ON THE LOCAL LIMIT THEOREM FOR GENERAL LATTICE DISTRIBUTION

V. O. PETEN'KO

Abstract

The scheme of series of lattice casual vectors analogical to the probable is considered in the paper. A local limit theorem have been received, and the indicated directions of its use in differential methods theory of mathematical physics problems solving were received.

A local limit theorem for lattice distributions, and their quasiprobable analogues are successfully used in the approximate solution of some kinds of mathematical physics problems [1-3].

Quasiprobable distribution on the plain (according to Y. P. Studnyev [4]) on the whole is the complex number set $\{p(k, l)\}$, for which

$$
\sum_{k, l} p(k, l)=1 ; \quad \sum_{k, l}|p(k, l)|<+\infty .
$$

Let $\left\{\left(\xi_{n n}, \eta_{n n}\right)\right\}$ be sequence of a mutually independent series of probable vectors (first index - series number, the second is changed from 1 to n), which are equally distributed on $\left\{k h_{1}, l h_{2}\right\}$ lattice, and let $\{p(n, k, l)\}$ be a quasiprobable vector distribution in series frames in the meaning of correspondence $p(n, k, l)=$ $P\left\{\left(\xi_{n j}, \eta_{n j}\right)=\left(k h_{1}, l h_{2}\right)\right\}$, where $k, l \in Z ; h_{1}, h_{2}>0 ; j=\overline{1, n}$. Then

$$
w(t, s)=\sum_{k, l} e^{i\left(t k h_{1}+s l h_{2}\right)} p(n, k, l)
$$

is a Fourier-Stieltjes distribution transformation $\{p(n, k, l)\}$.
As in the theory of probabilities, the formula of reverse is being proved:

$$
p(n, k, l)=\frac{h_{1} h_{2}}{4 \pi^{2}} \iint_{D} e^{-i\left(t k h_{1}+s l h_{2}\right)} w(t, s) d t d s
$$

where D rectangle is in the form of $\left[-\frac{\pi}{h_{1}}, \frac{\pi}{h_{1}},-\frac{\pi}{h_{2}}, \frac{\pi}{h_{2}}\right]$.
If $\left\{p_{n}(k, l)\right\}$ is $\left(\sum_{j=1}^{n} \xi_{n j}, \sum_{j=1}^{n} \eta_{n j}\right)$ sum vector distribution, then the reverse formula is in

$$
\begin{equation*}
P_{n}(n, k, l)=\frac{h_{1} h_{2}}{4 \pi^{2}} \iint_{D} e^{-i\left(t k h_{1}+s l h_{2}\right)} w(t, s) d t d s \tag{1}
\end{equation*}
$$

where $\left\{P_{n}(k, l)\right\}$ distribution is n-divisible fold of the set $\left\{p_{n}(k, l)\right\}$ with itself. Let, further

$$
\alpha_{r, q}=\sum_{k, l}\left(k h_{1}\right)^{r}\left(l h_{2}\right)^{q} p(n, k, l)
$$

be an initial moment with (r, q) order of $\{p(n, k, l)\}$ distribution.
Let us consider two auxiliary lemmas.
Lemma 1. Let for the casual vector with distribution conditions exist :

1) $\alpha_{1,0}=\alpha_{0,1}=\alpha_{3,0}=\alpha_{2,1}=\alpha_{1,2}+\alpha_{0,3}=\alpha_{3,1}=\alpha_{2,2}=\alpha_{1,3}=0$;
2) $\alpha_{2,0}=-\frac{2 a}{\sqrt{n}}, \alpha_{1,1}=-\frac{2 b}{\sqrt{n}}, \alpha_{0,2}=-\frac{2 c}{\sqrt{n}}, a t^{2}+b t s+c s^{2}$ is a positively determined square form;
3) $\alpha_{4,0}=\alpha_{0,4}=4!A, A>0$;
4) $a_{r, q}$ exist, when $r=q=5$.

