theorem 11.11(ii). At
the same time, Pt(x0, ·) = N (eAtx0, Qt), hence the measures Pt(x0, ·) and µ∗ are
mutually singular according to (27.mas) and the Hájek-Feldman theorem (cf. e.g. [41],
Theorems II.3.1 and II.3.4). This implies |||Pt(x0, ·) − µ∗||| = 2 and the measures
Pt(x0, ·) cannot converge to the invariant measure in the total variation norm.
Moreover, we see that nor the weaker assertion

lim
t→∞

Pt(x0, B) = µ∗(B) for any B ⊆ H Borel (28.mas)
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holds true. Indeed, we know that there are Borel sets An, n ≥ 1, such that
µ∗(An) = 0, Pn(x0, An) = 1, so setting B =

⋃
n≥1An we obtain a counterex-

ample to (28.mas).
On the other hand we have

Pt(y, ·) w∗−−−−→
t→∞

µ∗ for any y ∈ H

by [49], Proposition 3.1, or [18], Theorem 11.11(i), therefore the invariant measure
is globally asymptotically stable with respect to the narrow convergence. Here-
after, we denote by w∗−−→ the narrow (or weak) convergence of finite (signed) Borel
measures on H , that is,

µα
w∗−−→ µ if and only if

∫
H

f dµα −→
∫
H

f dµ ∀f ∈ Cb(H).

In finite-dimensional spaces, Lyapunov functions techniques are the basic tool
for investigating stability properties of solutions to SDE’s. A. Ichikawa [32] em-
ployed such an argument to establish uniqueness of an invariant measure for
stochastic evolution equations, and later the procedure was extended to yield at-
tractiveness as well, see the discussion in Section 2 above. The proofs based on
Lyapunov functions have usually a lucid structure and lead, in a straightforward
manner, to sufficient conditions for stability in terms of the coefficients of the
equation. The known sufficient conditions, however, may be often too restrictive
to cover interesting models. Furthermore, Itô’s formula is not directly applicable
to mild solutions of stochastic partial differential equations, nontrivial approxi-
mations are needed, and the class of admissible Lyapunov functions may be too
narrow for useful applications, in particular if the Wiener process is cylindrical.
Hence we content ourselves with stating a single typical result.

Let us consider a stochastic evolution equation

dXt =
{
AXt + f(Xt)

}
dt+ σ(Xt) dWt (29.mas)

in a separable Hilbert space H , where A : Dom(A) −→ H is an infinitesimal
generator of a C0-semigroup on H , W is a Wiener process in another (real, sepa-
rable) Hilbert space U , with the covariance operator Q nuclear, and the mappings
f : H −→ H , σ : H −→ L(U,H) are globally Lipschitz continuous. Denote by
C2(H) the set of all real valued functions on H having continuous the first and
second Fréchet derivatives.

Theorem 10 ([49], Corollary 2.3). Let there exist a function V ∈ C2(H) sat-
isfying:

i) V (0) = 0 and
inf
‖y‖≥r

V (y) > 0 for any r > 0;

ii) for some k <∞, p > 0 and any y ∈ H we have

V (y) + ‖DV (y)‖+ ‖D2V (y)‖ ≤ k
(
1 + ‖y‖p

)
;
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iii) there exists a > 0 such that〈
DV (x− y), Ax−Ay + f(x)− f(y)

〉
+

1
2

Tr
{(
σ(x) − σ(y)

)∗
D2V (x− y)

(
σ(x) − σ(y)

)
Q
}
≤ −aV (x− y)

for all x, y ∈ Dom(A).
Then (

Pt(x, ·) − Pt(y, ·)
) w∗−−−−→

t→∞
0

for any x, y ∈ H.

In particular, if there exists an invariant measure for (29.mas) then it is globally
asymptotically stable for the narrow convergence and, a fortiori, unique.

According to Corollary 2.8 in [49], the hypotheses of Theorem 10 are fulfilled
with the natural choice V = ‖ · ‖p (for a suitable p > 0), provided

〈Ax, x〉 ≤ β‖x‖2 for a β ∈ R and every x ∈ Dom(A),∥∥Q1/2
(
σ(x) − σ(y)

)∗(x− y)
∥∥ ≥ α‖x− y‖2 for an α ≥ 0,

and

β + Lip(f) +
1
2

Lip(σ)2 TrQ < α2,

Lip(Υ ) denoting the Lipschitz constant of a mapping Υ .

As we have explained in Section 2, most of the recent results on the weak
stability have been obtained by the “dissipativity method” of G. Da Prato and
J. Zabczyk. To show the core of the method, we sketch here a proof of one of their
results concerning a stochastic partial differential equation

dX =
(
AX + f(X)

)
dt+ σ dW (30.mas)

with an additive noise in a separable Hilbert space H . We assume that W is
a standard cylindrical Wiener process in a Hilbert space U , σ ∈ L(U,H), and
A : Dom(A) −→ H is a closed linear operator. To state the other hypotheses, we
need a few additional definitions. If E is a Banach space, we denote by ∂‖x‖E
the subdifferential of the norm ‖ · ‖E at the point x ∈ E. We say that a mapping
γ : Dom(γ) ⊆ E −→ E is dissipative, provided for any x, y ∈ Dom(γ) there exists
z∗ ∈ ∂‖x− y‖E such that

z∗
(
γ(x)− γ(y)

)
≤ 0.

A dissipative mapping γ is called m-dissipative, if Im(λI − γ) = E for a λ > 0.
Let G ⊆ E be a subspace, a part γG of the mapping γ on G is defined by

Dom(γG) = {x ∈ Dom(γ) ∩G; γ(x) ∈ G}, γG = γ on Dom(γG).
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For completeness, we list here assumptions under which there exists a unique
(generalized) mild solution of the equation (30.mas) for any initial condition X(0) =
x ∈ H , and (30.mas) defines a Feller Markov process in H . We suppose:

1) There exists η ∈ R such that the mappings A − ηI and f − ηI are m-
dissipative on H.
2) There exists a reflexive Banach space K densely and continuously imbed-
ded in H, and (A− ηI)K , (f − ηI)K are m-dissipative on K.
3) Dom(f) ⊇ K and f maps bounded set in K into bounded sets in H.
4) The process

WA(t) =
∫ t

0

eA(t−r)σ dW (r), t ≥ 0,

is Dom(fK)-valued, with paths continuous in H, and

sup
t∈[0,T ]

{
‖WA(t)‖K + ‖f(WA(t))‖K

}
<∞ almost surely

for every T > 0.
Let us note that the introduction of an auxiliary spaceK is inevitable as interesting
nonlinearities f are not defined (or do not behave well) on the basic state space
H (compare Example 12 below).

Now we are prepared to state a theorem on existence and stability of an in-
variant measure (see Theorem 2.3 in [19], cf. also [20], Theorem 6.3.3).

Theorem 11. Let there exist ω1, ω2 ∈ R such that ω ≡ ω1 + ω2 > 0 and the
mappings A+ ω1I, f + ω2I are dissipative on H. Suppose that

sup
t≥0

E
{
‖WA(t)‖H + ‖f(WA(t))‖H

}
<∞.

Then there exists a unique invariant measure µ for (30.mas) and for any y ∈ H we
have

Pt(y, ·) w∗−−−→
t→∞

µ.

Moreover, there exists a constant L <∞ such that∣∣∣∣∫
H

g dPt(y, ·)−
∫
H

g dµ
∣∣∣∣ ≤ L(1 + ‖y‖

)
e−ωt/2Lip(g) (31.mas)

for any y ∈ H, t > 0 and any bounded Lipschitz function g : H −→ R.

The procedure used in the proof, that is known as the “remote start method”,
yields in the present case existence and uniqueness of the invariant measure at the
same time. We shall consider the equation (30.mas) on the whole real line R, that is,
we shall work with solutions to

dXt =
(
AXt + f(Xt)

)
dt+ σ dW̃t, (32.mas)
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where

W̃ (t) =

{
W (t), t ≥ 0,
Y (−t), t < 0,

Y being a standard cylindrical Wiener process independent of W . Denote by
X(t; s, y), t ≥ s, the unique solution of (32.mas) with the initial datum X(s; s, y) = y.
First, we derive an a priori estimate

E‖X(t; s, y)‖ ≤ c+ ‖y‖ (33.mas)

valid for all s < 0, t ≥ s, y ∈ H . Setting

Ψ(t) = X(t; s, y)−
∫ t

s

eA(t−r)σ dW̃ (r)

we see that Ψ pathwise solves the equation

dΨ
dt

= AΨ + f

(
Ψ +

∫ t

s

eA(t−r)σ dW̃ (r)
)
, Ψ(s) = y.

Using the dissipativity hypothesis of Theorem 11 one easily finds that

d−

dt
‖Ψ(t)‖ ≤ −ω‖Ψ(t)‖+

∥∥∥∥f(∫ t

s

eA(t−r)σ dW̃ (r)
)∥∥∥∥,

which yields the desired estimate (33.mas).
Analogously, for v < s < 0 one arrives at an estimate

E‖X(t; s, y)−X(t; v, y)‖ ≤ e−ω(t−s)(2‖y‖+ c
)
, t ≥ s, (34.mas)

and it follows that the net {X(0; s, y), s ≤ 0} is Cauchy in L1(Ω;H) as s→ −∞.
Let p ∈ L1(Ω;H) be its limit, then the law µ of p is an invariant measure for
(30.mas): The L1-convergence obviously implies the narrow convergence, therefore (P ∗t
denoting the adjoint Markov semigroup)

P ∗t δy = Pt(y, ·) = Law(X(t; 0, y)) = Law(X(0;−t, y)) w∗−−−−→
t→+∞

Law(p) = µ,

and, since the Markov process solving (30.mas) is Feller, we obtain

P ∗s µ = P ∗s

(
lim
t→∞

P ∗t δy
)

= lim
t→∞

P ∗t+sδy = µ

for any s ≥ 0. The estimate (31.mas) on the speed of convergence now follows from
(34.mas) in a straightforward way.

A similar theorem holds for equations with multiplicative noise, that is, for
equations of the form (29.mas), where W is now assumed to be a standard cylindrical
Wiener process, see [13], Theorem 1, and [20], Theorem 6.3.2. We shall not cite
the result precisely, let us only note that in this case the dissipativity assumption
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includes also the Yosida approximations An = nA(nI − A)−1 of the operator A
and reads as follows:〈

An(x− y) + f(x)− f(y), x− y
〉

+ ‖σ(x)− σ(y)‖2HS ≤ −$‖x− y‖2

for a $ > 0 and any x, y ∈ H and n ∈ N.
We finish this section with an example which is very particular case of the

example discussed in [19], Section 4, and in [20], §11.4, this example being based
on Theorem 11.

Example 12. Let us consider a stochastic parabolic equation

dX(t, ξ) =
{

(∆− α)X(t, ξ) + f(X(t, ξ))
}

dt+ dW (t, ξ), ξ ∈ R, t ≥ 0, (35.mas)

where α > 0 and W is a standard cylindrical Wiener process in L2(R). Assume that
f : R −→ R, f = f0 + f1, f0 being (globally) Lipschitz continuous, ξ 7→ f1(ξ) + bξ
is a continuous decreasing function for a b ∈ R, and

|f1(ξ)| ≤ c(1 + |ξ|p)

for some p ≥ 1, c < ∞ and every ξ ∈ R. (For example, if f1 is an odd degree
polynomial with a negative leading coefficient,

f1(ξ) = −ξ2k+1 +
2k∑
j=0

ajξ
j ,

then the assumptions are satisfied.) Under the above hypotheses, there exists a
unique (generalized) mild solution of (35.mas) in the weighted space L2(R; e−κ|ξ| dξ),
for any κ > 0. Moreover, suppose that f1 is decreasing and

α− Lip(f0) > 0.

Then there exists κ0 > 0 such that for any κ ∈ ]0,κ0[ the Markov process de-
fined by (35.mas) in the space L2(R; e−κ|ξ| dξ) has a unique invariant measure, and an
estimate of the type (31.mas) holds for any ω ∈ ]0, 2(α− Lip(f0))[.
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Suppose that G ⊂ Rm (m ≥ 2) is an open set with a non-void compact bound-
ary ∂G such that ∂G = ∂(cl G), where cl G is the closure of G. Fix a nonnegative
element λ of C′(∂G) (the Banach space of all finite signed Borel measures sup-
ported in ∂G with the total variation as a norm) and suppose that the single layer
potential Uλ is bounded and continuous on ∂G. (In R2 it means that λ = 0. If
G ⊂ Rm, (m > 2), ∂G is locally Lipschitz, λ = fH, where H is the surface measure
on ∂G and f is a nonnegative bounded measurable function, then Uλ is bounded
and continuous.) Here

Uν(x) =
∫
Rm

hx(y) dν(y),
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where ν ∈ C′(∂G),

hx(y) = (m− 2)−1A−1|x− y|2−m for m > 2,

A−1 log |x− y|−1 for m = 2,

A is the area of the unit sphere in Rm.
If G has a smooth boundary,u ∈ C1(cl G) is a harmonic function on G and

∂u

∂n
+ fu = g on ∂G,

where f, g ∈ C(∂G) (the space of all bounded continuous functions on ∂G equipped
with the maximum norm) and n is the exterior unit normal of G then for φ ∈ D
(the space of all compactly supported infinitely differentiable functions in Rm)∫

∂G

φg dHm−1 =
∫
G

∇ φ · ∇ u dHm +
∫
∂G

φfu dHm−1. (1.med)

Here Hk is the k-dimensional Hausdorff measure normalized such that Hk is the
Lebesgue measure in Rk. If we denote by H the restriction of Hm−1 on ∂G and
by NGu the distribution

〈φ,NGu〉 =
∫
G

∇φ · ∇u dHm (2.med)

then (1.med) has the form

NGu+ fuH = gH. (3.med)

HereNGu is a characterization in the sense of distributions of the normal derivative
of u.

