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17 (2001), 25–30
www.emis.de/journals

ON REPETITIONS IN FREQUENCY BLOCKS OF A
GENERALIZED FIBONACCI SEQUENCE

GYULA DARVASI

Abstract. The Fibonacci sequence U0 = 1, U1 = 5 and Un = 3 ·Un−1+Un−2

for n ≥ 2 yields a purely periodic sequence {Ūn} = {Un (mod m)} with an

integer m ≥ 2. Consider any shortest full period of {Ūn} and form the number
block Bm ∈ Nm to consistof the frequency values of the residue d when d

runs through the complete residue systyem modulo m The purpose of this

paper is to show that such frequency blocks can nearly always be produced
by repetition of some multiple of their first few elements a certain number of

times. Theorems 1 and 2 contain our main results where we show when this

repetition does occur, what elements will be repeated, what is the repetition
number and how to calculate the value of the multiple factor.

Let U0 = 1, U1 = 5 and define the recurrence {Un} = U(3, 1) to satisfy the
relation Un = 3 · Un−1 + 1 · Un−2 for n ≥ 2. For an integer m ≥ 2, let {Ūn}
denote the sequence {Un} considered modulo m. It is known that {Ūn} is purely
periodic [7], that is, there exists a positive integer r such that Ūn+r = Ūn for all
n ∈ N. Define h(m) to be the length of a shortest period of {Ūn}, and S(m) to
be the set of residue frequencies within any full period of {Ūn}, as well as A(m, d)
to denote the number of times the residue d appears in a full period of {Ūn} ([7],
[8]). Hence, for a fixed m, the range of A(m, d) is the set S(m), that means
{A(m, d) : 0 ≤ d < m } = S(m).

We say {Un} is uniformly distributed modulo m if all residues modulo m occur
with the same frequency in any full period. In this case, the length of any period
will be a multiple of m; moreover, ‖S(m)‖ = 1 and A(m, d) is a constant function
[5].

For a fixed m ≥ 2, form a number block Bm ∈ Nm to consist of the frequency
values of the residue d when d runs through the complete residue system modulo
m. This number block, Bm, will be called the frequency block modulo m, which
has properties like (qBm)r = q(Bm)r and ((Bm)r)s = (Bm)rs with q, r, s ∈ N and
(Bm)r =: (Bm, . . . , Bm) taking Bm in the brackets r times. In Table 1 there are
some examples for Bm together with the period length h(m).

All but the first few examples show a certain kind of repetition in the frequency
block, that means such frequency blocks can be produced by repetition of their first
few elements a whole number of times. For a given m, this repetition is possible
only in the case for which there exists an integer 1 < c < m such that c | m and
h(c) | h(m). Moreover, the first few repeating elements of Bm are the elements of
Bc or some multiple of them. Letting 0 ≤ x < c, 0 ≤ y < m and y ≡ x (mod c),
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B2 = (1, 2) h(2) = 3
B3 = (0, 1, 1) h(3) = 2
B4 = (1, 3, 1, 1) h(4) = 6
B5 = (4, 2, 2, 2, 2) h(5) = 12
B9 = (B3)3 h(9) = 6
B11 = (0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1) h(11) = 8
B15 = (0, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0) h(15) = 12
B18 = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1) h(18) = 6
B26 = 4(B2)13 h(26) = 156
B27 = (B3)9 h(27) = 18
B32 = (2, 3, 8, 1, 0, 3, 0, 1, 2, 3, 0, 1, 0, 3, 0, 1, 2, 3, h(32) = 48

0, 1, 0, 3, 0, 1, 2, 3, 0, 1, 0, 3, 0, 1)
B39 = 2(B3)13 h(39) = 52
B52 = 2(B4)13 h(52) = 156
B54 = (B18)3 h(54) = 18
B64 = (B32)2 h(64) = 96
B65 = (B5)13 h(65) = 156
B75 = (B15)5 h(75) = 60
B81 = (B3)27 h(81) = 54
B121 = (B11)11 h(121) = 88
B125 = (B5)25 h(125) = 300

Table 1

D1 : A(2kc, y) = A(c, x) for k ≥ 1 and c ∈ {32, 96, 160, 288, 480}.
D2 : A(3kc, y) = A(c, x) for k ≥ 1 and c ∈ {3, 18, 21, 33, 36, 45, 51, 57, 69, 72, 87,

90, 93, 11, 123, 126, 144, 147, 159, 180, 198, 201, 219, 231, 237, 252, 288,
291, 303, 306, 315, 321, 327} .