Then

$$
\begin{equation*}
\left|w^{n}\left(\frac{t}{4 \sqrt{n}}, \frac{s}{4 \sqrt{n}}\right)-e^{a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)} d t d s\right|=O\left(\frac{|t|^{5}+|s|^{5}}{\sqrt[4]{n}}\right), n \rightarrow \infty \tag{2}
\end{equation*}
$$

correlation comes true.
Proof. We should note, that the role of moments in apportion is the same, as for characteristic functions in the analogical situation. That is why

$$
w(t, s)=1+\frac{1}{\sqrt{n}}\left(a t^{2}+b t s+c s^{2}\right)-A\left(t^{4}+s^{4}\right)+O\left(|t|^{5}+|s|^{5}\right), t, s \rightarrow 0
$$

But then
$w\left(\frac{t}{\sqrt[4]{n}}, \frac{s}{\sqrt[4]{n}}\right)=1+\frac{a t^{2}+b t s+c s^{2}}{n}-\frac{A\left(t^{4}+s^{4}\right)}{n}+O\left(\frac{|t|^{5}+|s|^{5}}{n^{4} \sqrt{n}}\right), \quad n \rightarrow \infty ;$
or

$$
w\left(\frac{t}{\sqrt[4]{n}}, \frac{s}{\sqrt[4]{n}}\right)=e^{\frac{1}{n}\left(a t^{2}+b t s+c s^{2}\right)-\frac{A\left(t^{4}+s^{4}\right)}{n}}+O\left(\frac{|t|^{5}+|s|^{5}}{4 \sqrt{n}}\right), \quad n \rightarrow \infty
$$

for any fix couple $(t, s) \in R_{2}$. Hence, it follows, after the $n-$ th power production of both parts of the last equality we receive (2). Then Lemma 1 is proved.

Let's presentw (t, s) into

$$
w(t, s)=w_{0}(t, s)+\frac{1}{\sqrt{n}}\left(a t^{2}+b t s+c s^{2}\right)
$$

form.
Lemma 2. Let in $\left\{\xi_{n n}, \eta_{n n}\right\}$ series sequence, which are mutually independent and equally distributed within the limits of lattice casual vector series for every vector in series Lemma 1 conditions and condition : $\left|w_{0}(t, s)\right|<1$, when $(t, s) \in D \backslash\{0,0\}$, are executed. Then $A_{0}>0$ exists that in ${ }^{4} \sqrt{n} D=\left[-\frac{4 \sqrt{n \pi}}{h_{1}}, \frac{\sqrt[4]{n \pi}}{h_{1}},-\frac{\sqrt[4]{n \pi}}{h_{2}}, \frac{4 \sqrt{n \pi}}{h_{2}}\right]$ rectangle execute

$$
\begin{equation*}
\left|w^{n}\left(\frac{t}{\sqrt[4]{n}}, \frac{s}{\sqrt[4]{n}}\right)\right| \leq e^{a t^{2}+b t s+c s^{2}-A_{0}\left(t^{4}+s^{4}\right)} . \tag{3}
\end{equation*}
$$

Proof. In the work [3] it has been shown that by Lemma 2 conditions $A_{0}>0$ would exist that $\left|w_{0}(t, s)\right| \leq e^{-A_{0}\left(t^{4}+s^{4}\right)},(t, s) \in D$.

Then in D executes

$$
|w(t, s)| \leq\left|w_{0}(t, s)\right|+\frac{a t^{2}+b t s+c s^{2}}{\sqrt{n}} \leq e^{\frac{a t^{2}+b t s+c s^{2}}{\sqrt{n}}-A_{0}\left(t^{4}+s^{4}\right)}
$$

whence directly (3) comes out.
These lemmas permit to prove such a theorem.
Theorem. Let in $\left\{\left(\xi_{n n}, \eta_{n n}\right)\right\}$ series sequences, which are mutually independent and equally distributed within the limits of lattice casual vector series for every vector in series conditions :

1) $\alpha_{1,0}=\alpha_{0,1}=\alpha_{3,0}=\alpha_{2,1}=\alpha_{1,2}=\alpha_{0,3}=\alpha_{3,1}=\alpha_{2,2}=\alpha_{1,3}=0$;
2) $\alpha_{2,0}=-\frac{2 a}{\sqrt{n}}, \alpha_{1,1}=-\frac{2 b}{\sqrt{n}}, a t^{2}+b t s+c s^{2}$ is a positively determined square form;
3) $\alpha_{4,0}=\alpha_{0,4}=4!A, A>0$;
4) $\alpha_{r, q}$ exist, when $r+q=5$;
5) $\left|w_{0}(t, s)\right|<1$, when $(t, s) \in D \backslash\{0,0\}$.