The formula (3.med) motivates the following definition of the solution of the Robin
problem for the Laplace equation

∆u = 0 in G,

NGu+ uλ = µ,
(4.med)

where µ ∈ C′(∂G) .
We introduce in Rm the fine topology, i.e. the weakest topology in which all

superharmonic functions in Rm are continuous. This topology is stronger than the
ordinary topology.

If u is a harmonic function on G such that∫
H

|∇u| dHm <∞ (5.med)
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for all bounded open subsets H of G we define the weak normal derivative NGu
of u as a distribution

〈ϕ,NGu〉 =
∫
G

∇ϕ · ∇u dHm

for ϕ ∈ D.
Let µ ∈ C′(∂G).Now we formulate the Robin problem for the Laplace equation

(4.med) as follows: Find a function u ∈ L1(λ) on cl G,the closure of G, harmonic on
G and fine continuous in λ-a. a. points of ∂G for which ∇u is integrable over all
bounded open subsets of G and NGu+ uλ = µ.

The single layer potential Uν, where ν ∈ C′(∂G), has all these properties and if
we look for a solution of the Robin problem in the form of the single layer potential
we obtain the equation

NGUν + (Uν)λ = µ.

It was shown by J. Král for λ = 0 (see [10]) and independently by Yu. D.
Burago, V. G. Maz’ya (see [2]) and by I. Netuka ([20]) for a general λ that NGUν+
(Uν)λ ∈ C′(∂G) for each ν ∈ C′(∂G) if and only if V G <∞,where

V G = sup
x∈∂G

vG(x),

vG(x) = sup{
∫
G

∇ φ · ∇ hx dHm;φ ∈ D, |φ| ≤ 1, spt φ ⊂ Rm − {x}}.

There are more geometrical characterizations of vG(x) which ensure V G <∞ for
G convex or for G with ∂G ⊂ ∪ki=1Li,where Li are (m− 1)-dimensional Ljapunov
surfaces (i.e. of class C1+α). Denote

∂eG = {x ∈ Rm; d̄G(x) > 0, d̄Rm−G(x) > 0}

the essential boundary of G, where

d̄M (x) = lim sup
r→0+

Hm(M ∩ U(x; r))
Hm(U(x; r))

is the upper density of M at x, U(x; r) is the open ball with the centre x and the
radius r. Then

vG(x) =
1
A

∫
∂U(0;1)

n(θ, x) dHm−1(θ),

where n(θ, x) is the number of all points of ∂eG∩{x+ tθ; t > 0} (see [7]). It means
that vG(x) is the total angle under which G is visible from the point x. This
expression is a modification of the similar expression in [9]. Let us recall another
characterization of vG(x) using a notion of an interior normal in Federer’s sense.

If z ∈ Rm and θ is a unit vector such that the symmetric difference of G and
the half-space {x ∈ Rm; (x − z) · θ > 0} has m-dimensional density zero at z



176 Dagmar Medková

then nG(z) = θ is termed the interior normal of G at z in Federer’s sense. (The
symmetric difference of B and C is equal to (B − C) ∪ (C − B).) If there is no
interior normal of G at z in this sense, we denote by nG(z) the zero vector in Rm.
The set {y ∈ Rm; |nG(y)| > 0} is called the reduced boundary of G and will be
denoted by ∂̂G. Clearly ∂̂G ⊂ ∂eG.

If Hm−1(∂eG), the perimeter of G, is finite, then Hm−1(∂eG− ∂̂G) = 0 and

vG(x) =
∫
∂̂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ Rm.
If G has a piecewise-C1+α boundary, then V G < ∞. But there is a domain G

with C1 boundary and V G =∞ (see [18]). On the other hand there is a domain G
with V G < ∞ and Hm(∂G) > 0. So open sets with a locally Lipschitz boundary
and open sets with V G <∞ are incomparable.

Suppose now that V G <∞.Then the operator

τ : ν 7→ NG(Uν) + (Uν)λ

is a bounded linear operator on C′(∂G) and

τν(M) =
∫
∂G∩M

Uν dλ+
∫
∂G∩M

dG(x) dν(x) −∫
∂G

∫
∂G∩M

nG(y) · ∇hx(y) dHm−1(y) dν(x).

The Robin problem NG(Uν) + (Uν)λ = µ leads to the equation

τν = µ.

Denote by H the restriction of Hm−1 on ∂̂G. Then H(∂G) < ∞. If λ = fH,
ν = hH ∈ C′(∂G), then

τ(hH) = (Th)H,

where

Th(x) =
1
2
h(x) −

∫
∂G

nG(x) · ∇hy(x)h(y) dH(y) + f(x)U(hH)(x).

Theorem 1. Let the Fredholm radius of
(
τ − (1/2)I

)
be greater than 2, µ ∈

C ′(∂G). Then there is a harmonic function u on G, which is a solution of the
Robin problem

NGu+ uλ = µ, (6.med)
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if and only if µ ∈ C′0(∂G) (the space of such ν ∈ C′(∂G) that ν(∂H) = 0 for each
bounded component H of cl G for which λ(∂H) = 0). If µ ∈ C′0(∂G) then there is
a unique ν ∈ C′0(∂G) such that

τν = µ (7.med)

and for such ν the single layer potential Uν is a solution of (6.med). If

β >
1
2

(V G + 1 + sup
x∈∂G

Uλ(x)), (8.med)

then

ν =
∞∑
n=0

(
βI − τ
β

)n
µ

β
(9.med)

and there are q ∈ (0, 1), C ∈< 1,∞) such that∥∥∥∥(τ − βIβ

)n
µ

∥∥∥∥ ≤ Cqn‖µ‖
for µ ∈ C′0(∂G) and a natural number n. If λ = 0 then

ν = µ+
∞∑
n=0

(2τ − I)n(2τ)µ (10.med)

and there are q ∈ (0, 1), C ∈< 1,∞) such that

‖(2τ − I)n(2τ)µ‖ ≤ Cqn‖µ‖

for µ ∈ C′0(∂G) and a natural number n.

Remark 2. The condition that the Fredholm radius of
(
τ − (1/2)I

)
is greater than

2 does not depend on λ. In [15] it was shown that this condition has a local
character. It is well-known that this condition is fulfilled for sets with a smooth
boundary (of class C1+α) (see [10]) and for convex sets (see [23]). J. Radon ([27])
proved this condition for open sets with “piecewise-smooth” boundary without
cusps in the plane. R. S. Angell, R. E. Kleinman, J. Král and W. L. Wendland
proved that rectangular domains (i.e. formed from rectangular parallelepipeds)
in R3 have this property (see [1], [12]). A. Rathsfeld showed in [28], [29] that
polyhedral cones in R3 have this property. (By a polyhedral cone in R3 we mean
an open set Ω whose boundary is locally a hypersurface (i.e. every point of ∂Ω
has a neighbourhood in ∂Ω which is homeomorphic to R2) and ∂Ω is formed by
a finite number of plane angles. By a polyhedral open set with bounded boundary
in R3 we mean an open set Ω whose boundary is locally a hypersurface and ∂Ω is
formed by a finite number of polygons.) N. V. Grachev and V. G. Maz’ya obtained
independently analogical result for polyhedral open sets with bounded boundary
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in R3 (see [6]). (Remark that there is a polyhedral open set in R3 which has not a
locally Lipschitz boundary, for example G = {[x1, x2, x3]; |x1| < 3, |x2| < 3,−3 <
x3 < 0} ∪ {[3t, ty2, ty3]; 0 < t < 1, 1 < |y2| < 2, 0 ≤ y3 < 1}. (The boundary of
this set is not a graph of a function in a neighbourhood of the point [0, 0, 0].)) The
condition that the Fredholm radius of

(
τ − (1/2)I

)
is greater than 2 is fullfiled

for G ⊂ R3 with “piecewise-smooth” boundary, i.e. such that for each x ∈ ∂G
there are r(x) > 0, a domain Dx which is polyhedral or smooth or convex or a
complement of a convex domain and a diffeomorphism ψx : U(x; r(x)) → R3 of
class C1+α,α > 0, such that ψx(G ∩ U(x; r(x))) = Dx ∩ ψx(U(x; r(x))) (see [15]).
N. V. Grachev and V. G. Maz’ya proved this condition for several types of sets
with “piecewise-smooth” boundary in general Euclidean space (see [3,4,5]).

Remark 3. Let the Fredholm radius of
(
τ − (1/2)I

)
be greater than 2. Then it

holds Hm−1(∂G) < ∞ and H is the restriction of Hm−1 on ∂G. If λ = fH, µ =
gH ∈ C′(∂G), then ν = hH, where h ∈ L1(H). If

β >
1
2

(V G + 1 + sup
x∈∂G

Uλ(x)),

then

h =
∞∑
n=0

(
βI − T
β

)n
g

β

and there are q ∈ (0, 1), C ∈< 1,∞) such that∥∥∥∥(T − βIβ

)n
g

∥∥∥∥ ≤ Cqn‖g‖
for a natural number n and g ∈ L1(H) such that gH ∈ C′0(∂G) . If f = 0, then

h = g +
∞∑
n=0

(2T − I)n(2T )g

and there are q ∈ (0, 1), C ∈< 1,∞) such that

‖(2T − I)n(2T )g‖ ≤ Cqn‖g‖

for a natural number n and g ∈ L1(H) such that gH ∈ C′0(∂G).

Now, let us concentrate on the Dirichlet problem for the Laplace equation

∆u = 0 in G,

u = g on ∂G,
(11.med)

where g ∈ C(∂G) is a continuous function on the boundary of G. Looking for a
solution in the form of the double layer potential

Wf(x) =
∫
∂G

f(y)nG(y) · ∇hx(y) dHm−1(y) (12.med)
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is a classical method. It was shown by J. Král and independently by Yu. D. Burago
and V. G. Maz’ya that it is possible to define the double layer potential (12.med) on G
as a continuously extendable function on cl G for each density f ∈ C(∂G) if and
only only if V G < ∞. (This condition we obtained for the Robin problem, too.)
Under this condition nG(y) in the expession (12.med) is the interior normal of G at y
in Federer’s sense. If we look for the solution of the Dirichlet problem (11.med) in the
form of the double layer potential (12.med) with a continuous density on the boundary
of G we obtain the integral operator

Df(x) = (1− dG(x))f(x) +
∫
∂G

f(y)nG(y) · ∇hx(y) dHm−1(y).

on C(∂G). The adjoint operator ofD is the operator corresponding to the Neumann
problem for the Laplace operator on the complementary domain to G. Noting that
the Fredholm radius of (D − 1

2I) is equal to the Fredholm radius of
(
τ − (1/2)I

)
we obtain as a consequence of the theorem for the Neumann problem the following
result:

Theorem 4. Let V G <∞, the Fredholm radius of (D− 1
2I) be greater than 2. If

the set Rm −G is unbounded and connected and g ∈ C(∂G), then the double layer
potential

Wf(x) =
∫
∂G

f(y)nG(y) · ∇hx(y) dHm−1(y)

is a solution of the Dirichlet problem for the Laplace equation with the boundary
condition g, where

f = g +
∞∑
j=0

(2D − I)j2Dg.

The condition that the set Rm − G is unbounded and connected is necessary
for expressing the solution of the Dirichlet problem for the Laplace equation in
the form of the double layer potential for each boundary condition. If we want to
calculate the solution for an open set with holes we must modify a double layer
potential. Suppose now that the dimension of the space Rm is greater than 2. If
we look for a solution of the Dirichlet problem in the form of the sum of the single
layer potential and the double layer potential with the same density we obtain
the integral operator on the space of all continuous functions in ∂G the adjoint
operator of which is the operator corresponding to some Robin problem for the
Laplace equation on the complementary domain and we obtain the following result
as a consequence of the theorem on the Robin problem.

Theorem 5. Let m > 2, V G < ∞, the Fredholm radius of (D − 1
2I) be greater

than 2. If g ∈ C(∂G) then Wf + U(fH) is a solution of the Dirichlet problem for
the Laplace equation with the boundary condition g, where

f =
∞∑
n=0

(
βI − V
β

)n
g

β
,
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V g = Dg + U(gH),

β >
1
2

(V G + 1 + sup
x∈∂G

UH(x)).
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1 Introduction

Integral inequalities play an important role in the theory of differential, integral
and integrodifferential equations. One can hardly imagine these theories without
the well-known Gronwall inequality and its nonlinear version Bihari inequality [1].
However these inequalities are not directly applicable to integral equations with
weakly singular kernels of the form

x(t) = ξ(t) +
∫ t

0

K(t, s)f(s, x(s))ds, x ∈ X, (1.mdv)

where X is a Banach space, K(t, s) : X → X is a linear operator satisfying the
condition

||K(t, s)|| 5 M

(t− s)α ||v||, v ∈ X, (2.mdv)
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for t > s = 0, α > 0,M > 0 are constants, ξ, f are continuous maps. Such
equations appear e.g. in the geometric theory of parabolic differential equations.
Basics of this theory are described in the well-known book by D. Henry [4] (see
also the book by J. K. Hale [3]).

Many boundary value problems for parabolic PDEs can be written as a Cauchy
initial value problem

du

dt
+Au = f(t, u), u ∈ X,

u(0) = u0 ∈ X,
(3.mdv)

where X is an appropriate Banach space and A : X → X is a special linear
operator, so called sectorial operator (for the definition see [4, Definition 1.3.1]).
For any sectorial operatorA there is a real number c such that if A1 = A+cI, where
I is the identity mapping, then Re σ(A1) > 0 (i.e. Re λ > 0 for any λ ∈ σ(A1)
— the spectrum of the operator A1). One can define a fractional power Aα1 of A1

as the inverse of A−α1 := 1
Γ (α)

∫∞
0 tα−1e−A1tdt for α > 0. If Xα := D(Aα1 ) — the

domain of Aα1 and ||x||α := ||Aα1 x||, x ∈ Xα, then (Xα, ||.||α) is a Banach space
(see [4]).

