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Abstract. We give de�nitions for fuzzy subalgebras, for fuzzy
relations on fuzzy sets, and for fuzzy compatibility, which gener-
alize, improve and correct the existing ones. The unit interval is
replaced here by a partially ordered algebra. Then we study their
connection with the corresponding crisp concepts through their
newly de�ned Q-cuts.

1. Introduction

As it is well known, in the "classical" fuzzy theory established by
L. A. Zadeh [5], a fuzzy set A is de�ned as a map from A to the real
unit interval I = [0; 1]. The set of all fuzzy sets on A is usually denoted
by IA. It is also known that under the natural ordering IA is a complete
lattice. The order and the lattices as well as other operations on I can
be extended "pointwise" to IA.
In the paper [3] J. A. Goguen replaced I by a complete lattice L

in the de�nition of fuzzy sets introducing the notion of L-fuzzy sets.
Later more generalizations were also made using various membership
sets and operations.
The de�nitions given to the concepts of fuzzy substructures, rela-

tions and compatibility also involve di�erent membership sets and op-
erations. Now we unify and generalize these de�nitions recognizing
that in each case some kind of an ordered set and an operation hav-
ing some properties were used. To study the connection between the
corresponding crisp and fuzzy concepts the notion of Q-cut introduced
by the author in [2] will be used. The theorems proved also highly
generalize the existing ones.

2. Results

Let A be a nonvoid set and P = (P; �; 1;�) a (2; 0)-type ordered
algebra, i.e. let
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(i) (P; �) be a monoid,where 1 is the unity for �;
(ii) (P;�) be a (partially) ordered set with 1 as the greatest element;
(iii) � be isotone in both variables.

Further on, P always denotes such a structure.
A map � : A! P will be called a P -fuzzy subset of A or a P -fuzzy

set on A. Denote their family by PA. The order and the operations on
P can also be extended pointwise to PA. Recall that a subset Q of an
ordered set (P;�) is called a right segment or an upper set (P;�) i�

8q 2 Q; 8p 2 P : (q � p =) p 2 Q):

Clearly any closed interval [p; 1] in P is a right segment of (P;�). If
P is the unit interval, then only the closed intervals [�; 1], 0 � � � 1
form a right segment. If P is a lattice L, then any �lter (dual ideal) in
L is a right segment. Conversely, a right segment in L that is closed
under � (specially under meet) is a �lter. Let Q be a right segment
of P . Then by the Q-cut �Q of some � 2 PA we mean the following
subset of A:

�Q = fxjx 2 A; �(x) 2 Qg:

In case of P = I,the Q-cut reduces to the well known �-cut. A fuzzy
relation r on A is usually de�ned as an element of IA�A. Here we
will use (and generalize) the concept of fuzzy relation on fuzzy set,
introduced by A. Rosenfeld [4] and not frequently studied in literature.

De�nition 1. A P -fuzzy subset r of PA�A is called a P -fuzzy relation
on � 2 PA, if it satis�es the following property

8x; y : r(x; y) � �(x) � �(y):

Their family will be denoted by R(�).

De�nition 2. An r 2 R(�) is said to be

(i) re
exive, if

8x 2 A : r(x; y) = �(x) � �(y);

(ii) symmetric, if

8x; y 2 A : r(x; y) = r(y; x);

(iii) transitive, if for any x; z 2 A

8y 2 A : r(x; z) � r(x; y) � r(y; z):

A re
exive, symmetric and transitive P -fuzzy relation r 2 R(�) is
called a P -fuzzy similarity (on �).
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If A denotes a (universal) algebra, that is if A = (A; F ), where A is
a nonvoid set and F a speci�ed set of �nitary operations on A, then we
can introduce the concept of a fuzzy algebra � on A, and the concept
of a fuzzy compatible relation r on �.

De�nition 3. A P -fuzzy set � 2 PA is called a P -fuzzy algebra on
the algebra A or a P -fuzzy subalgebra of A, if

(i) for any n-ary (n � 1) operation f 2 F

�(f(x1:::xn)) � �(x1) � : : : � �(xn); 8x1; : : : ; xn 2 A;

(ii) for any constant (nullary operation) c

�(c) � �(x); 8x 2 A:

The type of a P -fuzzy algebra on A is given by that of A.

De�nition 4. Let A be an algebra and � 2 PA a P -fuzzy algebra on
A. An r 2 R(�) is called a P -fuzzy compatible relation on � if

(i) for any n-ary (n � 1) operation f 2 F

r(f(x1 : : : xn); f(y1 : : : yn)) � r(x1; y1) � : : : � r(xn; yn)

for all x1; : : : ; xn; y1; : : : ; yn 2 A;
(ii) for any constant (nullary operation)

8x; y 2 A : r(c; c) � r(x; y):

A compatible P -fuzzy similarity is called a P -fuzzy congruence (on the
P -fuzzy algebra �).