Then evenly on $k \in Z$ by $n \rightarrow \infty$:

$$
\begin{equation*}
\sqrt{n}\left(\frac{p_{n}(k, l)}{h_{1} h_{2}}-\frac{1}{4 \pi^{2}} \iint e^{-i\left(t k h_{1}+s l h_{2}\right)+n\left(\frac{a t^{2}+b t s+c s^{2}}{\sqrt{n}}-A\left(t^{4}+s^{4}\right)\right)} d t d s\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

Proof. Use the reverse formula (1) and in integrals of the left part of (4) correlation defined through R_{n}, execute the substitute: $t \rightarrow \frac{t}{4 \sqrt{n}}, s \rightarrow \frac{s}{4 \sqrt{n}}$.

We receive

$$
\begin{gathered}
4 \pi^{2} R_{n}=\iint_{4 \sqrt{n} D} e^{-i\left(\frac{l k h_{1}}{4 \sqrt{n}}+\frac{s l h_{2}}{4 \sqrt{n}}\right)} w^{n}\left(\frac{t}{4 \sqrt{n}}, \frac{s}{4 \sqrt{n}}\right) d t d s- \\
-\iint e^{-i\left(\frac{l k h_{1}}{4 \sqrt{n}}+\frac{s l h_{2}}{4 \sqrt{n}}\right)+a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)} d t d s==I_{1}+I_{2}-I_{3},
\end{gathered}
$$

where

$$
\begin{aligned}
I_{1} & =\iint_{\Delta} e^{-i\left(\frac{l k h_{1}}{4 \sqrt{n}}+\frac{s l h_{2}}{4 \sqrt{n}}\right)}\left(w^{n}\left(\frac{t}{4 \sqrt{n}}, \frac{s}{4 \sqrt{n}}\right)-e^{a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)}\right) d t d s \\
I_{2} & =\iint_{4 \sqrt{n} D \backslash \Delta} e^{-i\left(\frac{l k h_{1}}{4 \sqrt{n}}+\frac{s l h_{2}}{4 \sqrt{n}}\right)} w^{n}\left(\frac{t}{4 \sqrt{n}}, \frac{s}{4 \sqrt{n}}\right) d t d s \\
I_{3} & =\iint_{R_{2}} e^{-i\left(\frac{l k h_{1}}{4 \sqrt{n}}+\frac{s l h_{2}}{4 \sqrt{n}}\right)+a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)} \\
\Delta & =\left\{(t, s):|t| \leq n^{\lambda}, 0<\lambda<\frac{1}{28}\right\} .
\end{aligned}
$$

Integral I_{1} estimation comes out of Lemma 1. Really, according to (2) $B>0$ exists, that

$$
\left|w^{k}\left(\frac{t}{4 \sqrt{n}}, \frac{s}{4 \sqrt{n}}\right)-e^{a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)}\right| \leq B\left(\frac{|t|^{5}+|s|^{5}}{\sqrt[4]{n}}\right),(t, s) \in \Delta .
$$

Then

$$
\left|I_{1}\right| \leq \frac{B}{\sqrt[4]{n}} \iint_{\Delta}\left(|t|^{5}+|s|^{5}\right) d t d s=\frac{4 B}{3} n^{7 \lambda-\frac{1}{4}}=\frac{4 B}{3} n^{-7\left(\frac{1}{28}-\lambda\right)}
$$