By [4, Theorem 1.3.4], if A is a sectorial operator then −A is the infinitesimal
generator of an analytic semigroup {e−tA}t=0, d

dte
−tA = −Ae−tA for t > 0 and if

Re σ(A) > b > 0 then

||e−tAu||α := ||Aα1 e−tAu|| 5
d

tα
e−bt||u||, t > 0 (4.mdv)

for any u ∈ Xα, where d > 0 is a constant.

Definition 1 (see [3] and [7]). Let A : X → X be a sectorial operator and
there is an α ∈ 〈0, 1) such that the map f : R×Xα → X, (t, u) 7→ f(t, u) is locally
Hölder in t and locally Lipschitz in u. A solution of (3.mdv) on the interval 〈0, T ) (0 <
T 5∞) is a continuous function u : 〈0, T )→ Xα with u(0) = u0 ∈ Xα such that
the map f(., u(.)) : 〈0, T )→ X, t→ f(t, u(t)) is continuous, u(t) ∈ D(A), t ∈ 〈0, T )
and u satisfies (3.mdv) on (0, T ).

By M. Miklavčič [7] a solution u(t) of (3.mdv) in the sense of Definition 1 coincides
with those solutions of the integral equations

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)f(s, u(s))ds, 0 < t 5 T, (5.mdv)

for which u : 〈0, T )→ Xα is continuous and f(., u(.)) : 〈0, T )→ X, t → f(t, u(t))
is continuous.

If Re σ(A) > b > 0 then from (4.mdv), (5.mdv) it follows that

||u(t)||α 5
ce−bt

tα
||u0||+ de−bt

∫ t

0

ebt

(t− s)α ||f(s, u(s))||ds. (6.mdv)
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If

||f(v)|| 5 Q||v||α, v ∈ Xα, (7.mdv)

a(t) = c
tα ||u0||, v(t) = ||u(t)||αebt and c = dQ, then (6.mdv) yields

v(t) 5 a(t) + c

∫ t

0

(t− s)β−1v(s)ds, t ∈ I = 〈0, T ), (8.mdv)

where β = 1− α, α > 0. By [4, Lemma 7.1.1]

v(t) 5 Θ
∫ t

0

E
′

β(Θ(t − s))a(s)ds, t ∈ I, (9.mdv)

where Θ = (cΓ (β))
1
β , Rβ(z) =

∑∞
n=0

znβ

Γ (nβ+1) , Γ is the gamma-function and finally

E
′

β(z) = dEβ(z)
dz .

The estimate (9.mdv) is obviously complicated and it is obtained in [4] by an itera-
tive argument not applicable to the case of nonlinear integral inequalities. In the
paper [6] the author developed a new method of a reduction of the inequality (8.mdv)
as well as some nonlinear singular inequalities to the classical Gronwall and Bihari
inequalities, respectively. Using this method we shall analyze an inequality of the
form

ψ(t) 5 a(t) + b(t)
∫ t

0

(t− s)β−1sγ−1ψ(s)mds, t ∈ I = 〈0, T ), (10.mdv)

where 0 < T 5 ∞ and m > 1 with the aim to prove a stability theorem for the
equation (3.mdv).

2 Stability theorem

First let us formulate a consequence of a result by G. Butler and T. Rogers pub-
lished in [2] (see also [5, Theorem 1.3.8]) as the following lemma.

Lemma 2. Let a(t), b(t), K(t), ψ(t) be nonnegative, continuous function on I =
〈0, T ) (0 < T 5 ∞), ω : 〈0,∞) → R be a continuous, nonnegative and nonde-
creasing function, ω(0) = 0, ω(u) > 0 for u > 0 and let A(t) = max05s5t a(s),
B(t) = max05s5t b(s). Assume that

ψ(t) 5 a(t) + b(t)
∫ t

0

K(s)ω(ψ(s))ds, t ∈ I. (11.mdv)

Then

ψ(t) 5 Ω−1[Ω(A(t)) + B(t)
∫ t

0

K(s)ds], t ∈ 〈0, T1〉, (12.mdv)

where Ω(v) =
∫ v
v0

dσ
ω(σ) , v = v0 > 0, Ω−1 is the inverse of Ω and T1 > 0 is such

that Ω(A(t)) +B(t)
∫ T

0 K(s)ds ∈ D(Ω−1) for all t ∈ 〈0, T1〉.
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Lemma 3. Let a(t), F (t), ψ(t), b(t) be continuous, nonnegative functions on I =
〈0, T ) (0 < T 5 ∞), β > 0, γ > 0,m > 1 and ψ(t) satisfies the inequality (10.mdv).
Then the following assertions hold:

(1) If β > 1
2 , γ > 1− 1

2p for some p > 1 and ε > 0 then

ψ(t) 5 eεtΦε(t), (13.mdv)

where Φε(t) = A1(t)
1
2q [1− (m− 1)Ξ1(t, ε)]

1
2q(1−m) ,

Ξ1(t, ε) = A1(t)m−1B1(t, ε)
∫ t

0
F (s)2qe2qmεsds,

A1(t) = 22q−1 max05s5t a(s)2q,

B1(t, ε) = 22q−1K(ε)qL(ε)
q
p max05s5t b(s)2q,K(ε) = Γ (2β−1)

(2ε)2β−1 ,

L(ε) = Γ ((2γ−2)p+1)
(pε)(2γ−2)p+1 ,

1
p + 1

q = 1 and t ∈ I is such that Φε(t) is defined.

(2) Let β = 1
1+z for some z = 1, γ > 1− 1

kq , where k > 0, q = z + 2 and let ε > 0.
Then

ψ(t) 5 eεtΨε(t), (14.mdv)

where Ψε(t) = A2(t)
1
rq [1− (m− 1)Ξ2(t, ε)]

1
rq(1−m ,

Ξ2(t, ε) = A2(t)m−1B2(t, ε)
∫ t

0 F (s)rqemqrεsds,
A2(t) = 2rq−1 max05s5t a(s)rq,
B2(t, ε) = 2rq−1P (ε) max05s5t b(s)rq,

P (ε) = (M(ε)N(ε))rq,M(ε) = [ Γ (1−αp)
(pε)1−αp) ]

1
p ,

N(ε) = [ Γ (kq(γ−1)+1)
(kqε)kq(γ−1)+1 ]

1
kq , α = 1 − β, 1

p + 1
q = 1, 1

k + 1
r = 1, p, q, r, k > 1 and

t ∈ I is such that Ψε(t) is defined.

Proof. We shall repeat the same procedure as in the proof of [6, Theorem 4]
however instead of inserting et.e−t into the integral on the right-hand side of (10.mdv)
and then applying the Cauchy-Schwarz and Hölder inequality, respectively, we
shall insert eε.e−εt there. More precisely, under the assumption of the assertion
(1) we obtain from (10.mdv) that

ψ(t) 5 a(t) + b(t)[
∫ t

0

(t− s)2β−2e2εsds]
1
2 [
∫ t

0

s2γ−2F (s)2e−2εsψ(s)2mds]
1
2 5

5 a(t) + b(t)eεtK(ε)
1
2 [
∫ t

0

s2γ−2F (s)2e−2εsψ(s)2mds]
1
2 ,

where K(ε) = Γ (2β−1)
(2ε)2β−1 . Using the Hölder inequality with p, q > 1, 1

p + 1
q = 1 we

obtain

ψ(t) 5 a(t) + b(t)eεtK(ε)
1
2 [
∫ t

0

s(2γ−2)pe−εpsds]
1
2p [
∫ t

0

F (s)2qψ(s)2mqds]
1
2q
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and since∫ t

0

s(2γ−2)pe−pεsds =
1

(pε)(2γ−2)p+1

∫ pεt

0

σ(2γ−2)pe−σdσ <

<
Γ ((2γ − 2)p+ 1)

(pε)(2γ−2)p+1
:= L(ε)

((2γ−2)p+ 1 > [2(1− 1
2p )−2]p+ 1 > 0, i.e. Γ ((2p−2)p+ 1) is a positive number)

we have

ψ(t) 5 a(t) + b(t)eεtK(ε)
1
2L(ε)

1
2p [
∫ t

0

F (s)2qψ(s)2mqds]
1
2q . (15.mdv)

Since (A1 + A2)r 5 2r−1(Ar1 + Ar2) for any nonnegative real numbers A1, A2 and
any real number r > 1 (see [6, (2), (3)]) we obtain from (15.mdv) that

ψ(t)2q 5 22q−1[a(t)2q + b(t)2qe2qεtK(ε)qL(ε)
q
p

∫ t

0

F (s)2qe2qmεse−2qεsψ(s)2q)mds].

(16.mdv)

If

v(t) = e−2qεtu(t)2q, c(t) = 22q−1a(t)2q, d(t) = 22q−1b(t)2qK(ε)qL(ε)
q
p , (17.mdv)

then (16.mdv) yields

v(t) 5 c(t) + d(t)
∫ t

0

F (s)2qe2qmεsv(s)mds.

Now we can apply Lemma 2, where ω(u) = um, Ω(v) =
∫ v
v0

dy
ω(y) =

∫ v
v0
y−mdy =

1
m−1 [v1−m− v1−m

0 ], Ω−1(z) = [(1−m)z+ v1−m
0 ]

1
1−m and we obtain the inequality

v(t) 5 Ω−1[Ω(A1(t)) +B1(t, ε)
∫ t

0

F (s)2qe2qmεsds] =

= A1(t)[1− (m− 1)Ξ1(t, ε)]
1

1−m ,

where Ξ1(t, ε), A1(t), B1(t, ε) are as in theorem. From this inequality and (17.mdv) the
inequality (13.mdv) follows.

The proof of the inequality (14.mdv) is similar (see the proof of [6, Theorem 4]).

Theorem 4. Let A : X → X be a sectorial operator, Re σ(A) > b > 0, f be as in
Definition 1 and let

||f(t, u)|| 5 tκη(t)||u||mα , m > 1, κ = 0 (18.mdv)

for all (t, u) ∈ R×Xα, where η : 〈0,∞)→ R is a continuous, nonnegative function.
Then the following assertions hold:
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(1) Let 0 < α < min{ 1
2 ,

κ
m + 1

2pm} for some p > 1 and b > 0 be the number from
the inequality (4.mdv). Let the function

t 7→ t2qα
∫ t

0

η(s)2qe2q[(1−m)b+mε]sds

is bounded on the interval 〈0,∞) for some 0 < ε < b, where 1
p + 1

q = 1. Let
u(t) be a solution of the equation (3.mdv) satisfying u(0) = u0 ∈ Xα, where

(m− 1)22q−1(c||u0||)2q(m−1)K(ε)qL(ε)
q
p (ctα)2q

∫ t

0

η2qe2q[(1−m)b+mε]sds < 1,

where

K(ε) =
Γ (2β − 1)
(2ε)2β−1

, L(ε) =
Γ ((2γ − 2)p+ 1)

(2γ − 2)p+ 1
, β = 1− α.

Then u(t) exists on the interval 〈0,∞) and limt→∞ ||u(t)||α = 0.
(2) Let 1

2 5 α < min{1, κm + 1
kqm} for some k > 1, where β = 1−α = 1

1+z , z = 1,
q = z + 2 and b > 0 is the number from the inequality (4.mdv). Assume that the
function

t 7→ trqα
∫ t

0

η(s)rqerq[(1−m)b+mε]sds

is bounded on the interval 〈0,∞) for some 0 < ε < b, where 1
k + 1

r = 1. Let
u(t) be a solution of the equation (3.mdv) satisfying u(0) = u0, where

(m− 1)2rqm(c||u0||)rq(m−1)P (ε)trqα
∫ t

0

η(s)rq[(1−m)b+mε]sds{
< 1 for rq(m− 1) even,
6= 1 for rq(m− 1) odd,

where P (ε) is the number defined in Lemma 3. Then u(t) exists on the interval
〈0,∞) and limt→∞ ||u(t)||α = 0.

Proof. Under the assumptions of theorem there exists a solution of the equation
(3.mdv) on an interval I = 〈0, T )(0 < T 5∞) satisfying the condition u(0) = u0. This
solution satisfies the equation (5.mdv) and for α > 0 the inequality (6.mdv) is satisfied. This
inequality and the condition (18.mdv) yield

||u(t)||α 5
ce−bt

tα
||u0||+ ce−bt

∫ t

0

ebssκη(s)
(t− s)α ||u(s)||mα ds, t > 0

and if ψ(t) = ebttα||u(t)||α then

ψ(t) 5 a(t) + b(t)
∫ t

0

(t− s)β−1sγ−1F (s)ψ(s)mds, (19.mdv)



Singular Integral Inequalities and Stability 189

where a(t) = c||u0||, b(t) = ctα, β = 1− α, κ = 1 + κ− αm,F (t) = e(1−m)btη(t).
Let us prove the assertion (1). From the assumption it follows that α < 1

2 ,
i.e. β = 1 − α > 1

2 and −αm > −κ − 1
2p , i.e. γ = 1 + κ − αm > 1 − 1

2p . Thus
the assumptions of Lemma 3 are satisfied. By the assertion (1) of this lemma we
obtain that ψ(t) 5 eεtΦ(t, ε), where

Φ(t, ε) = A1(t)
1
2q [1− (m− 1)Ξ1(t, ε)]

1
2q(1−m) ,

A1(t, ε) = 22q−1(c||u0||)2q,

Ξ1(t, ε) = 22q(m−1)(c||u0||)2q(m−1)K(ε)qL(ε)
q
p .t2qα

∫ t

0

η(s)2qe2q[(1−m)b+mε]sds,

K(ε), L(ε) are defined in Lemma 3. Under the assumptions of theorem the function
Φ(t, ε) is bounded on the interval (0,∞). Since ψ(t) = ebttα||u(t)||α, 0 < ε < b, we
obtain that

||u(t)||α 5
e−(b−ε)t

tα
Φ(t, ε).