D3 : A(5kc, y) = A(c, x) for k ≥ 1 and c ∈ {2, 10, 15, 20, 30, 35, 40, 45, 55, 60, 70,
80, 85, 90, 105, 110, 115, 120, 140, 145, 155, 160, 165, 170, 180, 185} .

D4 : A(11kc, y) = A(c, x) for k ≥ 1 and c ∈ {11, 22, 33, 44, 55, 66, 77, 88}.
D5 : A(15c, y) = A(c, x) for c = 45.
D6 : A(6c, y) = A(c, x) for c = 288.
D7 : A(10c, y) = A(c, x) for c = 160.
D8 : A(33c, y) = A(c, x) for c = 33.

Table 2

this fact can be expressed by A(m, y) = q · A(c, x) for some positive integer q. A
similar result in connection with the uniform distribution was found in [4] for two-
term recurrence sequences. The considered sequence {Un} is uniformly distributed
modulo 13k for k ≥ 1 (see [1]). Thus, the above examples show that the repetition
in the frequency blocks does not occur exclusively in connection with the uniform
distribution.

To search for repetition possibilities in the frequency blocks of the sequence {Un},
we made a computer run for moduli m ≤ 1000. However, we did not consider moduli
m with 13 | m because we wanted to investigate the repetition possibilities that
had no direct connections with the uniform distribution.

Making use of the above-mentioned notation A(m, y) = q ·A(c, x) with 0 ≤ x < c,
0 ≤ y < m, y ≡ x (mod c), and 1 ≤ q ∈ N, we discovered the facts listed in Table
2. Now it is natural to ask how the above discoveries could be proved. We will give
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proofs for some of them. We note that in this paper (a, b) and [a, b] will denote the
greatest common divisor and the least common multiple of the integers a and b,
respectively.
Lemma 1. The sequence {Un} is purely periodic mod 3r with the exact period
length h(3r) = 2 for r = 1 and h(3r) = 2 · 3r−1 for r > 1. Let w be a fixed integer
with 0 ≤ w < h(3r). If Uw leaves the remainder x mod 3r (0 ≤ x < 3r), then the
numbers Uw+j·h(3r) (0 ≤ j < 3) leave the remainders x + i · 3r (0 ≤ i < 3) mod
3r+1 in a certain ordering.

Proof. The fact that {Un} is purely periodic mod 3r with period length h(3r) = 2
if r = 1 and h(3r) = 2 · 3r−1 if r > 1 follows by arguments similar to those given
by Wall in Theorems 1, 4, 5, 10 and 12 of [9]. The remainder of Lemma 1 follows
from results in the preprint “Bounds for Frequencies of Residues in Second Order
Recurrences Modulo pr” by Lawrence Somer. �

Lemma 2. For 2 ≤ c ∈ N, (c, 3) = 1 and 1 ≤ k ∈ N, let q = h(3k+1·c)
3·h(3k·c) . Then q = 1

3

if 3k | h(c), and q = 1 if 3k−1‖h(c).

Proof. Since (c, 3) = 1, we have q = [h(3k+1),h(c)]
3[h(3k),h(c)]

. The case k = 1 yields

q =
[h(9), h(c)]

3 [h(3), h(c)]
=

[6, h(c)]
3 [2, h(c)]

=
(2, h(c))
(6, h(c))

=

{
1
3 if 3 | h(c)
1 if 3 - h(c).

In the case k > 1, we have by Lemma 1 that

q =

[
3kh(3), h(c)

]
3 [3k−1h(3), h(c)]

=

[
2 · 3k, h(c)

]
3 [2 · 3k−1, h(c)]

=
(2 · 3k−1, h(c))
(2 · 3k, h(c))

=

{
1
3 if 3k | h(c)
1 if 3k−1‖h(c).

