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MORE ON THE DISTRIBUTION OF THE FIBONACCI
NUMBERS MODULO 5c

GYULA DARVASI

Abstract. The Fibonacci sequence F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2

for n ≥ 2 is purely periodic modulo m with 2 ≤ m ∈ N. Take any shortest
full period and form a frequency block Bm ∈ Nm to consists of the residue

frequencies within any full period. The purpose of this paper is to show that

such frequency blocks can nearly always be produced by repetition of some
multiple of their first few elements a certain number of times. The four theo-

rems contain our main results where we show when this repetition does occur,
what elements will be repeated, what is the repetition number and how to
calculate the value of the multiple.

Let F0 = 0, F1 = 1 and define the Fibonacci sequence {Fn} to satisfy the
recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2. For an integer m > 1, the
sequence {Fn} considered modulo m is purely periodic (see [3], [15]). Define h(m)
to be the length of a shortest period of {Fn (mod m)}, and S(m) to be the set of
residue frequencies within any full period of {Fn (mod m)} (see [11]), as well as
A(m, d) to denote the number of times the residue d appears in a full period of {Fn

(mod m)} (see [12]). Hence for a fixed m, the range of A(m, d) is the same as the
set S(m), that is {A(m, d)|0 ≤ d < m} = S(m).

We say that {Fn} is uniformly distributed modulo m if all residues modulo m
occur with the same frequency in any full period. In this case the length of any
period will be a multiple of m, moreover ‖S(m)‖ = 1 and A(m, d) is a constant
function (see [7]). It is known that {Fn} is uniformly distributed modulo 5k with
k ≥ 1 and h(5k) = 4 · 5k (see [3], [9], [15]). Thus, ‖S(5k)‖ = 1 and A(5k, d) = 4.

For a fixed m form a number block Bm ∈ Nn to consist of frequency values
of the residues d when d runs through the complete residue system modulo m.
This number block Bm will be called the frequency block modulo m, which has
properties like (qBm)r = q(Bm)r and ((Bm)r)s = (Bm)rs with q, r, s ∈ N and
(Bm)r =: (Bm, . . . , Bm) taking Bm in the brackets r times. Here are some examples
for Bm with m ∈ {2, 3, 4, 11, 10, 15, 20, 55} :

B2 = (1, 2)

h(2) = 3

B10 = (4, 8, 4, 8, 4, 8, 4, 8, 4, 8) = (4B2, 4B2, 4B2, 4B2, 4B2) =

(4B2)5 = 4(B2)5

h(10) = 60 = 4 · 5 · h(2)
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B3 = (2, 3, 3)

h(3) = 8

B15 = (2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3) = (B3, B3, B3, B3, B3) =

(B3)5

h(15) = 40 = 1 · 5 · h(3)

B4 = (1, 3, 1, 1)

h(4) = 6

B20 = (2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 2) =

(2B4, 2B4, 2B4, 2B4, 2B4) = (2B4)5 = 2(B4)5

h(20) = 60 = 2 · 5 · h(4)

B11 = (1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1)

h(11) = 10

B55 = (2, 3, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, . . .) 6= q(B11)5

for any q ∈ {1, 2, 4}
h(55) = 20 6= q · 5 · h(11) for any q ∈ {1, 2, 4}

All examples except the last one show a kind of repetation in the frequency blocks
for m = 5c with c ∈ {2, 3, 4}, that means, such frequency blocks can be produced
by repetition of their first few elements a whole number of times, moreover the first
few repeating elements of Bm are the elements of Bc or some multiple of them.
Letting 0 ≤ x < c, 0 ≤ y < m and y = x (mod c), this fact can be expressed
by A(m, y) = q · A(c, x) for q ∈ {1, 2, 4}. A similar result in connection with the
uniform distribution was found in [7] for the Fibonacci numbers. The purpose of
this paper is to investigate such kind of repetition properties in the frequency block
of {Fn (mod 5)c} with 2 ≤ c ∈ N. The questions to answer at first are when this
repetition does occur and how to calculate the value of the factor q. This will be
answered in our theorems, but now let’s see some necessary lemmas.

Lemma 1. Let m,n ∈ N, 0 < |m − n| < h(5) = 20 and m = n (mod s) with
1 < s | 4. Then Fm 6= Fn (mod 5).