Thus the solution u(t) of (3.mdv) exists on the interval 〈0,∞) and limt→∞ ||u(t)||α = 0.
From the assumption of the assertion (2) it follows that β = 1 − α 5 1

2 ,−αm >
−κ− 1

kq , i.e. γ = 1 + κ− αm > 1− 1
kq and thus the assumptions of the assertion

(2) of Lemma 3 are satisfied. Applying this lemma in the same way as in the proof
of the assertion (1) one can prove the assertion (2).

Remark 5. M. Miklavčič in his paper [7] proved that if for some 0 < ω 5 1,
0 < α < 1, αωp > 1, γ > 1, C > 0, ||tωAe−At|| 5 C, t = 1,

||f(t, x)|| 5 C[||Aαx||p + (1 + t)−γ ], t = 0,

whenever ||Aαx|| + ||x|| is small enough, then for small initial data there exist
stable global solutions. Moreover, if the space X is reflexive (in this case X =
N(A) ⊕ R(A)), then there exists y ∈ N(A) such that limt→∞ ||x(t) − y||α = 0.
These results are obviously proved under different assumptions from those in our
theorem.

References

1. J. A. Bihari, A generalization of a lemma of Bellman and its applications to uniqueness
problems of differential equations, Acta Math. Acad. Sci. Hungar. 7 (1965), 81–94

2. G. Butler and T. Rogers, A generalization of a lemma of Bihari and applications to
pointwise estimates for integral equations, J. Math. Anal. and Appl. 33, no 1 (1971),
77–81

3. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and
Monographs, Vol. 25, AMS, Providence, 1988

4. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag,
Berlin, Heidelberg, New York, 1981

5. A. A. Martyniuk and R. Gutowski, Integral Inequalities and Stability of Motion,
Naukova Dumka, Kiev, 1979 (in Russian)



190 Milan Medved’

6. M. Medved’, A new approach to an analysis of Henry type integral inequalities and
their Bihari type versions, J. Math. Anal. and Appl. 214 (1997), 349–366
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1 Introduction

This paper establishes some fixed point theorems for multivalued condensing maps
with closed graph. In particular we obtain an analogue of (i). Ky Fan’s Fixed Point
Theorem, (ii). Leray-Schauder Alternative, and (iii). Furi-Pera Fixed Point Theo-
rem, for such maps. The need for new fixed point theory for closed multifunctions
arose out of the study of differential and integral inclusions (see [5,9] and their
references). If our operator is compact then a well known result (see [1, page 465])
implies that we may use fixed point theory for upper semicontinuous (u.s.c.) maps.
However a new theory is needed if our map is condensing and not compact. We ini-
tiated the study in [10,11]. This paper continues this study. In addition we simplify
some of the proofs in [10].

For the remainder of this section we describe the type of maps which we will
consider in section 2. Suppose X and Z are subsets of Hausdorff topological
vector spaces E1 and E2 respectively and F : X → 2Z a multifunction (here 2Z

denotes the family of nonempty subsets of Z). Given two open neighborhoods U
and V of the origins in E1 and E2 respectively, a (U, V )-approximate continuous
selection [2,3] of F is a continuous function s : X → Z satisfying

s(x) ∈ (F [(x+ U) ∩X ] + V ) ∩ Z for every x ∈ X.
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F is said to be approximable [3] if its restriction F |K to any compact sub-
set K of X admits a (U, V )-approximate continuous selection for every open
neighborhoods U and V of the origins in E1 and E2 respectively.

Definition 1. We say F ∈ APCG(X,Y ) if F : X → Cc(Y ) is a closed (i.e. has
closed graph), approximable map; here Cc(Y ) denotes the family of nonempty,
closed subsets of Y .

Definition 2. We say F ∈ ACG(X,Y ) if F : X → CD(Y ) is a closed map; here
CD(Y ) denotes the family of nonempty, closed, acyclic (see [5]) subsets of Y .

Recall F is acyclic if for every x ∈ X , Hm(F (x)) = δ0mZ, where {Hm} denotes
the Čech cohomology functor with integer coefficients.

We now recall two results from the literature.

Theorem 3 ([2,3]). Let Q be a convex, compact subset of a locally convex Haus-
dorff linear topological space E and F : Q→ C(Q) is a u.s.c., approximable map
(here C(Q) denotes the family of nonempty, compact subsets of Q). Then F has
a fixed point.

Let X be a Banach space and ΩX the bounded subsets of X . The Kuratowski
measure of noncompactness is the map α : ΩX → [0,∞] defined by

α(Z) = inf {ε > 0 : Z ⊆ ∪ni=1 Zi and diam (Zi) ≤ ε} ; here Z ∈ ΩX .

Let X1 and X2 be Banach spaces. A multivalued map F : Y ⊆ X1 → X2 is said
to be α-Lipschitzian if it maps bounded sets into bounded sets and if there exists
a constant k ≥ 0 with α(F (Z)) ≤ k α(Z) for all bounded sets Z ⊆ Y . We call
F a condensing map if F is α-Lipschitzian with k = 1 and α(F (Z)) < α(Z)
for all bounded sets Z ⊆ Y with α(Z) 6= 0.

Theorem 4 ([5]). Let Q be a nonempty, closed, convex subset of a Banach space
E. Suppose F : Q→ CK(Q) is a u.s.c., condensing map with F (Q) a subset of a
bounded set in E (here CK(Q) denotes the family of nonempty, compact, acyclic
subsets of Q). Then F has a fixed point.

Remark 5. All the results in this paper will be stated and proved when E is a
Banach space (the extension to the case when E is a Fréchet space is immediate).

2 Fixed point theory

We begin this section by proving fixed point theorems of Ky Fan [12] type for
APCG and ACG maps.

Theorem 6. Let Q be a nonempty, convex, closed subset of a Banach space E
and suppose F ∈ APCG(Q,Q) is a condensing map with F (Q) a subset of a
bounded set in Q. Then F has a fixed point in Q.
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Proof. Let x0 ∈ Q. Then [5, Lemma A] guarantees a closed, convex set X with
x0 ∈ X and

X = co (F (Q ∩X) ∪ {x0}).
Since F (Q) ⊆ Q implies F (Q∩X)∪{x0} ⊆ Q we have X ⊆ Q and so Q∩X = X .
Thus

X = co (F (X) ∪ {x0}).

Since F is condensing we have (using the properties of measure of noncompact-
ness) that X is compact. Thus F : X → 2X with X compact and convex. In
addition the values of F are closed and F |X has closed graph. Now [1, page 465]
implies F |X is u.s.c. Consequently F |X : X → C(X) is a u.s.c., approximable
map and X is convex and compact. Theorem 3 implies that F has a fixed point
in X . ut

Similarly we have the following result for ACG maps.

Theorem 7 ([11]). Let Q be a nonempty, convex, closed subset of a Banach
space E and suppose F ∈ ACG(Q,Q) is a condensing map with F (Q) a subset
of a bounded set in Q. Then F has a fixed point in Q.

Proof. Let x0 ∈ Q and construct a convex, compact set X ⊆ Q (as in Theorem 6)
with F : X → 2X . In addition the values of F are closed and acyclic and F |X
has closed graph. Now [1] implies F |X is u.s.c. Consequently F |X : X → CK(X)
is a u.s.c. map and X is convex and compact. Theorem 4 (or indeed Ky Fan’s
Fixed Point Theorem [12]) implies that F has a fixed point in X . ut

Remark 8. Note Theorem 6 and Theorem 7 can easily be extended to the Fréchet
space setting.

We now prove a nonlinear alternative of Leray-Schauder type for ACG and
APCG maps. We proved such an alternative in [10]; however here we provide a
simpler proof.

Theorem 9. Let E be a Banach space with U an open, convex subset of E and
x0 ∈ U . Suppose F ∈ ACG(U,E) is a condensing map with F (U) a subset of a
bounded set in E. Then either

(A1) F has a fixed point in U ; or
(A2) there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1− λ){x0}.

Proof. Without loss of generality assume x0 = 0. Suppose (A2) does not occur
and F has no fixed points in ∂U . Let

H =
{
x ∈ U : x ∈ λF (x) for some λ ∈ [0, 1]

}
.

Notice that H 6= ∅ is closed. To see this let (xn) be a sequence in H (i.e.
xn ∈ λn F (xn) for some λn ∈ [0, 1]) with xn → x0 ∈ U . Without loss of generality
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assume λn → λ0 ∈ (0, 1]. Since xn ∈ H there exists yn ∈ F (xn) with xn = λn yn.
Now xn → x0 and yn → 1

λ0
x0. The closedness of F implies 1

λ0
x0 ∈ F (x0)

so x0 ∈ H . Thus H is closed. In fact H is compact. To see this notice H ⊆
co (F (H) ∪ {0}) so if α(H) 6= 0, we have

α(H) ≤ α(F (H)) < α(H),

a contradiction. Now since H ∩ ∂U = ∅ there is a continuous function µ : U →
[0, 1] with µ(H) = 1 and µ(∂U) = 0. Define the map J by

J(x) =
{
µ(x)F (x), x ∈ U
{0}, x ∈ E\U.

Now it is easy to check that J : E → CD(E) has closed graph. In addition
J : E → CD(E) is condensing with J(E) a subset of a bounded set in E. To see
this note

J(A) ⊆ co
(
F (U ∩A) ∪ {0}

)
for any subset A of E. Now Theorem 7 implies that there exists x ∈ E with
x ∈ J(x). Also x ∈ U since 0 ∈ U . Thus x ∈ µ(x)F (x) = λF (x) where
0 ≤ λ = µ(x) ≤ 1. Consequently x ∈ H , which implies µ(x) = 1 and so x ∈ F (x).

ut

Similarly we have the following nonlinear alternative of Leray-Schauder type
for APCG maps.

Theorem 10. Let E be a Banach space with U an open, convex subset of E
and x0 ∈ U . Suppose F ∈ APCG(U,E) is a condensing map with F (U) a subset
of a bounded set in E. Then either

(A1) F has a fixed point in U ; or
(A2) there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1− λ){x0}.

Proof. Without loss of generality assume x0 = 0. Suppose (A2) does not occur
and F has no fixed points in ∂U . Let H, µ, J be as in Theorem 9. Now J : E →
Cc(E) has closed graph and J is condensing with J(E) a subset of a bounded
set in E. Also an easy argument (see the ideas in [8]; note for any compact subset
K of E we have that F |K is u.s.c. (see [1, page 465])) implies J : E → Cc(E)
is approximable. Now Theorem 6 implies that there exists x ∈ E with x ∈ J(x).
Also as in Theorem 9 we have x ∈ F (x). ut

Next we prove a new fixed point theorem of Furi-Pera type for ACG and
APCG maps. We discuss the case when E is a Hilbert space and then remark
about the general situation.
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Theorem 11. Let Q be a closed, convex subset of a Hilbert space E with 0 ∈ Q.
In addition suppose F ∈ APCG(Q,E) is a condensing map with F (Q) a subset
of a bounded set in E. Also assume

if {(xj , λj)}∞1 is a sequence in ∂Q× [0, 1] converging to (x, λ)
with x ∈ λF (x) and 0 ≤ λ < 1, then there exists j0 ∈ {1, 2, ....}
with {λj F (xj)} ⊆ Q for each j ≥ j0

 (1.reg)

holds. Then F has a fixed point in Q.

Remark 12. If F (∂Q) ⊆ Q then (1.reg) holds.

Proof. Define r : E → Q by r(x) = PQ(x) i.e. r is the nearest point projection
on Q. Note r is nonexpansive. Consider

B = {x ∈ E : x ∈ F r (x) }.

Note F r : E → Cc(E) is a condensing map and F r(E) is a subset of a bounded
set in E. Also F r : E → Cc(E) has closed graph. To see this let (yn) be a
sequence in E with yn → y0 and vn ∈ F r (yn) is such that vn converges to
v0. Let zn = r(yn) and so vn ∈ F (zn) and zn → z0 = r(x0). Since F has
closed graph v0 ∈ F (z0) i.e. v0 ∈ F r (y0). Finally notice F r : E → Cc(E)
is an approximable map. To see this take any compact subset K of E. Note
r : K → Q and F : Q→ Cc(E). A result of [2, page 468] (follow the reasoning in
Proposition 3.3; note F |r(K) is u.s.c. [1, page 465]) implies F r : E → Cc(E) is an
approximable map. Theorem 6 implies F r has a fixed point so B 6= ∅. We must
show B is closed. To see this let (xn) be a sequence in B (i.e. xn ∈ F r (xn))
with xn → x0 ∈ E. Now since F r has closed graph we have x0 ∈ F r (x0) i.e.
x0 ∈ B. Thus B is closed. In fact B is compact. To see this notice B ⊆ F r (B).
If α(r(B)) 6= 0 then

α(B) ≤ α(F r (B)) < α(r(B)) ≤ α(B),

a contradiction. Thus α(r(B)) = 0 and so α(B) ≤ α(F r (B)) ≤ α(r(B)) = 0 so
B is compact.