�

For some 1 ≤ z ∈ N, let v3(z) denote the exact power of 3 such that 3v3(z) | z
but 3v3(z)+1 - z.

Corollary 1. For 2 ≤ c ∈ N, (c, 3) = 1 and 1 ≤ k ∈ N, q = h(3k+1·c)
3·h(3k·c) is an integer

iff v3(h(c)) ≤ k − 1. In this case, the only possible value for q is q = 1.
Corollary 2. For 2 ≤ c = 3r · s ∈ N, r ∈ N, 1 ≤ s ∈ N and (s, 3) = 1, we have:

r = 0 =⇒ h(3c) =

{
2h(c) if s ≤ 2,

h(c)if s > 2.

r = 1 =⇒ h(3c) =

{
3h(c) if s = 1 or s > 2 and 3 - h(s),
h(c) if s ≥ 2 and 3 | h(s).

r > 1 =⇒ h(3c) =

{
3h(c) if s ≤ 2 or s > 2 and 3r−1‖h(s),
h(c) if s > 2 and 3r | h(s).

Hence, the value of q = h(3·c)
3·h(c) with c = 3r · s, r ∈ N, 1 ≤ s ∈ N and (s, 3) = 1

cannot be an integer if r = 0, or if r = 1 and s ≥ 2 and 3 | h(s), or if r > 1 and
s > 2 and 3r | h(s). These cases can be omitted from here on.

Corollary 3. For 2 < c = 3rs ∈ N, 1 ≤ r, s ∈ N and (s, 3) = 1, q = h(3c)
3h(c) is an

integer iff r ≥ 1 and v3(h(s)) ≤ r− 1. Now suppose that q is an integer, then q = 1
for all possible values of s.
Lemma 3. If m | M , then h(m) | h(M).
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Proof. Since {Ūn} is purely periodic, we have

Un+h(m) ≡ Un (mod m) and Un+h(M) ≡ Un (mod M),

moreover Un+h(M) ≡ Un (mod m) because m | M . Assume h(M) = q · h(m) + r
with q ∈ Z and 0 ≤ r < h(m). Hence, Un+r ≡ Un (mod m), which contradicts to
the definition of h(m). Thus, r = 0 and h(m) | h(M) is true. �

Lemma 4. h(m) is even for all m > 2.

Proof. Let h(0, 1,m) denote the period length of the sequence {V̄n} with V0 = 0,
V1 = 1 and Vn = 3 · Vn−1 + Vn−2 for n ≥ 2. Then h(0, 1,m) is even for all m > 2
(see Corollary 3 in [2]); moreover for A = 3, B = −1, a = 1 and b = 5, we have
E = b2−abA+a2B = 9 and therefore h(m) = h(0, 1,m) for all 3 - m (see Theorem
11 in [2]). Thus, h(m) is even for all m > 2 with 3 - m. On the other hand, if
3 | m > 2, then h(3) = 2 | h(m), that is, h(m) is even again. �

Theorem 1. For 2 < c = 3rs ∈ N, 1 ≤ r, s ∈ N, (s, 3) = 1, v3(h(s)) ≤ r − 1 and
q = h(3c)

3h(c) , we have B3c = q(Bc)3.

Proof. Case 1. r = 1. Now c = 3s, (s, 3) = 1, and v3(h(s)) ≤ 0 =⇒ 3 - h(s). If
s = 1, then q = h(9)

3h(3) = 1. Thus, B32 = (B3)3 can be checked by computation. If

s > 1, then q = h(3c)
3h(c) = 1. Thus, we need to prove that B32·s = (B3s)3.