Proof. The characteristic polynomial of {Fn} is x2 − x− 1 = 0, whose roots are

r1 =
1 +

√
5

2
and r2 =

1−
√

5
2

.

Then by the Binet equation

Fn =
rn
1 − rn

2

r1 − r2

we have

Fn =
2−n

√
5

((
1 +

√
5
)n

−
(
1−

√
5
)n)

=
21−n

√
5

2[n−1
2 ]+1∑

j odd
j=1

(
n

j

)√
5

j
.

Let s = 4 and assume m > n, that can be done without loss of generality. From
m = n (mod 4) and 0 < |m − n| < 20 results m = n + 4t with t ∈ {1, 2, 3, 4}.
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Therefore

Fm − Fn =
21−m

√
5

2[m−1
2 ]+1∑

j odd
j=1

(
m

j

)√
5

j
− 21−n

√
5

2[n−1
2 ]+1∑

j odd
j=1

(
n

j

)√
5

j
=

= 21−n−4t


2[n+4t−1

2 ]+1∑
j odd
j=1

(
n + 4t

j

)√
5

j−1
− 24t

2[n−1
2 ]+1∑

j odd
j=1

(
n

j

)√
5

j−1


whence

2n+4t−1(Fm − Fn) =
((

n + 4t

1

)
− 24t

(
n

1

))
+

+ 5


2[n+4t−1

2 ]+1∑
j odd
j=3

(
n + 4t

j

)√
5

j−3
− 24t

2[n−1
2 ]+1∑

j odd
j=3

(
n

j

)√
5

j−3

 =

=: K + 5L,

where K and L are integers. Now we state that 5 - K. The reason for this is

K = n + 4t− 24t · n = 4t− (16t − 1)n = 4t (mod 5)

and t ∈ {1, 2, 3, 4}. All these yield 5 - (Fm − Fn), that is Fm 6= Fn (mod 5). The
remaining case s = 2 can be carried out in a similar way. �

We note that in this paper from now on (a, b) and [a, b] will denote the greatest
common divisor and the least common multiple of the integers a and b respectively.

Now let v5(z) denote the greatest power of 5 in the integer z, that means 5v5(z) | z
but 5v5(z)+1 - z .
Lemma 2. For 2 ≤ c ∈ N, (c, 5) = 1, v5(h(c)) ≤ k − 1 and

q =:
h(5kc)

5h(5k−1c)

with 0 < k ∈ N, we have q | 4.

Proof. Because of (c, 5) = 1 follows

q =

[
h(5k), h(c)

]
5 [h(5k−1), h(c)]

for all 0 < k ∈ N (see Theorem 2 in [15]). The case k = 1 yields

q =
[h(5), h(c)]

5 [h(1), h(c)]
=

[20, h(c)]
5h(c)

=
4

(20, h(c))
=

4
(4, h(c))

,

since v5(h(c)) = 0, that is 5 - h(c) for k = 1. Hence q · (4, h(c)) = 4, that is q | 4.
The case k > 1 results

q =

[
4 · 5k, h(c)

]
5 [4 · 5k−1, h(c)]

=

(
4 · 5k−1, h(c)

)
(4 · 5k, h(c))

,

whence q = 1 because of v5(h(c)) ≤ k− 1, and therefore q | 4 is obviously true. �

Corollary 1. For 2 ≤ c ∈ N, (c, 5) = 1 and 0 < k ∈ N,

q =
h(5kc)

5 · h(5k−1c)

is an integer iff v5(h(c)) ≤ k − 1.
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The possible cases are as follows:

k = 1 =⇒ q =


4 if (4, h(c)) = 1 ⇐⇒ h(c) is odd
2 if (4, h(c) = 2 ⇐⇒ 2 | h(c) but 4 - h(c)
1 if (4, h(c)) = 4 ⇐⇒ 4 | h(c)

k > 1 =⇒ q = 1

Corollary 2. For 2 ≤ c = 5r ·s with 0 < r, s ∈ N and (s, 5) = 1, we have q = h(5c)
5h(c)

is an integer iff v5(h(s)) ≤ r.
The only possible case is q = 1.