When A is a group, (ii) in De�nitions 3 and 4 is a consequence of
(i), respectively.
In fuzzy theory the following typical special cases used for the general

concepts de�ned in De�nitions 1,3,4:

1. P = I, � =minimum ("classical" case);
2. P = I, � =some t-norm, e.g. t-fuzzy group [1];
3. P = L, � =meet (L-fuzzy case).

Now we establish the connection between these fuzzy concepts and the
corresponding crisp ones through their Q-cuts.

Lemma 1. Let J = f1; : : : ; ng and K = fj1; : : : ; jkg � J , where

k � 2 and j1 < j2 < : : : < jk. Then in (P;�)

p1 � � � � � pn � pj1 � � � � � pjk (k = 2; : : : ; n)

for all p1; : : : ; pn 2 P .
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Proof. Using the isotonity we have

p1 � � � � � pn � 1 � � � � � pj1 � � � � � pjk � � � � � 1 = pj1 � � � � � pjk:

Lemma 2. Let � 2 PA. If r 2 R(�), then

(i) 8x; y 2 A : r(x; y) � �(x), r(x; y) � �(y);
(ii) rQ � �Q � �Q, where Q is a right segment of (P;�).

Proof. (i) r(x; y) � �(x) � �(y) � �(x) � 1 = �(x),
r(x; y) � �(x) � �(y) � 1 � �(y).
(ii) (x; y) 2 rQ =) r(x; y) 2 Q. Thus by (i):

�(x) 2 Q; �(y) 2 Q =) x; y 2 �Q =) (x; y) 2 �Q � �Q:

Theorem 1. Let A be an algebra and let � 2 PA. If each non-empty

Q-cut �Q of � is a subalgebra of A, then � is a P -fuzzy algebra on A.

Proof. Take any elements x1; : : : ; xn from A and any n-ary (n � 1)
operation f from F , and consider the following right segment of P

Q = [�(x1) � � � � � �(xn); 1] :

By Lemma 1 �(xi) 2 Q, therefore xi 2 �Q for all i. Since �Q is a
subalgebra, hence f(x1 : : : xn) 2 �Q, that is �(f(x1 : : : xn) 2 Q is also
true, which means that

�(f(x1 : : : xn)) � �(x1) � � � � � �(xn):

Now let c be some constant of the algebra A. Then by de�nition c is
an element of all subalgebras of A, specially of any �Q. Consequently
�(c) � �(x) must hold for all x 2 A. Suppose namely that �(c) < �(x)
for some x 2 A. Then c does not belong to the Q-cut �Q of �, where
Q = [�(x); 1]. This contradiction veri�es (ii) of De�nition 3, too.

Theorem 2. Let A be an algebra, � 2 PA a P -fuzzy algebra on A, and

Q a right segment of P . If Q is closed under �, then �Q is a subalgebra

of A.

Proof. Consider a right segment Q satisfying the given condition. Then
for any elements x1; : : : ; xn 2 �Q

�(x1) � � � � � �(xn) 2 Q

holds, since �(xi) 2 Q (i = 1; : : : ; n) and Q is closed under �. From
here by De�nition 3 we get

�(f(x1 : : : xn)) 2 Q and f(x1 : : : xn) 2 �Q;

which means that �Q is closed under f .
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Since by (ii) of De�nition 3 �(c) � �(x) for any constant c and for
all x 2 A, hence c 2 �Q for all nonempty �Q. Thus �Q is closed under
nullary operations, too, completing the proof.

Theorem 3. Let r 2 R(�), where � 2 PA. If each Q-cut rQ is an

equivalence relation on �Q for any right segment Q of P , then r is a

P -fuzzy similarity on �.

Proof. Let x be an arbitrary element of A. Take Q = [�(x) � �(x); 1].
Then �(x) 2 Q, that is x 2 �Q by Lemma 1. Since rQ is re
exive
on �Q, so x 2 �Q implies (x; x) 2 rQ. This means by de�nition that
r(x; x) � �(x) � �(x).
On the other hand, by de�nition of P -fuzzy relation on � (De�nition

1) r(x; x) � �(x) � �(x). These two inequalities together prove the
re
exivity of r.
Now, let x, y be arbitrary elements of A. If x; y 2 rQ for some

right segment Q, then by Lemma 2 x; y 2 �Q. Take Q = [r(x; y); 1].
Obviously r(x; y) 2 Q, that is (x; y) 2 rQ. Since rQ is symmetric, it
follows that (y; x) 2 rQ or r(y; x) 2 Q. Thus r(y; x) � r(x; y) holds.
Interchanging the role of x and y we similarly get: r(y; x) � r(x; y).
Consequently r(x; y) = r(y; x) for all x; y 2 A, verifying the symmetry
of r.
To prove the transitivity of r, consider the arbitrary elements x, y,

z of A, and choose the following right segment Q of P : Q = [r(x; y) �
r(y; z); 1]. Then by Lemma 1 r(x; y) 2 Q and r(y; z) 2 Q, that is
equivalently (x; y) 2 rQ and (y; z) 2 rQ. From here x; y; z 2 �Q follows
by Lemma 2. Further, since rQ is transitive on �Q, we have (x; z) 2 rQ,
i.e. r(x; z) 2 Q. Thus r(x; z) � r(x; y) � r(y; z), what we wanted to
prove.

