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Abstract. We give the nilpotency class of the group of units of a nonmodular group algebra.

1. Introduction.

Let G be a group and F a �eld. We denote by U(FG) the group of units of the group
algebra FG. We shall say that FG is a nonmodular group algebra if the characteristic of
F does not divide the orders of elements of T (G), the set of torsion elements of G. Group
theoretical properties of the group of units are subject to intensive research. Among these
nilpotence and the n-Engel property are of great importance. The next result is well-
known.

(J.L. Fischer, M.M. Parmenter, S.K. Sehgal; I. Khripta; D.S. Passman [2,
Theorem V.3.6]). Suppose FG is a nonmodular group algebra. Then U(FG) is nilpotent
(n-Engel for some n) if and only if G is nilpotent and one of the following conditions holds:

(I) T (G) is a central subgroup;

(II) F = GF(p) with p = 2t � 1 a prime, T (G) is an abelian group of exponent dividing
p2 � 1 and g�1ag = ap for every g 2 G n CG(T (G)) and every a 2 T (G).

Su�ciency of these conditions was proved by showing that the nilpotency class cl(U) of
the unit group does not exceed cl(G) + 1 in the case (I), and cl(G) + t+1 in the case (II).
Our aim is to determine cl(U).

Theorem. Let G be a group nilpotent class cl(G) and F a �eld such that FG is nonmod-
ular. Assume that U = U(FG) is nilpotent of class cl(U). Then

(i) if T (G) is a central subgroup in G then cl(U) = cl(G);

(ii) if T (G) is not a central subgroup in G and F = GF(p) with p = 2t � 1 a prime then
cl(U) = maxfcl(G); t+ 1g.

Modifying the proof of the Theorem we immediately have the next
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Corollary. Let G be an n-Engel group and F a �eld such that FG is nonmodular. Assume
that U = U(FG) is m-Engel for some m. Then
(i) if T (G) is a central subgroup in G then U is n-Engel;
(ii) if T (G) is not a central subgroup in G and F = GF(p) with p = 2t � 1 a prime then

U is maxfn; t+ 1g-Engel.

2. Proof of the Theorem.

Let cl(G) = n, T = T (G) and x1; x2; : : : ; xm+1 2 U , where m = n in the case (I)
and m = maxfn; t + 1g in the case (II). As the kth term of the lower central series
of U is generated by the commutators of weight k, to prove cl(U) � m we must show
(x1; x2; : : : ; xm+1) = 1.

Since in either cases (I) and (II) all idempotents of FT are central, the requirements of
[1, Lemma 1.2] are satis�ed and we can write

xi =
rX

j=1

�i jgi jej ;

where �i j 2 U(FT ), gi j 2 G and the ej are pairwise orthogonal idempotents with sum 1.
First assume (I). Since T is central and cl(G) = n = m

(x1; x2; : : : ; xm+1) =
rX

j=1

(g1 j ; g2 j ; : : : ; gn+1 j)ej = 1:

Clearly, cl(U) � cl(G), hence we have the statement (i) of the Theorem.
Now assume that (II) holds and T is noncentral. Pick g 2 G wich does not centralize

T . Clearly, g�2ag2 = ap
2

= a for any a 2 T , and therefore G=CG(T ) is of exponent 2,
G0 � CG(T ). We have a 2 �(G) \ T if and only if g�1ag = ap = a i.e. p� 1 � 0(mod jaj);
consequently �(G) \ T = fa 2 T j jaj j p� 1g.

Let � =
P

�iai 2 U(FT ) with �i 2 F. Obviously,

�p
2
�1 = (

X
�p

2

ap
2

i )��1 = (
X

�iai)�
�1 = 1

and U(FT ) has exponent dividing p2 � 1. Let T1 be a �nite subgroup of T noncentral in
G. Then FT1 is a direct sum of copies of GF(p) and GF(p2). Since the exponent of T1
does not divide p�1, there is, in fact, a direct summand isomorphic to GF(p2). Therefore
U(FT ) is of exponent p2 � 1 If g2; g3; : : : ; gk+1 =2 CG(T ) then g�1j �gj =

P
�ia

p
i = �p,

(�; gj) = �p�1 and

(�; g2; : : : ; gk+1) = �(p�1)(�2)
k�1

; (�; g2; : : : ; gt+1) = �(p�1)(�2)
t�1

; (�; g2; : : : ; gt+2) = 1:
(1)

If � is of order p2�1 and g =2 CG(T ) then (�; g; t) 6= 1, and hence cl(U) � t+1. Obviously,
cl(U) � cl(G), therefore cl(U) � m.
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Let g1; g2; : : : ; gk 2 G and �1; �2; : : : ; �k 2 U(FT ). Note that G normalizes and G0

centralizes U(FT ). We have

(�1g1; �2g2) = (�1g1; g2)(�1g1; �2)
g2 = (�1; g2)

g1(g1; g2)(g1; �2)
g2 =

= (�1; g2)
g1(g1; �2)

g2(g1; g2) = �(g1; g2);

where � = (�1; g2)
g1(g1; �2)

g2 2 U(FT ). Furthermore, with k � 3, we have

wk = (�1g1; �2g2; : : : ; �kgk) = (�; g3; : : : ; gk)(g1; g2; : : : ; gk):

We prove
wm+1 = 1: (2)

Clearly, (g1; g2; : : : ; gm+1) = 1 as m � n � 2, and wm+1 = (�; g3; : : : ; gm+1). If g1 2
CG(T ) then � = (�1; g2) and wm+1 = (�1; g2; : : : ; gm+1) = 1 by (1) as m � t + 1.
Similarly, if g2 2 CG(T ) then � = (g1; �2) and wm+1 = (g1; �2; g3; : : : ; gm+1) = 1 by (1).
If gj 2 CG(T ) for some 3 � j � m+ 1 then, clearly, wm+1 = 1. Suppose that none of the
gj are in CG(T ). Then

� = (�p�11 )g1(�1�p2 )g2 = �1�p1 �p�12 = (��11 �2)
p�1 = (��11 �2; g2);

and, by (1),
wm+1 = (�; g3; : : : ; gm+1) = (��11 �2; g2; : : : ; gm+1) = 1:

Clearly,

(x1; x2; : : : ; xm+1) =
rX

j=1

(�1 jg1 j; �2 jg2 j ; : : : ; �m+1 jgm+1 j)ej :

By (2) this commutator vanishes, which proves cl(U) � m. The statement (ii) of the
Theorem is clear, and the proof of the Theorem is complete.
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