It remains to show B∩Q 6= ∅. Suppose this is not true i.e. suppose B∩Q = ∅.
Then there exists δ > 0 with dist (B,Q) > δ. Choose N ∈ {1, 2, ...} such that
1 < δN . Define

Ui =
{
x ∈ E : d(x,Q) <

1
i

}
for i ∈ {N,N + 1, ...};

here d is the metric induced by the norm. Fix i ∈ {N,N + 1, ...}. Since there is
dist (B,Q) > δ then B ∩ Ui = ∅. Now Theorem 10 implies (since B ∩ Ui = ∅)
that there exists (yi, λi) ∈ ∂Ui × (0, 1) with yi ∈ λi F r (yi). Consequently for
each j ∈ {N,N + 1, ...} there exists (yj , λj) ∈ ∂Uj × (0, 1) with yj ∈ λj F r (yj).
In particular since yj ∈ ∂Uj we have

{λj F r (yi)} 6⊆ Q for each j ∈ {N,N + 1, ...}. (2.2)
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Next let us look at

D = {x ∈ E : x ∈ λF r (x) for some λ ∈ [0, 1] }.

First notice D is closed. To see this let (xn) be a sequence in D (i.e. xn ∈
λn F r (xn) for some λn ∈ [0, 1]) with xn → x0 ∈ E and without loss of generality
assume λn → λ0 ∈ (0, 1]. The closedness of F r (see the argument in Theorem 9)
implies 1

λ0
x0 ∈ F r (x0) so x0 ∈ D [Alternatively, it is easy to see that R : E ×

[0, 1] → Cc(E), given by R(x, λ) = λF r (x), has closed graph so it is immediate
that D is closed]. In fact D is compact. To see this notice

D ⊆ co (F r (D) ∪ {0})

and it is easy to check that α(D) = 0 (since F is condensing and r is non-
expansive). Thus D is compact (so sequentially compact). This together with
d(yj , Q) = 1

j , |λj | ≤ 1 (for j ∈ {N,N + 1, ...}) implies that we may assume with-
out loss of generality that λj → λ? and yj → y? ∈ ∂Q. Also since yj ∈ λj F r (yj)
we have, since R (defined above) : UN × [0, 1] → Cc(E) has closed graph, that
y? ∈ λ? F r (y?). Now λ? 6= 1 since B ∩ Q = ∅. Thus 0 ≤ λ? < 1. But in this
case (1.reg), with xj = r(yj) ∈ ∂Q and x = y? = r(y?), implies that there exists
j0 ∈ {N,N + 1, ....} with {λj F r (yj)} ⊆ Q for each j ≥ j0. This contradicts
(2.2). Thus B ∩Q 6= ∅ i.e. there exists x ∈ Q with x ∈ F r (x) = F (x). ut

Remark 13. Of course the result in Theorem 11 holds for certain convex sets in
Banach spaces where there is a nearest point retraction that is nonexpansive (or
more generally α-Lipschitzian with k = 1).

Remark 14. If the map F in Theorem 11 is compact then the Hilbert space can
be replaced by any Banach (or indeed Fréchet) space (this is immediate since all
we need consider is any continuous retraction r with r(z) ∈ ∂Q for z ∈ E\Q;
note such an r exists (see [7])).

Remark 15. There is an obvious analogue of Theorem 11 for ACG maps.
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Abstract. We show a locally uniform bound for global nonnegative so-
lutions of the system ut = ∆u + uv − bu, vt = ∆v + au in (0,+∞) × Ω,
u = v = 0 on (0,+∞)×∂Ω, where a > 0, b ≥ 0 and Ω is a bounded domain
in Rn, n ≤ 2. In particular, the trajectories starting on the boundary of
the domain of attraction of the zero solution are global and bounded.
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1 Introduction

In many parabolic problems possessing blowing-up solutions, there also exist global
bounded solutions. The large-time behavior of solutions lying on the borderline
between global existence and blow-up may be quite complicated and its knowledge
may be useful e.g. in the study of stationary solutions of these problems (see [8]).

Let us consider first the scalar problem

ut = ∆u + u|u|p−1 + f(x, t, u,∇u), x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = uo(x), x ∈ Ω,

 (P.qui)
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where Ω is a smoothly bounded domain in Rn, p > 1 and f represents a per-
turbation term. If f ≡ 0, 0 6≡ Uo ≥ 0 is a smooth function, λ > 0 and uo = λUo
then the solution uλ of (P.qui) exists globally and uλ(t) → 0 as t → +∞ for λ
small while uλ blows up in finite time in the L∞(Ω)-norm if λ is large. If we
put λo = sup{λ ; uλ exists globally} and if we consider only radially decreasing
solutions in a ball then it is known (see [4], [5]) that the solution uλo
• is global and bounded for p subcritical, i.e. p < (n+ 2)/(n− 2) if n > 2,
• is global and unbounded for p critical,
• blows up in finite time for p supercritical (and n ≤ 10).
Similarly, if n = 1 and f(x, t, u, ux) = ε(um)x, where ε > 0 and m > 1 then the
solution uλo
• is global and bounded (at least for some) p > 2m− 1,
• cannot be global and bounded if p ≤ 2m− 1 and ε is “large”.
Sufficient conditions for global existence and boundedness of the solution uλo for
f 6≡ 0 and a more detailed discussion of the above facts can be found in [7].

In the present note we study the system

ut = ∆u+ uv − bu, x ∈ Ω, t > 0,
vt = ∆v + au, x ∈ Ω, t > 0,
u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = uo(x) ≥ 0, x ∈ Ω,
v(x, 0) = vo(x) ≥ 0, x ∈ Ω,

 (S.qui)

where Ω is a smoothly bounded domain in Rn, n ≤ 2, a > 0 and b ≥ 0. It was
shown in [6] that the system (S.qui) possesses a positive stationary solution. Moreover,
any positive stationary solution (ũ, ṽ) of (S.qui) represents a threshold between blow-
up and decay to zero provided Ω is a ball. More precisely,
• if λ < µ ≤ 1, 0 ≤ uo ≤ λũ and 0 ≤ vo ≤ µṽ then the solution of (S.qui) exists
globally and tends to zero as t→∞,
• if λ, µ > 1, uo ≥ λũ and vo ≥ µṽ then the solution of (S.qui) blows up in finite time.

We are interested in the behavior of all “threshold trajectories”, i.e. trajectories
starting on the boundary ∂DA of the domain of attraction of the zero solution

DA = {(uo, vo) ∈ H1
0 (Ω)+ ×H1

0 (Ω)+ ;
the solution (u, v) of (S.qui) exists globally and (u(t), v(t))→ 0 as t→∞},

where H1
0 (Ω)+ is the positive cone of the usual Sobolev space H1

0 (Ω). We shall
prove the boundedness of any non-negative global trajectory of (S.qui). Since the
corresponding bound is locally uniform with respect to the initial values (uo, vo),
this result implies global existence and boundedness of all trajectories starting on
∂DA.

Our proof is based on a non-trivial generalization of a priori estimates for
stationary solutions in [6] (based on the method of Brézis and Turner [1]) to a
priori estimates for all global solutions of (S.qui). Such generalization sometimes may
yield satisfactory results (see e.g. the optimal result in [4] for the problem (P.qui) with
f ≡ 0, uo ≥ 0 based on the method of a priori estimates of Gidas and Spruck);
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in general, it usually requires additional assumptions. This is also the case of our
proof: the a priori estimates in [6] were shown for a general domain Ω ⊂ Rn if
n ≤ 3. For technical reasons, we had to restrict ourselves to the case n ≤ 2.

Finally let us note that the boundedness of global solutions of problems of the
type (P.qui) is well known in the case where f(x, t, u,∇u) is independent of t and
∇u (see e.g. [2], [3] and the references therein). Then the problem has variational
structure, i.e. it admits a Lyapunov functional. A perturbation result for f de-
pending on t and ∇u can be found in [7]. Anyhow, in our situation the system (S.qui)
does not seem to be “close” to any problem with variational structure.

2 Results and proofs

Throughout the rest of this paper we shall assume that the initial couple (uo, vo) ∈
H1

0 (Ω)+ × H1
0 (Ω)+ is such that the corresponding solution (u, v) of (S.qui) exists

globally (in the classical sense). Moreover, we shall assume uo 6≡ 0 and we denote
by λ1 and ϕ1 the first eigenvalue and the corresponding (positive) eigenfunction
of the problem −∆ϕ = λϕ in Ω, ϕ = 0 on ∂Ω. We denote by ‖ · ‖p and ‖ · ‖H1 the
norm in Lp(Ω) and H1(Ω), respectively, and we put ‖ · ‖ := ‖ · ‖2. We shall also
briefly write u(t) instead of u(·, t) and

∫
Ω u dx instead of

∫
Ω u(x, t) dx. Our main

result is the following theorem.

Theorem 1. There exists a constant C1 = C1(‖∇uo‖, ‖∇vo‖) such that

‖∇u(t)‖+ ‖∇v(t)‖ ≤ C1 for any t ≥ 0.

The proof of Theorem 1 will follow from the following series of lemmata (see
Lemma 8 and Lemma 9).

Lemma 2. There exists a constant C2 = C2(‖uo‖, ‖vo‖) such that∫
Ω

v(x, t)ϕ1(x) dx ≤ C2 for any t ≥ 0.

Proof. Multiplying the equations in (S.qui) by ϕ1 and integrating by parts yields(∫
Ω

uϕ1 dx
)
t

= −(λ1 + b)
∫
Ω

uϕ1 dx+
∫
Ω

uvϕ1 dx, (1.qui)(∫
Ω

vϕ1 dx
)
t

= −λ1

∫
Ω

vϕ1 dx+ a

∫
Ω

uϕ1 dx. (2.qui)

Differentiating (2.qui), using (1.qui), (2.qui), au = vt −∆v and integration by parts we get(∫
Ω

vϕ1 dx
)
tt

= −λ1

(∫
Ω

vϕ1 dx
)
t

+ a

∫
Ω

(∆u+ uv − bu)ϕ1 dx
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= −λ1

(∫
Ω

vϕ1 dx
)
t
− a(λ1 + b)

∫
Ω

uϕ1 dx+ a

∫
Ω

uvϕ1 dx

≥ −(2λ1 + b)
(∫

Ω

vϕ1 dx
)
t
− λ1(λ1 + b)

∫
Ω

vϕ1 dx

+
1
2

(∫
Ω

v2ϕ1 dx
)
t

+
λ1

2

∫
Ω

v2ϕ1 dx,

where in the last step we have used∫
Ω

(−∆v)vϕ1 dx =
∫
Ω

∇v · ∇(vϕ1) dx

=
∫
Ω

|∇v|2ϕ1 dx+
1
2

∫
Ω

∇v2 · ∇ϕ1 dx ≥
λ1

2

∫
Ω

v2ϕ1 dx.

Hence, denoting

w := w(t) :=
∫
Ω

v(x, t)ϕ1(x) dx,

y := y(t) := w′(t) + (λ1 + b)w(t) − 1
2

∫
Ω

v2(x, t)ϕ1(x) dx,

we obtain yt ≥ −λ1y so that y(t) ≥ e−λ1ty(0) ≥ −c0 for some c0 > 0. Since

1
2

∫
Ω

v2(x, t)ϕ1(x) dx ≥ c1
∫
Ω

v2(x, t)ϕ2
1(x) dx ≥ c2w2(t) for some c1, c2 > 0,

we have

−c0 ≤ y ≤ w′ + (λ1 + b)w − c2w2 ≤ w′ − c3w2 + c4 for some c3, c4 > 0,

hence w′ ≥ c3w2 − (c0 + c4). Since w(t) exists globally, the last inequality implies
w(t) ≤

√
(c0 + c4)/c3 (where c0 = c0(vo) and c3, c4 do not depend on v).

Lemma 3. There exists a constant C3 = C3(‖uo‖, ‖vo‖) such that∫
Ω

u(x, t)ϕ1(x) dx ≤ C3 for any t ≥ 0. (3.qui)

Proof. Multiplying the first equation in (S.qui) by ϕ1, integrating over Ω and over
(t, t+ θ), using u = 1

a (vt −∆v) and Lemma 2 we get∫
Ω

uϕ1 dx
∣∣∣t+θ
t
≥ −(λ1 + b)

∫ t+θ

t

∫
Ω

uϕ1 dx dt

= −λ1 + b

a

∫
Ω

vϕ1 dx
∣∣∣t+θ
t
− λ1(λ1 + b)

a

∫ t+θ

t

∫
Ω

vϕ1 dx dt ≥ −c̃,
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where c̃ = c̃(C2) does not depend on t and θ ∈ (0, 1]. Integrating the last inequality
over θ ∈ (0, 1) and using u = 1

a (vt −∆v) again we obtain∫
Ω

u(x, t)ϕ1(x) dx − c̃ ≤
∫ t+1

t

∫
Ω

uϕ1 dx dt

=
1
a

∫
Ω

vϕ1 dx
∣∣∣t+1

t
+
λ1

a

∫ t+1

t

∫
Ω

vϕ1 dx dt ≤ C2
λ1 + 1
a

,

which concludes the proof.

In what follows we shall exploit the following well known result (used also in
[1] and [6]).

Lemma 4. Let Ω ⊂ Rn be a smoothly bounded domain. For any u ∈ H1
0 (Ω), we

have

‖ u
δr
‖p ≤ C4‖∇u‖, (4.qui)

where δ = δ(x) = dist (x, ∂Ω), r ∈ [0, 1] and p ≤ 2n
n−2(1−r) (= 2

r if n = 2).

Since δ(x) ≤ Cϕϕ1(x) for some Cϕ > 0, it is now easy to show the next three
lemmata.

Lemma 5. There exists a constant C5 = C5(‖uo‖, ‖vo‖) such that

1
2
d

dt
‖u‖2 + ‖∇u‖2 + b‖u‖2 =

∫
Ω

u2v dx ≤ C5‖∇u‖4/3‖∇v‖. (5.qui)

Proof. The equality in (5.qui) can be obtained by multiplying the first equation in (S.qui)
by u and integrating over Ω. Now the Hölder inequality, Lemmata 3, 4 and any
choice of α, α′ > 1 with 1

α + 1
α′ = 1 imply∫

Ω

u2v dx ≤
(∫

Ω

uδ dx
)2/3(∫

Ω

u4v3δ−2 dx
)1/3

≤ (CϕC3)2/3
(∫

Ω

( u

δ1/(2α)

)4α

dx
)1/(3α)(∫

Ω

( v

δ2/(3α′)

)3α′

dx
)1/(3α′)

≤ (CϕC3)2/3C
7/3
4 ‖∇u‖4/3‖∇v‖.