Since h(3c) = 3h(c) and h(3s) = h(s), we need to show that, for any w ∈ N and
j ∈ {0, 1, 2}, the three values of Uw+jh(s) are pairwise different modulo 9, and hence
also modulo 9s. Let j1, j2 ∈ {0, 1, 2} with 1 ≤ |j1 − j2| < 3. For a fixed w ∈ N, let
z1 and z2 be the residues of the numbers w + j1h(s) and w + j2h(s) modulo h(9),
respectively. This means 0 ≤ |z1 − z2| < h(9) = 6. The consequence of s > 1 and
3 - h(s) is that s ≥ 7; and therefore, h(s) is even. This yields

2 ≤ h(s) ≤ h(s) · |j1 − j2| = |z1 − z2| 6≡ 0 (mod 6),

so that z1 and z2 are different modulo 6 and, in addition, are not consecutive
numbers; whence Uz1 (mod 9) and Uz2 (mod 9) also have two different values that
can be checked using the following table:

n 0 1 2 3 4 5 6 · · ·
Un (mod 9) 1 5 7 8 4 2 1 · · ·

Case 2. r > 1 Now c = 3rs, (s, 3) = 1, and v3(h(s)) ≤ r − 1 =⇒ q = h(3c)
3h(c) = 1.

Thus, we must prove that B3c = (Bc)3. We need to show that, for any fixed w ∈ N
and j ∈ {0, 1, 2}, the numbers Uw+jh(c) are pairwise different modulo 3c. Since
(s, 3) = 1 and v3(h(s)) ≤ r − 1, we have

h(c) = h(3r · s) = [h(3r), h(s)] = h(3r) · h(s)
(h(3r), h(s))

= h(3r) · z

with some 1 ≤ z ∈ N and 3 - z. Hence, for any fixed w ∈ N and j ∈ {0, 1, 2}, the
numbers w+jh(c) and w+jh(3r) are always in the same residue class modulo h(3r).
Therefore, the numbers Uw+jh(c) and Uw+jh(3r) are also in the same residue class
modulo 3r. But the numbers Uw+jh(3r) are pairwise different modulo 3r+1 because
of Lemma 1. Thus, the numbers Uw+jh(c) are again pairwise different modulo 3r+1,
and thereby also modulo 3c. �

Theorem 2. For 1 ≤ k ∈ N and q = h(3k+1)
3·h(3k)

, we have B3k+1 = q(B3k)3.
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Proof. We proceed by induction on k. For k = 1, we go back to Case 1 of Theorem 1,
whence q = 1 and B32 = (B3)3.

Assume the statement is true for k > 1. As a consequence of Case 2 of Theorem 1,
we can take q = 1. Thus,

B3(k+1)+1 = B3·3k+1 = 1 · (B3k+1)3 =
(
q(B3k)3

)3
= q

(
(B3k)3

)3
= q(B3k+1)3.

�

Corollary 4. For 1 ≤ k ∈ N and q = h(3k+1)
3h(3k)

, we have B3k+1 = (B3)3
k

.

Proof. For all 1 ≤ k ∈ N, it is now q = 1 to take. Thus,

B3k+1 = 1 · (B3k)3 = (B3·3k−1)3 =
(
(B3k−1)3

)3
= (B3k−1)3

2
= · · ·

= (B32)3
k−1

=
(
1 · (B3)3

)3k−1

= (B3)3
k

.

�

Corollary 5. For any 1 ≤ k ∈ N, we have ‖S(3k)‖ = ‖S(3)‖ = 2.
Thus, we have a complete proof for D2. The proof of D5 can be done using D2

and D3 as follows:

B15·c = B3·5c = (B5c)3 =
(
(Bc)5

)3
= (Bc)15.

The proofs of the other discoveries can, for the most part, be carried out in a
similar manner, so they are left to the interested reader. The only reason for
considering the above specific problem was Corollary 2 in [1], where it was proved
that the sequences U(3, 1) with U0 = 1 and U1 ∈ {1, 3, 5} are uniformly distributed
modulo 13k for all k ≥ 1. The reader should consider the related more general
sequences U(p, 1) satisfying the recursion relation Un = pUn−1 + Un−2 for n ≥ 2
with U0 = 1, U1 = 5 and p a fixed odd prime. It can be proved by similar
methods thatBpk+1 = (Bp)pk

is also valid for these recurrences; here, Bp refers to
the frequency block defined above. The reader might consider proving this result,
and possibly other results similar to those found in this paper. In the meantime,
it is advisable to remember the fundamental fact that the recurrences U(p, 1) with
U0 = 1 and U1 = 5 are irregular modulo p, that is, the vectors (U0, U1) and (U1, U2)
are linearly independent modulo p.
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