We note here that q ∈
{

4
5 , 2

5 , 1
5

}
for k = 1 and v5(h(c)) > 0, moreover q = 1

5 for
k > 1 and v5(h(c)) > k − 1. This happens for example for c ∈ {11, 22, 33, 44, . . .}.

Further on we make use of the fact that the purely periodic property of {Fn

(mod c)} yields the identity of the values Fw+jh(c) modulo c for all w, j ∈ N and
2 ≤ c ∈ N.

Theorem 1. For 2 ≤ c ∈ N, (c, 5) = 1, v5(h(c)) = 0 and q =: h(5c)
5h(c) , we have

B5c = q(Bc)5.

Proof. According to Corollary 1 for k = 1, we have to consider the three cases when
q ∈ {1, 2, 3}.

Case 1. q = 1 ⇐⇒ (4, h(c)) = 4, that is 4 | h(c).
Now h(5c)) = 5h(c) and it is to prove that for all w ∈ N and j ∈ {0, 1, 2, 3, 4}, the

five values of Fw+jh(c) are pairwise different modulo 5, and therefore also modulo
5c. Assume that Fw+j1h(c) = Fw+j2h(c) (mod 5) for some j1, j2 ∈ {0, 1, 2, 3, 4} and
0 < |j1− j2| < 5, furthermore let k1 and k2 denote the modulo 20 reduced values of
w+j1h(c) and w+j2h(c) respectively, that is 0 ≤ |k1−k2| = |j1−j2|h(c) < 20. This
gives Fk1 = Fk2 (mod 5), since h(5) = 20. Now 0 < |j1 − j2| < 5 and v5(h(c)) = 0
yield 20 - (j1 − j2)h(c) and therefore k1 6= k2, that is 0 < |k1 − k2|. From 4 | h(c)
results that the values of w + j1h(c) and w + j2h(c) are in the same residue class
modulo 4, and so are also k1 and k2. But this fact contradicts Lemma 1.

Case 2. q = 2 ⇐⇒ (4, h(c)) = 2, that is 2 | h(c) but 4 - h(c).
Now h(5c) = 10h(c), and it is to prove that for all w ∈ N and j ∈ {0, 1, . . . , 9}

among the ten values of Fw+jh(c) there are at most two identical ones modulo 5,
and therefore also modulo 5c. Assume that there are at least three identical ones
modulo 5, which are say

Fw+j1h(c), Fw+j2h(c), Fw+j3h(c)

with j1, j2, j3 ∈ {0, 1, . . . , 9} and 0 < |j1− j2|, |j1− j3|, |j2− j3| < 10. Let k1, k2 and
k3 denote the modulo 20 reduced values of w + j1h(c), w + j2h(c) and w + j3h(c)
respectively. This yields –as in Case 1 before– that k1, k2 and k3 are pairweise
different, and fall in the same residue class modulo 20. This contradicts Lemma 1
again.

Case 3. q = 4 ⇐⇒ (4, h(c)) = 1, that is 2 - h(c).
Now h(5c) = 20h(c), and it is to prove that for all w ∈ N and j ∈ {0, 1, . . . , 19}

among the twenty values of Fw+jh(c) with pairwise different indices modulo 20, there
are at most four identical ones modulo 5. But this fact yields immediately from the
uniform distribution of the sequence {Fn (mod 5)}. Since for m > 2, the range of
h(m) is the set of all even integers greater than 4 (see [13]), the condition 2 - h(c)
in Case 3 yields c = 2, and one can go on proving by a simple computation. �

Theorem 2. For 2 ≤ c = 5r · s, 0 ≤ r, 1 ≤ s ∈ N, (s, 5) = 1, v5(h(s)) ≤ r and
q = h(5c)

5h(c) , we have B5c = q(Bc)5.
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Proof. We’ll consider the following three cases.
Case 1. r = 0 This gives back our Theorem 1.
Case 2. r ≥ 1 and s = 1 This is the well known uniform distribution. Now q = 1

and B5r+1 = 1 · (B5r )5 is true (see [8],[9]).
Case 3. r ≥ 1 and s > 1. Now q = 1 again, and B5r+1·s = 1 · (B5r·s)5 is to prove.

