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Abstract. In [Mat95] M. Matsumoto constructed Finsler metrics whose geo-
desics are two-parameter families of conic sections: semicircles, parabolas and
hyperbolas. In this paper another two-parameter family C of conic sections is
given that contains confocal hyperbolas and ellipses. We also construct Finsler
spaces whose family of geodesics is the family C.

1. Preliminaries

Recently Darboux's method for (two dimensional) inverse problem of variation
calculus was highlighted by M. Matsumoto and some nice geometrical aspect of
two-dimensional Finsler spaces was given through this method: [Mat89]. In [Mat95]
M. Matsumoto constructed two-dimensional Finsler metrics in the upper semiplane
f(x; y)jy > 0g whose geodesics are two-parameter families of conic sections: semicir-
cles with centers on the x-axis, parabolas with vertex on the x-axis, and hyperbolas
with x-axis as one of the asymptotic lines. In this paper we investigate the two-
parameter family C of conic sections

�x2 + y2 = �:

Obviously for � > 0, C consists of ellipses or it is empty, while for � < 0, C consists
of hyperbolas (see Fig.1.) The space is projectively �at, the substitutions �x = x2,
�y = y2 give linear equations.

From geometrical point of view it is interesting to note that C contains confocal
hyperbolas and ellipses. Fix 0 < a < b and let

� =
b� a�

1� �
( i.e. � =

b� �

a� �
)

be a new parameter. If we select from C a one parameter family with the condition
� = b� �; we get the equation of confocal conic sections

x2

a� �
+

y2

b� �
= 1:

For � < a this is an ellipse, and for a < � < b a hyperbola (see Fig.2.)
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Figure 1. Geodesics from one point. (Graphics by Mathematica.)
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Figure 2. Confocal ellipses and hyperbolas. (Graphics by Mathematica.)

The essence of Darboux's method is the following. Let

y = f(x; a; b)

be a two-parameter family C of curves. In order to �nd the function F (x; y; y0) such
that the set of the extremals of the integralZ

x2

x1

F (x; y; y0) dx

be the family C, one has to solve the Euler equation:

Fy � Fxz � Fyzz � Fzz �Z = 0;
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where z = y0 and �Z = fxx(x; a(x; y; z); b(x; y; z)). Let G = Fzz . Substituting this
G in the Euler equation we get a �rst order partial di�erential equation:

Gx +Gyz +Gz
�Z +G �Zz = 0:

From F we �nd our Finsler metric as follows:

L(x; y; p; q) = F

�
x; y;

q

p

�
p;

where p is supposed to be positive.

2. The statement

Theorem. All the Finsler spaces on the underlying manifold f(x; y)jy > 0; x >
0g � R

2 with geodesics

�x2 + y2 = � (�; � 2 R)(1)

are projective to the Finsler space with fundamental function of the form

F (x; y; z) =
y2

x

Z
z

0

(z � t)H(�yt=x; y2 � ytx)dt+Ex(x; y) + zEy(x; y);

where H and E are arbitrary functions (with the usual di�erentiability conditions).

Proof. From (1):

y =
p
�� �x2(2)

y0 = z = �
�x

y
= ��

xp
�� �x2

:

From (2) we express the parameters � and �:

� = �
yz

x
(3)

� = y2 � yzx:

Then

�Z =
z

x
�
z2

y
;

and we obtain the �rst order P.D.E.

Gx + zGy +Gz

�
z

x
�
z2

y

�
+G

�
1

x
� 2

z

y

�
= 0:(4)

Moreover

1

x
� 2

z

y
=

1

x
+ 2

�x

�� �x2
;

and the only non-trivial auxiliary equation of (4) is

dG

dx
= �G

�
1

x
+ 2

�x

�� �x2

�
:(5)

One can easily integrate (5):

G = c
�� �x2

x
:
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Substitute � from (3):

�� �x2

x
=

y2

x
:

Therefore we can generate a solution for G in the form

G(x; y; z) =
y2

x
H(�yz=x; y2 � yzx);

where H is an arbitrary function (with the usual di�erentiability conditions). Thus
a solution for F is

F (x; y; z) =

Z
z

0

(z � t)G(x; y; t)dt + C(x; y) + zD(x; y);

where C and D satisfy

Cy �Dx = �F �

y
+ F �

xz
+ F �

yz
z + F �

zz
�Z;

here

F � =

Z
z

0

(z � t)G(x; y; t)dt:

From a long but simple computation: Cy �Dx = 0 and this gives the form of the
statement (Ex = C, Ey = D).

For example, let H(�; �) = (��)n (� < 0), E = 0. Then

L(x; y; p; q) =
1

(1 + n)(2 + n)

yn+2

xn+1
qn+2

pn+1
:(6)

This metric is conformal to the locally Minkowski metric qn+2=pn+1. Computing
the main scalar of (6) we get the constant

I2 =
(3 + 2n)2

n2 + 3n+ 2
:

If n = �3=2, the main scalar is 0, the space is Riemannian.
If n = 0 then I2 = 9

2
. Applying Berwald's result (see e.g. [AIM93], Theorem

3.5.3.2.) this metric is a Berwald metric of the form

L2 = �


�



�

�I

r

; r =
p
I2 � 4

where � and 
 are independent 1-forms in p; q. Namely:


 = qy; � = 2px:
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