So as $\lambda<\frac{1}{28}$, then $I_{1} \rightarrow 0$ by $n \rightarrow \infty$.
Out of the Lemma 2 the I_{2} estimation comes out. Using (3), we receive

$$
\left|I_{2}\right| \leq \iint_{\sqrt[4]{n} D \backslash \Delta} e^{a t^{2}+b t s+c s^{2}-A\left(t^{4}+s^{4}\right)} d t d s
$$

The positively determined square form permits an upper estimation:

$$
a t^{2}+b t s+c s^{2} \leq a_{0}\left(t^{2}+s^{2}\right), \quad a_{0}>0 .
$$

Then

$$
\left|I_{2}\right| \leq \iint_{4 \sqrt{n} D \backslash \Delta} e^{a_{0}\left(t^{2}+s^{2}\right)-A\left(t^{4}+s^{4}\right)} d t d s \leq 4\left(\int_{n^{\lambda}}^{\infty} e^{a_{0} t^{2}-A_{0} t^{4}} d t\right)^{2}
$$

We should take into consideration that by sufficiently large n for $t \geq n^{\lambda}$

$$
4 A_{0} t^{3}-2 a_{0} t>4 A_{0} n^{3 \lambda}-2 a_{0} n^{\lambda}
$$

I_{2} integral permits the further estimation :

$$
\left|I_{2}\right| \leq \frac{1}{\left(2 A_{0} n^{3 \lambda}-a_{0} n^{\lambda}\right)^{2}} \int_{n_{\lambda}}^{\infty}\left(\left(4 A_{0} t^{3}-2 a_{0} t\right) e^{a_{0} t^{2}-A_{0} t^{4}} d t\right)^{2}=\left(\frac{e^{a_{0} n^{2 \lambda}-A_{0} n^{4 \lambda}}}{2 A_{0} n^{3 \lambda}-a_{0} n^{\lambda}}\right)^{2}
$$

therefore, by $n \rightarrow \infty I_{2} \rightarrow 0$.
I_{3} integral estimation is analogical to the second stage of I_{2} integral estimation. The Theorem is proved.

The received theorem could easy be generalized in case of quasiprobable lattice distributions with Fourier-Stieltjes transformation in

$$
w(t, s)=e^{\Psi_{2}(t, s)+\Psi_{4}(t, s)+\ldots+\Psi_{2 q-2}(t, s)-\Psi_{2 q}(t, s)}
$$

form, where $\Psi_{2}(t, s), \Psi_{4}(t, s), \Psi_{2 q}(t, s)$ are positively-determined forms with orders indicated by indexes.

Such generalization could be used to the approximate problems solving linked with the evolutional equation in the form of:

$$
\begin{gathered}
\frac{\partial u(x, y, \tau)}{\partial \tau}=\left((-1)^{q+1} \Psi_{2 q}\left(i \frac{\partial}{\partial x}, i \frac{\partial}{\partial y}\right)-(-1)^{q} \Psi_{2 q-2}\left(i \frac{\partial}{d x}, i \frac{\partial}{\partial y}\right)-\right. \\
\left.-\ldots-\Psi_{2}\left(i \frac{\partial}{\partial x}, i \frac{\partial}{\partial y}\right)\right) u(x, y, \tau)
\end{gathered}
$$

according to the scheme, for example, in [3].

References

[1] Peten'ko V. O., On the Some Local Qualities of Stable in Wide Sense Distributions on the Plane. Ukrainian Mathematical Journal, 9 (1979), 447-454.
[2] Peten'ko V. O., On the One Differential Solution of the Heat Conduction Problem in the Segment and Half-axis. Uzhgorod State University Scientific Herald, Mathematical Series, 3 (1994), 165-168.
[3] Peten'ko V. O., On the One Differential Solution of the Cauchy Problem for Some Class of the Parabolic According to G. E. Shilov Systems, Mathematical Methods and Physical-Mechanical Fields, 9 1979, 20-25.
[4] Studnyev Y. P., On Some Theory of Probabilities Limit Theorem Generalization, Theory of Probabilities and its Application, 4 1967, 729-734.

Received October 3, 2000.
Uzhhorod National University
88000 Uzhhorod, Ukraine