Lemma 6. There exists a constant C6 = C6(‖uo‖, ‖vo‖) such that

1
2
d

dt
‖v‖2 + ‖∇v‖2 = a

∫
Ω

uv dx ≤ C6‖∇u‖1/2‖∇v‖. (6.qui)
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Proof. The equality in (6.qui) follows from the second equation in (S.qui). Now, similarly
as in the proof of Lemma 5 we obtain∫

Ω

uv dx ≤
(∫

Ω

uδ dx
)1/2(∫

Ω

uv2δ−1 dx
)1/2

≤ (CϕC3)1/2
(∫

Ω

(u
δ

)2

dx
)1/4(∫

Ω

v4 dx
)1/4

≤ C6‖∇u‖1/2‖∇v‖,

since H1(Ω) is imbedded in Lp(Ω) for any p ≥ 1.

Lemma 7. There exists a constant C7 = C7(‖uo‖, ‖vo‖) and for any ε > 0 there
exists a constant Cε > 0 such that

‖u‖ ≤ C7‖∇u‖2/3, ‖v‖ ≤ C7‖∇v‖2/3,
‖uv‖ ≤ Cε(‖∇u‖2/3+ε + 1)‖∇v‖.

(7.qui)

Proof. Denoting w := u or w := v and C23 := max(C2, C3) we get∫
Ω

w2 dx ≤
(∫

Ω

wδ dx
)2/3(∫

Ω

( w

δ1/2

)4

dx
)1/3

≤ (CϕC23)2/3C
4/3
4 ‖∇w‖4/3.

Putting Kε = 2(2+ε)
ε and using ‖w‖p ≤ cp‖∇w‖ for any p ≥ 1 we obtain∫

Ω

u2v2 dx ≤
(∫

Ω

u2+ε dx
)2/(2+ε)(∫

Ω

vKε dx
)2/Kε

≤ c2Kε‖∇v‖
2
(∫

Ω

u2 dx
)(2−ε)/(2+ε)(∫

Ω

u4 dx
)ε/(2+ε)

≤ c2Kεc
4ε/(2+ε)
4 C

2(2−ε)/(2+ε)
7 ‖∇v‖2‖∇u‖4/3+ε′ ,

where ε′ < 2ε.

Lemma 8. There exists a constant C8 = C8(‖∇vo‖, ‖∇uo‖) such that

‖∇v(t)‖ ≤ C8 max
0≤τ≤t

‖∇u(τ)‖1/2 for any t ≥ 0. (8.qui)

Proof. If d
dt‖v(t)‖2 ≥ −‖∇v(t)‖2 then (6.qui) implies

‖∇v(t)‖ ≤ 2C6‖∇u(t)‖1/2 (9.qui)

and we are done. Hence, let d
dt‖v(t)‖2 < −‖∇v(t)‖2. Then

‖∇v(t)‖2 < − d

dt
‖v‖2 ≤ 2‖v‖ · ‖vt‖ ≤ 2C7‖∇v‖2/3 · ‖vt‖,
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so that

‖∇v‖4/3 ≤ 2C7‖vt‖. (10.qui)

Multiplying the second equation in (S.qui) by vt and integrating over Ω we get

‖vt‖2 +
1
2
d

dt
‖∇v‖2 = a

∫
Ω

uvt dx ≤
1
2
‖vt‖2 +

a2

2
‖u‖2,

which together with (7.qui) yields

‖vt‖2 +
d

dt
‖∇v‖2 ≤ a2‖u‖2 ≤ (aC7)2‖∇u‖4/3. (11.qui)

Now (10.qui) and (11.qui) imply

1
(2C7)2

‖∇v‖8/3 +
d

dt
‖∇v‖2 ≤ (aC7)2‖∇u‖4/3. (12.qui)

If ‖∇v‖ ≤ (2aC2
7 )3/4‖∇u‖1/2 then we are done. Otherwise the inequality (12.qui)

implies d
dt‖∇v‖2 < 0 and putting

t1 := inf{τ > 0 ;
d

dt
‖∇v‖2 < 0 on (τ, t]}

we have ‖∇v(t)‖ < ‖∇v(t1)‖.
If t1 = 0 then ‖∇v(t)‖ < ‖∇v(0)‖ ≤ C0‖∇u(0)‖1/2 for some C0 > 0. Hence,

we may assume t1 > 0.
If d

dt‖v(t1)‖2 ≥ −‖∇v(t1)‖2 then the inequality (9.qui) (with t replaced by t1)
implies

‖∇v(t)‖ < ‖∇v(t1)‖ ≤ 2C6‖∇u(t1)‖1/2.
If d

dt‖v(t1)‖2 < −‖∇v(t1)‖2 then the inequality (12.qui) (with t replaced by t1)
implies

‖∇v(t)‖ < ‖∇v(t1)‖ ≤ (2aC2
7 )3/4‖∇u(t1)‖1/2,

since the definition of t1 implies d
dt‖∇v(t1)‖2 = 0 if t1 > 0.

Lemma 9. There exists a constant C9 = C9(‖∇uo‖, ‖∇vo‖) such that

‖∇u(t)‖ ≤ C9 for any t ≥ 0.

Proof. We may suppose ‖∇u(0)‖ < supt≥0 ‖∇u(t)‖ (otherwise we are done). Let
to > 0 be such that

‖∇u(to)‖ = max
0≤t≤to

‖∇u(t)‖. (13.qui)

If d
dt‖u(to)‖2 ≥ −‖∇u(to)‖2 then (5.qui), Lemma 8 and (13.qui) imply

‖∇u(to)‖2 ≤ 2C5‖∇u(to)‖4/3‖∇v(to)‖ ≤ 2C5C8‖∇u(to)‖11/6,
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hence
‖∇u(to)‖ ≤ (2C5C8)6.

Consequently, we may assume

d

dt
‖u(to)‖2 < −‖∇u(to)‖2.

This implies

‖∇u(to)‖2 < −
d

dt
‖u‖2 ≤ 2‖u‖ · ‖ut‖ ≤ 2C7‖∇u‖2/3‖ut‖,

so that

‖∇u(to)‖4/3 ≤ 2C7‖ut(to)‖. (14.qui)

Multiplying the first equation in (S.qui) by ut and integrating over Ω we obtain

‖ut(to)‖2 ≤ ‖ut‖2 +
1
2
d

dt
‖∇u‖2 = −b

∫
Ω

uut dx+
∫
Ω

uvut dx

≤ 1
2
‖ut‖2 + ‖uv‖2 + b2‖u‖2,

where the inequality d
dt‖∇u(to)‖2 ≥ 0 follows from (13.qui). Now the last inequality

together with (14.qui) and Lemmata 7, 8 imply

1
(2C7)2

‖∇u(to)‖8/3 ≤ ‖ut(to)‖2 ≤ 2‖uv(to)‖2 + 2b2‖u(to)‖2

≤ C̃ε(‖∇u(to)‖4/3+2ε + 1)(‖∇v(to)‖2 + 1)
≤ C̃ ′ε(‖∇u(to)‖7/3+2ε + 1),

so that the choice ε < 1/6 yields the desired estimate for ‖∇u(to)‖.
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Abstract. Dynamical systems with several equilibria occur in various
fields of science and engineering: electrical machines, chemical reactions,
economics, biology, neural networks. As pointed out by many researchers,
good results on qualitative behaviour of such systems may be obtained if
a Liapunov function is available. Fortunately for almost all systems cited
above the Liapunov function is associated in a natural way as an energy
of a certain kind and it is at least nonincreasing along systems solutions.
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1 Introduction

Dynamical systems with several equilibria occur in various fields of science and
engineering: electrical machines, chemical reactions, economics, biology, neural net-
works. These systems are models of either natural or man-made physical systems.
In both cases stability properties are required for various reasons but in fact stabil-
ity means always some “good behaviour” with respect to short-term disturbances.
In man-made systems technological operation is connected with stability of the
“operating points” i.e. of some constant solutions of the dynamical model.

Technological operation is closely connected with oriented changes from one
operating point to another i.e. with transients. With respect to the new operating
point (constant solution) the old operating point is a perturbed initial condidtion

http://www.comp-craiova.ro
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generating a transient motion (dynamics trajectory) that should end in the new
operating point. This is clearly a stability-like property.

Stability is a property of a single solution (equilibrum) and a local one. Linear
systems and systems with an almost linear behaviour have a single equilibrum that
is globally asymptotically stable.

For systems with several equilibria the usual local concepts of stability are
not sufficient for an adequate description. The so-called “global phase portrait”
may contain both stable and nonstable equilibria. Of course each of them may
be characterized separately since stability is a local concept. Nevertheless global
concepts are also required for a better system description.

We consider here a single example: the case of the neural networks. The neural
networks are interconnections of simple computing elements whose computational
capability is increased by interconnection (emergent collective capacities). This
is due to the nonlinear characteristics leading to the existence of several stable
equilibria. The network achieves its computing goal if no self-sustained oscillations
are present and it always achieves some steady-state (equilibrium) among a finite
(while large) number of such states.

This behaviour is met in other systems also. For instance chemical systems or
biological communities display several equilibria, according to the external condi-
tions (environment). The models in macroeconomics need several equilibria since
in practice this is indeed the case and economic policies (good or bad) are nothing
else but “manoeuvres” that take economic systems from one stable equilibrium
to another - in the same way as mechanical manoeuvres take engineering systems
from one operating point to another.

2 Basic concepts and tools

The basic concepts in the field of the systems with several equilibria come from the
papers of Kalman [7] from 1957 and Moser [10] from 1967. Especially the second
paper relies on the following remark:

Consider the system

ẋ = −f(x), x ∈ Rn, (1.ras)

where f(x) = gradG(x) and G : Rn → R has the following properties:

i) lim|x|→∞G(x) =∞ and
ii) the number of the critical points is finite.

In this case any solution of (1.ras) approaches asymptotically one of the equilibrum
points (which is also a critical point of G — where the gradient i.e. f vanishes). It
is only natural to call this behaviour gradient-like but there are other properties
that are also important while weaker. With respect to this we shall need some
basic notions. Our object will be here the system of ordinary differential equations

ẋ = f(x, t). (2.ras)
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Definition 1. a) Any constant solution of (2.ras) is called equilibrium. The set of
equilibria E is called stationary set.

b) A solution of (2.ras) is called convergent if it approaches asymptotically some
equilibrium:

limt→∞x(t) = c ∈ E
A solution is called quasi-convergent if it approaches asymptotically the sta-
tionary set:

limt→∞d(x(t), E) = 0

Definition 2. System (2.ras) is called monostable if every bounded solution is con-
vergent; it is called quasi-monostable if every bounded solution is quasi-convergent.

Definition 3. System (2.ras) is called gradient-like if every solution is convergent; it
is called quasi-gradient-like if every solution is quasi-convergent.

Since there exist also other terms for these notions some comments are nec-
essary. The notion of convergence still defines a solution property and was intro-
duced by Hirsch [5,6]. Monostability has been introduced by Kalman [7] in 1957;
sometimes it is called strict mutability (Popov [11]) while quasi-mono-stability is
called by the same author mutability and by other dichotomy (Gelig, Leonov, and
Yakubovich [3]). In fact for monostable (quasi-monostable) systems some kind of
dichotomy occurs: their solutions are either unbounded or tend to an equilibrium
(or to the stationary set); in any case self-sustained periodic or almost periodic os-
cillations are excluded. The quasi-gradient-like property is called sometimes global
asymptotics.

It is obvious that while convergence is associated to solutions, monostability
and gradient-like property are associated to systems. At this point we add some
properties related to the stationary set (Gelig, Leonov and Yakubovith [3])

Definition 4. The stationary set E is uniformly stable if for any ε > 0 there exists
δ(ε) such that for any t0 if d(x(t0), E) < δ then d(x(t), E) < ε for all t ≥ t0.

The stationary set E is uniformly globally stable if it is uniformly Liapunov
stable and the system is quasi-gradient-like (has global asymptotics).

The stationary set is pointwise globally stable if it is uniformly Liapunov stable
and the system is gradient-like.

For autonomus (time-invariant systems) the following Liapunov-type results
are available (Gelig, Leonov and Yakubovitch [3]; Leonov, Reitmann and Smirno-
va [9]).

Lemma 5. Consider the nonlinear system

ẋ = f(x) (3.ras)

and assume existence of a continuous function V : Rn → R that is nonincreasing
along any solution of (3.ras). If, additionaly, a bounded on R+ solution x(t) for which
there exists some τ > 0 such that V (x(τ)) = V (x(0)) is an equilibrium then the
system is quasi-monostable.
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Lemma 6. If the assumptions of Lemma 5 hold and, additionaly, V (x)→∞ for
|x| → ∞ then system (3.ras) is quasi-gradient-like.

Lemma 7. If the assumptions of Lemma 6 hold and the set E is discrete (i.e. it
consists of isolated equilibria only) then system (3.ras) is gradient-like.

3 Applications from chemical kinetics

3.1. We shall consider first a model from the book of Frank-Kamenetskii [2], stud-
ied in the diffusion context by Kružkov and Peregudov [8]; here the diffusion phe-
nomenon will be left aside. The model reads like (3.ras) but under the following
assumptions:

i) f : Q→ Rn, Q = {x ∈ Rn, xi ≥ 0, i = 1, n};
ii) f(0) = 0;

iii) ∂fi

∂xj ≥ 0, ∀x ∈ Q, i, j = 1, n;
iv)

∑n
1 f

i(x) ≡ 0.