Now we consider the inverse of Theorem 3.

Theorem 4. Let r be a P -fuzzy similarity on � 2 PA and let Q be a

right segment of P . If Q is closed under �, then rQ is an equivalence

relation on �Q.

Proof. Assume thatQ is closed under � and let x 2 �Q. Then �(x) 2 Q.
Since r is re
exive, we have r(x; x) = �(x) � �(x) 2 Q, which implies
that (x; x) 2 rQ so that rQ is re
exive on �Q. Let (x; y) 2 rQ. Then
r(x; y) 2 Q. Using the symmetry of r, we get r(y; x) 2 Q or (y; x) 2 rQ.
This proves that rQ is symmetric.
To prove transitivity, let (x; y) 2 rQ and (y; z) 2 rQ. Then r(x; y) 2

Q and r(y; z) 2 Q, which imply that r(x; y) � r(y; z) 2 Q because Q is
closed under �. Since r is transitive, we have r(x; z) � r(x; y) � r(y; z).
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Using the fact thatQ is a right segment of P , we conclude that r(x; z) 2
Q or (x; z) 2 rQ. This completes the proof.

Theorem 5. Let A be an algebra, � 2 PA, and r 2 R(�). If for all

non-empty right segment Q of P �Q is a subalgebra and rQ is congru-

ence on �Q, then r is P -fuzzy congruence on �.

Proof. By Theorem 1 � is a P -fuzzy algebra on A, so the statement is
not meaningless. Moreover, by Theorem 3 r is a P -fuzzy similarity on
�. Thus it is enough to show that r is a P -fuzzy compatible relation
by De�nition 4. Consider the elements xi; yi (i = 1; : : : ; n) from A,
and the n-ary (n � 1) operation f 2 F . If (xi; yi) 2 rQ for some right
segment Q and i = 1; : : : ; n, then by Lemma 2 xi; yi 2 �Q. Take the
foolowing right segment:

Q = [p1 � � � � � pn; 1];

where pi = r(xi; yi), i = 1; : : : ; n. Then by Lemma 1 r(xi; yi) 2 Q, and
consequently (xi; yi) 2 rQ for all i. Since rQ is a compatible relation on
the subalgebra �Q, therefore (xi; yi) 2 rQ (i = 1; : : : ; n) implies that

(f(x1 : : : xn); f(y1 : : : yn)) 2 rQ;

and consequently

r(f(x1 : : : xn); f(y1 : : : yn) 2 Q;

which means that

r(f(x1 : : : xn); f(y1 : : : yn)) � p1 � � � � � pn;

proving the ful�lment of (i) in De�nition 4 for r.
Now, let c be a constant in A. Since � is a P -fuzzy algebra, so by

de�nition �(c) � �(x) for all x 2 A. Since r is a P -fuzzy similarity on
�, hence

r(c; c) = �(c) � �(c) � �(x) � �(y) � r(x; y):

Thus (ii) of De�nition 4 also holds for r.

Theorem 6. Let A be an algebra, � a P -fuzzy algebra on A, and r a

P -fuzzy congruence on �. If a right segment Q of P is closed under �,
then rQ is congruence on �Q.

Proof. Because of Theorems 2 and 4 it is enough to prove that rQ is
a compatible relation on �Q, where Q is some right segment satisfying
the given condition.
If (xi; yi) 2 rQ, that is r(xi; yi) 2 Q, where xi; yi (i = 1; : : : ; n) are

arbitrary elements of A, then

r(x1; y1) � � � � � r(xn; yn) 2 Q
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is also true becauseQ is closed under �. Since r is a P -fuzzy congruence,
therefore

r(f(x1 : : : xn); f(y1 : : : yn)) 2 Q;

that is

(f(x1 : : : xn); f(y1 : : : yn)) 2 rQ

follows from here for any n-ary (n � 1) operation f 2 F .
Further by Lemma 2, (xi; yi) 2 rQ implies xi; yi 2 �Q. Thus rQ is

compatible on �Q with any n-ary (n � 1) operation f .
If c is an arbitrary constant in A, then by de�nition �(c) � �(x)

for all x 2 A. Thus c 2 �Q for any non-empty �Q. But since r is
re
exive, c 2 �Q if and only if (c; c) 2 rQ. This completes the proof of
the theorem.
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