Then it’s to show that for any w ∈ N and j ∈ {0, 1, 2, 3, 4}, the numbers Fw+jh(c)

are pairwise different modulo 5c. Since (s, 5) = 1 and v5(h(s)) ≤ r, we get

h(c) = h(5r · s) = [h(5r), h(s)] = h(5r) · h(s)
(h(5r), h(s))

= h(5r) · z

for some 0 < z ∈ N and 5 | z. Hence for any w ∈ N and j ∈ {0, 1, 2, 3, 4}, the
values w + jh(c) and w + jh(5r) are always in the same residue class modulo h(5r),
therefore the numbers Fw+jh(c) and Fw+jh(5r) are in the same residue class modulo
5r too. But the numbers Fw+jh(5r) are pairwise different modulo 5r+1 because of
Lemma 8 in [1], and for this reason so are the numbers Fw+jh(c) modulo 5c too. �

Theorem 3. For 2 ≤ c ∈ N, (c, 5) = 1, v5(h(c)) ≤ k − 1 and q = h(5k·c)
5·h(5k−1·c) with

0 < k ∈ N, we have B5k·c = q (B5k−1·c)
5.

Proof. We proceed by induction on k. When k = 1, we get back to Theorem 1.
Assume the statement is true for all k > 1. Then in consequence of Case k > 1 in
Lemma 2, it is q = 1 to take, whence

B5k+1·c = B5(5k·c) = 1 · (B5k·c)
5 =

(
q (B5k−1·c)

5
)5

=

= q
(
(B5k−1·c)

5
)5

= q (B5k·c)
5
.

�

Corollary 3. For 2 ≤ c ∈ N, (c, 5) = 1, v5(h(c)) ≤ k − 1 and q = h(5k·c)
5·h(5k−1·c) with

0 < k ∈ N, we have B5k·c = q (Bc)
5k

.

Proof.

B5k·c = q (B5k−1·c)
5 = q

(
B5(5k−2·c)

)5 = q (B5k−2·c)
52

= . . .

= q (B5c)
5k−1

= q (Bc)
5k

.

�

Corollary 4. For 2 ≤ c ∈ N, (c, 5) = 1, v5(h(c)) ≤ k − 1 and q = h(5k·c)
5·h(5k−1·c) ∈

{1, 2, 4} with 0 < k ∈ N,we have ‖S(5kc)‖ = ‖S(c)‖.
Theorem 4. For 2 ≤ c = 5r · s, 0 ≤ r, 1 ≤ s ∈ N, (s, 5) = 1, v5(h(s)) ≤ r and
q = h(5c)

5h(c) , we have B5r+1·s = q(Bs)5
r+1

.

Proof. If r = 0, then c = s, and hence we get back to the case k = 1 in Corollary
3, that means B5s = q(Bs)5 is true. Assume the statement is true for all integer
r ≥ 1. Then Corollary 2 yields q = 1, and therefore

B5(r+1)+1·s = B5(5r+1·s) = 1 · (B5r+1·s)
5 =

(
q(Bs)5

r+1
)5

=

= q
(
(Bs)

5r+1
)5

= q(Bs)5
(r+1)+1

�

Corollary 5. For 2 ≤ c = 5r · s, 0 ≤ r, 1 ≤ s ∈ N, (s, 5) = 1, v5(h(s)) ≤ r and
q = h(5c)

5·h(c) , we have q = 1 and therefore ‖S(5r+1 · s)‖ = ‖S(s)‖.
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A Tribute to Paul Erdős, Eds. A. Baker, B. Bollobás and A. Hajnal, Cambridge University

Press 1990, 349–357.
[12] Somer, L., Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p –

II, Fibonacci Quarterly, 29, 1991, 72–78.
[13] Stanley, T. E., Some remarks on the periodicity of the sequences of Fibonacci numbers,

Fibonacci Quarterly, 14, 1976, 52–54.

[14] Vince, A., The Fibonacci sequence modulo n, Fibonacci Quarterly, 16, 1978, 403–407.
[15] Wall, D. D., Fibonacci series modulo m, Amer. Math. Monthly, 67, 1960, 525–532.

Received September 6, 2000.

E-mail address: darvasi@zeus.nyf.hu

Department of Mathematics and Computer Science

College of Nýıregyháza
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