Then the following properties of the system are valid (Halanay and Răsvan [4]):

a) Q is an invariant set of the system;
b) all solutions in Q are bounded;
c)
∑n

1 |xi(t) − yi(t)| ≤
∑n

1 |xi(τ) − yi(τ)| for all t ≥ τ, x(t) and y(t) being two
solutions of (3.ras) from Q;

d) the function V (x) =
∑n

1 |f i(x)| is nonincreasing along the solution of (3.ras) i.e.
it is a Liapunov function; moreover this Liapunov function cannot be constant
if it is not identically zero.

We may state now

Theorem 8. For every M > 0 there exist equilibria x̂ such that
∑n

1 x̂
i = M and

the system is gradient-like on the sets
∑n

1 x
i = M .

Outline of proof: Let x(t) be a solution with
∑n

1 x
i(0) = M . From iv) we

deduce that
∑n

1 x
i(0) ≡ M , the solution is bounded and the ω-limit set is not

empty. On the ω-limit set V (x(t)) is constant hence it is identically zero; from
here we obtain that the ω-limit set consists only of equilibria. Since all solutions
are bounded the system is quasi-gradient-like. Using c) we obtain that the system
is even gradient-like.

3.2. Consider now the case of a closed chemical system subject to mass-action
law and constant temperature—the formal kynetics system ([4]):

ċi =
∑n

j=1(βij − αij)(w+
j (c)− w−j (c)), i = 1,m

w+
j (c) = k+

j

∏m
1 (ci)αij , w−j (c) = k−j

∏m
1 (ci)βij ,

(4.ras)
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where the nonnegative integers αij , βij (stoichiometric coefficients) satisfy the fol-
lowing assumption (∀j)(∃i : αij+βij 6= 0), that is each substance has to participate
at least to one reaction either as reactant or as product. Using this assumption
we can prove positivity of the concentrations: if the above assumption holds then
ci(0) ≥ 0, i = 1,m implies that for any i = 1,m either ci(t) > 0 or ci(t) ≡ 0 on
the entire existence interval of the solution. Any point c with ci > 0, i = 1,m is
called admissible; the set of the admissible points is called admissible set. Another
property of the system is existence of a set of conservation laws that define an
invariant hyperplane. By writing (4.ras) as follows

ċ = Gw(c), (5.ras)

where rank G = r we may obtain by reordering (5.ras) the partition

ċr = G11w
r(c) +G12w

m−r(c),
ċm−r = G21w

r(c) +G22w
m−r(c), (6.ras)

where detG11 6= 0. Then the following linear invariant manifold is obtained

L(c) ≡ cm−r −G21G
−1
11 c

r = cm−r(0)−G21G
−1
11 c

r(0) (7.ras)

called “substance balance hyperplane” that is in fact a linear system of conserva-
tion laws.

The equilibrium set of (4.ras) may be quite rich but among the equilibria are of
interest the detailed-balance equilibria defined by

w+
j (c) = w−j (c), j = 1, n (8.ras)

and mainly those belonging to the admissible set Q = {c ∈ Rm, ck > 0, k = 1,m}
called admissible detailed balance equilibria.

The following result of Zeldovič is valid

Proposition 9. If (4.ras) has an admissible detailed balance equilibrium and in the
linear manifold L(c) = q there exists an admissible point then in this manifold
there exists a unique detailed balance point.

If (4.ras) is such that an admissible detailed balance equilibrium exists then the
following Liapunov function may be associated to it:

Vĉ =
m∑
1

ck(ln(ck/ĉk)− 1) (9.ras)

and the following is true (Halanay & Răsvan [4])

Theorem 10. If an admissible detailed balance equilibrium exists, the following
properties of the solutions with ci(0) ≥ 0, i = 1,m are valid:

1. The solutions are bounded.



212 Vladimir Răsvan

2. There are no periodic nonconstant solutions with nonnegative components.
3. Any equilibrium point with nonnegative components is a detailed balance point.
4. The ω-limit set of any solution is composed of equilibrium points only; if such

a set contains an admissible detailed balance point it coincides with it being a
singleton.

5. An admissible detailed balance point is stable in the sense of Liapunov and it
is an attractor in the invariant hyperplane that contains it.

6. A solution such that limt→∞c(t) exists and has all its components positive is
Liapunov stable.

Some comments are necessary. The first four properties show that, with respect
to those solutions that are physically significant, the system is quasi-gradient-like
but if among the equilibria of a given ω-limit set there is one admissible detailed
balance point, the ω-limit set coincides with it; this singleton is stable in the sense
of Liapunov and even asymptotically stable when the solutions are reduced to the
invariant hyperplane containing this point.

The remarkable property of this system would be existence of an admissible
point in the ω-limit set of any solution. In this case the ω-limit set would reduce
to it and the attraction domain would coincide with the entire hyperplane. The
system would be gradient-like with respect to admissible set Q. Unfortunately this
is still an open question. We may nevertheless mention that some recent results
for the case of two substances exist (Simon & Farkas [12]).

4 Applications from biology

A. Consider first the model of Volterra type for n species that compete for some
resource:

dNi
dt

= Ni(εi −
n∑
j=1

γijNj), i = 1, n (10.ras)

This model has been studied intensely (e.g. Volterra[14]; Svirežev [13]) for the
case ofthe so-called dissipative community: εi > 0 and there exist αi > 0 such that
the quadratic form

∑n
1

∑n
1 αiγijxixj is positive definite. Here we shall consider

the general case because of its similarity to mass action chemical kinetics.
We assume, as in the case of the chemical kinetics, existence of an equilibrium

N̂i, i = 1, n with all N̂i > 0. Associate to (10.ras) the following function:

LN̂ =
n∑
1

N̂i

(
Ni

N̂i
− 1− ln

Ni

N̂i

)
(11.ras)

which is of the same type as (9.ras); with the new variables xi = ln(Ni/N̂i) we obtain:
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dxi
dt

= εi −
n∑
j=1

γijN̂je
xj , (12.ras)

LN̂ =
n∑
1

N̂i (exi − 1− xi) (13.ras)

and it may be easily seen that (12.ras) can be written as:

dxi
dt

= −
n∑
j=1

γij
∂L

∂xi
(x1, · · · , xn) (14.ras)

i.e. the system is quasi-gradient-like. We have L(x1, x2, · · · , xn) > 0 and also

d

dt
L(x1(t), · · · , xn(t)) = −

n∑
1

n∑
1

γij
∂L

∂xi

∂L

∂xj

and if the matrix (γij) is nonnegative definite then L is decreasing (nonincreasing
along the solutions of (14.ras). Obviously L is bounded for bounded xi (see the pre-
vious section) hence the system is quasi-monostable. Moreover the critical point
of L i.e. x1 = x2 = · · · = xn = 0 is globally assymptotically stable. We have also
L(x)→∞ for |x| → ∞ hence according to Lemma 6 the system is quasi-gradient
like. Moreover the equilibria of (14.ras) are given by

∑
γij

∂L

∂xi
= 0

and the structure of L shows that they are isolated. We obtained the following

Theorem 11. If system (10.ras) has an equilibrium with al components positive and
the matrix γij is positive definte then it is gradient-like.

B. An example taken from a different field of biological sciences is the model of
evolutionary selection of macromolecular species of Eigen and Schuster (taken from
the paper of Cohen and Grossberg [1]):

ẋi = xi(mix
p−1
i − q

n∑
k=1

mkx
p
k) (15.ras)

Remark that if p = 1 a special case of (10.ras) is obtained. In fact, as shown is the
cited paper, many of the biological models may be obtained from a general neural
network model that will be shown next. For this reason we do not insist here on
Eigen-Schuster model.
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5 Continous-time neural networks

The neural networks are structures that possess “emergent computational capa-
bilities” that is they are interconnected simple computational elements to which
interconnections confer increased computational power.

The general model considered here (Cohen and Grossberg [1]) reads

ẋi = ai(xi)[bi(xi)−
n∑
1

cijdj(xj)], i = 1, n, (16.ras)

where cij = cji. The following Liapunov function is associated

V (x) =
1
2

n∑
1

n∑
1

cijdi(xi)dj(xj)−
n∑
1

∫ xi

0

bi(λ)d′i(λ)dλ (17.ras)

that is much alike to the Liapunov function of the absolute stability problem.
It can be seen that (16.ras) may be given the form

ẋ = −A(x) grad V (x), (18.ras)

where the items of A(x) are

Aij(x) =
ai(xi)
d′i(xi)

δij (19.ras)

Also the derivative of V along the solutions of V (x) reads

W (x) = −
n∑
1

ai(xi)d′i(xi)
[
bi(xi)−

n∑
1

cijdj(xj)
]2

≤ 0

provided ai(λ) > 0 and di(λ) are nondecreasing. If additionally di(·) are strictly
increasing the set, where W (x) = 0 consists only of equilibria. It follows that the
system is quasi-gradient-like (Lemma 6).

Usually the property required for neural networks is gradient-like behavoiur.
This property requires always specific studies since in the general case of (16.ras) the
equilibrium set may contain countably many equilibria.

6 Concluding remarks

We have presented here some models occuring in various fields of science and engi-
neering; nevertheless they have some common features. First of all they belong to
the class of so called competitive differential systems [5]. They all have many equi-
libria and require those qualitative concepts that were introduced for such systems
(mutability, dichotomy, gradient behaviour). In obtaining the required properties
the milestone is to show that the ω-limit sets of the solutions are composed of
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isolated equilibria only. Usually this goal is achieved using specific methods of
differential topology that take into account the structure of differential equations
that are competitive [5].

Existence of a suitable Liapunov function may simplify the task of showing
that the ω-limit sets are composed of equilibria only; this was supposed to be the
mainstream of the present paper and it illustrates that it is desirable to associate a
Liapunov function, in a natural way, to any dynamical model. Of course, “guessing”
a Liapunov function remains an art and a challenge.
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Abstract. This article is concerned with the nonlinear singular perturba-
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1 Introduction

In this article we will study the asymptotic behavior of the solutions of certain
reaction diffusion equations with small diffusivity. We will focus on the Chaffee-
Infante equation:

∂uε

∂t
− ε∆uε + (uε)3 − uε = f in Ω, (1.tem)
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where Ω is a two dimensional channel

Ω = (0, 2π)× (0, 1), (2.tem)

but the methods apply to more general polynomial nonlinearities and to higher
space dimensions.

The initial and boundary conditions associated with (1.tem) and (2.tem) are

uε = u0 at t = 0, (3.tem)

and 
uε = 0 at y = 0 and 1,
and periodicity (2π) for all functions
in the horizontal (x) direction.

(4.tem)

The corresponding “inviscid” equation is the reaction equation:

∂u0

∂t
+ (u0)3 − u0 = f in Ω, (5.tem)

with the initial condition

u0 = u0 at t = 0. (6.tem)

We will assume that u0 satisfies the boundary conditions (4.tem) while f need not
vanish at the wall. Thus there is a boundary layer near the wall (at y = 0 and
y = 1) which is the main object under investigation in this article.

We will assume enough smoothness on u0 and f so that all the calculations
hereafter are justified. We will also consider the time T fixed and let the diffusivity
ε approaches zero. This is the case since the solutions of the reaction equation (5.tem)
may develop internal layers as time approaches infinity. This would prevent us from
obtaining a simple boundary layer expansion for the reaction-diffusion equation
(1.tem). The long time asymptotics will be considered elsewhere.

The difficulty of the problem lies in the disparity of the boundary conditions of
(1.tem) and (5.tem) which makes this a singular perturbation problem. The approach that
we take are the ones suggested by Lions [8], Vishik and Lyusternik [17] (see also
Temam and Wang [14,15,16]), i.e. the construction and utilization of a corrector.
The advantage of this approach, in terms of the common matched asymptotic
expansion, is that once we have found the right corrector, the outer expansion for
the corrector equation would be trivial (zero) and thus no matching is necessary
at all. The other tools that we need here are maximum principle, energy estimates
and anisotropic Sobolev imbeddings.

Our method can be carried over to more general reaction-diffusion type equa-
tions where the reaction term is a polynomial of odd degree and the leading co-
efficient positive (see for instance Temam [13]). Note however that the geometry
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that we consider is flat, our objectives and the type of problems we are interested
in are not the same as those occuring with curved boundaries in relation in partic-
ular with the Ginzburg Landau equation (see e.g. [11], [12] and the bibliography
therein).

Our main results are the following:

Theorem 1. There exist constants Kj depending on T, u0 and f only such that∥∥∥∥uε(t;x, y)− u0(t;x, y)−M
(
t, x,

y√
ε

)
−N

(
t;x,

1− y√
ε

)∥∥∥∥
L∞((0,T )×Ω)

≤ K1ε
1/2, (7.tem)∥∥∥∥uε(t;x, y)− u0(t;x, y)−M

(
t, x,

y√
ε

)
−N

(
t;x,

1− y√
ε

)∥∥∥∥
L∞(0,T ;L2(Ω))

≤ K2ε
3/4
1 , (8.tem)∥∥∥∥uε(t;x, y)− u0(t;x, y)−M

(
t, x,

y√
ε

)
−N

(
t;x,

1− y√
ε

)∥∥∥∥
L∞(0,T ;H1(Ω))

≤ K3ε
1/4, (9.tem)

where M and N are solutions of

∂M

∂t
− ∂2M

∂y2
+M3 −M + 3g0M

2 + 3g2
0M = 0 in y > 0, (10.tem)

M = 0 at t = 0, (11.tem)

and

M = −g0 at y = 0, M → 0 as y → +∞, (12.tem)

∂N

∂t
− ∂2N

∂y2
+N3 −N + 3g1N

2 + 3g2
1N = 0 in y > 0, (13.tem)

N = 0 at t = 0, (14.tem)

and

N = −g1 at y = 0, N → 0 as y → +∞, (15.tem)

where

g0(t;x) = u0|y=0, g1(t;x) = u0|y=1. (16.tem)

Here the spaces are defined as

H1
p (Ω) =

{
v ∈ H1(Ω), v is periodic in x with period 2π

}
; (17.tem)

H1
0p(Ω) =

{
v ∈ H1

p (Ω), v = 0 at y = 0 and y = 1
}
. (18.tem)

The rest of the article is organized as follows. In the next section we introduce
a preliminary form of the corrector and derive some useful estimates; then, in the
last section, we derive the correctors (M and N) and prove the main result.
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2 The Preliminary Form of the Corrector

It is obvious that uε cannot converge to u0 as ε approaches zero uniformly in Ω.
However it is plausible to think that the convergence is true in the interior of Ω
since the diffusive coefficient is small. If this is true, uε − u0 can be approximated
by a boundary layer type function θε called corrector (see Lions [8]). Considering
(1.tem) and (5.tem) we propose that θε be the solution of the following evolution equation

∂θε

∂t
− ε∆θε + (θε)3 − θε + 3u0(θε)2 + 3(u0)2θε = 0 in Ω, (19.tem)

θε = 0 at t = 0, (20.tem)

θε = −u0 at y = 0 and y = 1. (21.tem)

We are led to estimate wε = uε − u0 − θε which satisfies the equation

∂wε

∂t
− ε∆wε + (wε)3 − wε + 3uε(u0 + θε)wε = ε∆u0 in Ω, (22.tem)

wε = 0 at t = 0, (23.tem)
wε = 0 at y = 0 and y = 1. (24.tem)

Denoting K a generic constant which may depend on T, u0 and f but is inde-
pendent of ε, and which may change from place to place, we obtain:

‖∇ku0‖L∞((0,T )×Ω) ≤ K for k = 0, 1, . . . (25.tem)

and by the usual maximum principle

‖uε‖L∞((0,T )×Ω) ≤ K, (26.tem)
‖θε‖L∞((0,T )×Ω) ≤ K, (27.tem)

‖M‖L∞((0,T )×{y>0}) + ‖N‖L∞((0,T )×{y>0}) ≤ K. (28.tem)

The maximum principle applies to wε (equation (22.tem)) as well. Indeed let K1

be a constant independent of ε and larger than 3‖uε(u0 + θε)‖L∞((0,T )×Ω), and
consider

w̃ε = e−(K1+2)twε;

we have

∂w̃ε

∂t
− ε∆w̃ε + e2(K1+2)t(w̃ε)3 + (K1 + 2 + 3uε(u0 + θε))w̃ε = εe−(K1+1)t∆u0,

It is now easy to observe that

w̃ε(t;x, y) ≤ ε‖∆u0‖L∞((0,T )×Ω) for (t;x, y) ∈ (0, T )×Ω.

We can derive a corresponding lower bound and thus we conclude that

‖wε‖L∞((0,T )×Ω) ≤ Kε. (29.tem)
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This indicates that θε is a good preliminary corrector. Furthermore, standard
energy estimates for (22.tem) yield

‖wε‖L∞(0,T ;L2(Ω)) ≤ Kε, (30.tem)

‖wε‖L2(0,T ;H1(Ω)) ≤ Kε1/2. (31.tem)

This again confirms the choice of θε.
To derive L∞(H1) estimates on wε we multiply (22.tem) by −∆wε and integrate

over Ω. We have, after rewriting u0 + θε as uε − wε,
1
2
d

dt
|∇wε|2L2(Ω) + ε|∆wε|2L2(Ω) +

∫
Ω

3(wε)2|∇wε|2

+ 3
∫
Ω

(uε)2|∇wε|2 + 6
∫
Ω

uεwε∇uε · ∇wε

− 6
∫
Ω

uεwε|∇wε|2 − 3
∫
Ω

(wε)2∇uε · ∇wε

≤ ε

2
|∆wε|2L2(Ω) +K|∇wε|2L2(Ω) +Kε3/2.

(32.tem)

For the right-hand side of (32.tem) we have used the following inequality, with f and
u replaced by ε∆u0 and wε :

−
∫
Ω

f∆u =
∫
Ω

∇f∇u−
∫
y=1

f
∂u

∂y
+
∫
y=0

f
∂u

∂y
,

and hence∣∣∣∣∫
Ω

f∆u

∣∣∣∣ ≤ |∇f |L2(Ω)|∇u|L2(Ω) + |f |L2(Γ )

∣∣∣∣∂u∂y
∣∣∣∣
L2(Γ )

≤ |∇f |L2(Ω)|∇u|L2(Ω) +K|f |L2(Γ )|∇u|1/2L2(Ω)|∆u|
1/2
L2(Ω)

≤ |∇f |L2(Ω)|∇u|L2(Ω) +
ε

2
|∆u|2L2(Ω) + |∇u|2L2(Ω) +Kε−1/2|f |2L2(Γ ).

(33.tem)

The treatment of inequality (32.tem) then necessitates estimates on ∇uε which can be
derived by multiplying (1.tem) by −∆uε integrating over Ω and applying the Uniform
Gronwall inequality (see e.g. [13]). We also apply (33.tem) with u replaced by uε. We
find:

‖uε‖L∞(0,∞;H1(Ω)) ≤ Kε−1/4. (34.tem)

Combining (26.tem), (27.tem), (29.tem), (32.tem) and (34.tem) we deduce

d

dt
|∇wε|2L2(Ω) + ε|∆wε|2L2(Ω) ≤ K|∇wε|2L2(Ω) +Kε3/2 +Kε2|∇uε|2L2(Ω),

which implies

‖wε‖L∞(0,T ;H1(Ω)) ≤ Kε3/4, ‖wε‖L2(0,T ;H2(Ω)) ≤ Kε1/4. (35.tem)
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By differentiating the equations in x and repeating the above procedures, we see
that the above estimates remain valid for ∂kwε/∂xk. This confirms our intuition
that tangential derivatives are small even though the normal ones might be large.

3 The Explicit Corrector and the Proof of the Theorem

Since the tangential derivatives are small we tend to neglect them in equation (19.tem).
We also expect that θε be a boundary layer type function, i.e. it decays fast in
the interior of the domain, thus in terms of matched asymptotic expansions, the
outer expansion should be trivial (which is easy to see) and the inner expansion
matches the outer one automatically. This leads us to propose M and N defined
by (10.tem)–(16.tem) as the inner expansions at y = 0 and y = 1 respectively. We will
check that these expressions are suitable.

We first prove the decay property of M,N, and θε. It is enough to prove this
for θε. Let η ∈ C∞0 ([0, 1]) be a cut-off function, η ≥ 0.

Standard energy estimates yield

1
2
d

dt

∫
Ω

η(θε)2 + ε

∫
Ω

η|∇θε|2 +
∫
Ω

(
η(θε)4 − η(θε)2 + 3u0η(θε)3 + 3(u0)2η(θε)2

)
= −ε

∫
Ω

η′
∂θε

∂y
θε =

ε

2

∫
Ω

η′′(θε)2. (36.tem)

Using a function of the form

ϕε(t;x, y) = −g0(t;x)ρ
(
y√
ε

)
− g1(t, x)ρ

(
1− y√
ε

)
, (37.tem)

with ρ ∈ C∞([0, 1]), ρ(0) = 1, supp ρ ⊂ [0, 1
2 ], and considering θε −ϕε, we deduce

‖θε‖L∞(0,T ;L2(Ω)) ≤ Kε1/4, (38.tem)

‖θε‖L2(0,T ;H1(Ω)) ≤ Kε−1/4. (39.tem)

This together with (36.tem), implies for δ ∈ (0, 1
2 ),

‖θε‖L∞(0,T ;L2(Ωδ)) ≤ Kδε
3/4,

‖θε‖L2(0,T ;H(Ωδ)) ≤ Kδε
1/4,

where

Ωδ = (0, 2π)× (δ, 1− δ), (40.tem)

and Kδ is a constant depending on δ, T, f, u0, but independent of ε.
By reiteration, we deduce

‖θε‖L∞(0,T ;L2(Ωδ)) ≤ Kδε
5/4, (41.tem)

‖θε‖L2(0,T ;H1(Ωδ)) ≤ Kδε
3/4. (42.tem)
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We could reiterate again but our aim now is to obtain estimates on higher
order derivatives of θε. For that purpose we multiply (19.tem) by −∇(η(y)∇θε) and
integrate over Ω.

Notice that

ε

∫
Ω

∆θεη′
∂θε

∂y
=
ε

2

∫
Ω

η′′|∇θε|2 − ε
∫
Ω

η′′
(
∂θε

∂y

)2

,∣∣∣∣∫
Ω

η∇θε∇((θε)3 + 3u0(θε)2 + 3(u0)2θε)
∣∣∣∣ ≤ K ∫

Ω

η|∇θε|2 +Kε5/2,

(Thanks to (27.tem), (41.tem) and (42.tem));

hence we have

‖θε‖L∞(0,T ;Hk(Ωδ)) ≤ Kδε
5/4, (43.tem)

‖θε‖L2(0,T ;Hk+1(Ωδ)) ≤ kδε
3/4, for k = 0, 1. (44.tem)

The procedure can be repeated for k = 2, 3, and with ∂kθε/∂xk replacing θε.
Similar estimates hold for M ε(t, x, y) = M(t, x, y√

ε
) and also for Nε(t, x, y) =

N(t;x, 1−y√
ε

). In particular we will have for

CεM (t;x, y) = −yM
(
t;x,

1√
ε

)
, (45.tem)

‖∇kCεM‖L∞((0,T )×Ω) ≤ Kε5/4, for k = 0, 1, 2, . . . (46.tem)∥∥∥∥∂CεM∂t
∥∥∥∥
L∞((0,T )×Ω)

≤ Kε5/4. (47.tem)

We then consider the quantity

qε = θε −M ε −Nε − Cε,

where Cε = CεM + CεN , CεN = −(1− y)N
(
t, x, 1√

ε

)
.

For the sake of simplicity, we now assume that f ≡ 0 on y = 1 and hence
g1 ≡ 0, which further implies N ≡ 0. Hence qε reduces to

qε = θε −M ε − CεM . (48.tem)

It satisfies the equation

∂qε

∂t
− ε∆qε + (θε)3 + 3u0(θε)2 + 3(u0)2θε

− (M ε)3 − 3g0(M ε)2 − 3g2
0M

ε − qε

= −∂C
ε
M

∂t
+ ε∆CεM + ε

∂2M ε

∂x2
+ CεM in Ω,

(49.tem)
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with initial and boundary conditions (thanks to N ≡ 0):

qε = 0 at t = 0, (50.tem)
qε = 0 on y = 0 and y = 1. (51.tem)

Notice that

(θε)3 − (M ε)3 = qε((θε)2 + θεM ε + (M ε)2) + CεM ((θε)2 + θεM ε + (M ε)2),

3u0(θε)2 − 3g0(M ε)2 = 3u0(θε +M ε)qε + 3u0(θε +M ε)CεM + 3(u0 − g0)(M ε)2,

3(u0)2θε − 3g2
0M

ε = 3(u0)2qε + 3(u0)2CεM + 3(u0 + g0)(u0 − g0)M ε;

hence we may rewrite (49.tem) as

∂qε

∂t
− ε∆qε + ((θε)2 + θεM ε + (M ε)2)qε

+ 3u0(θε +M ε)qε + 3(u0)2qε − qε = f̃ in Ω, (49’)

where

f̃ =− ∂CεM
∂t

+ ε∆CεM + ε
∂2M ε

∂x2
+ CεM

−
(
(θε)2 + θεM ε + (M ε)2 + 3u0(θε −M ε) + 3(u0)2

)
CεM

− 3(u0 − g0)(M ε)2 − 3(u0 + g0)(u0 − g0)M ε.

(52.tem)

By the choice of g0,
u0−g0
y remains bounded on (0, T )× Ω. In order to obtain

an L∞ estimate on f̃ (sharp in terms of dependence on ε), we need to obtain an
L∞ bound on yM. Consider (1 + y)M which satisfies the equation

∂((1 + y)M)
∂t

− ∂2

∂y2
((1 + y)M) +

1
(1 + y)2

((1 + y)M)3 +
3g0

1 + y
((1 + y)M)2

+ 3g2
0(1 + y)M − (1 + y)M = −2

∂M

∂y
, (53.tem)

and

∂

∂t

(
∂M

∂y

)
− ∂2

∂y2

(
∂M

∂y

)
+ 3M2∂M

∂y
+ 6g0M

∂M

∂y
+ 3g2

0

∂M

∂y
− ∂M

∂y
= 0. (54.tem)

We see that ∂M
∂y satisfies a maximum principle and hence (1 + y)M too.

This combined with (27.tem), (28.tem), (46.tem) and (47.tem) yields

‖f̃‖L∞((0,T )×Ω) ≤ Kε1/2. (55.tem)

This further implies, via a maximum principle type argument as that for wε,

‖qε‖L∞((0,T )×Ω) ≤ Kε1/2. (56.tem)
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It is also easy to check, thanks to (46.tem), (47.tem) and the boundedness of u0−g0
y ,

that

‖f̃‖L2(0,T ;L2(Ω)) ≤ Kε3/4. (57.tem)

Thus standard energy estimates yield

‖qε‖L∞(0,T ;L2(Ω)) ≤ Kε3/4, (58.tem)

‖qε‖L∞(0,T ;H1(Ω)) ≤ Kε1/4. (59.tem)

The theorem then follows from (29.tem), (30.tem), (35.tem), (46.tem), (56.tem), (58.tem) and (59.tem).
This completes the proof.
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Dibĺık Josef, 31
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Răsvan Vladimir, 207

Sauter Stefan A., 105
Seidler Jan, 153
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