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ON THE SEPARATION OF DIFFERENCE EQUATIONS

H. KH. ABDULLAH AND K. I. AL-DOSARY

Abstract. In this paper, we have developed necessary conditions for separat-
ing two coupled linear difference equations extracted from particular type of

Schrodinger equation.

1. Introduction

In order to solve a system of coupled difference equations one must, first of all,
decouple the system, as one of the techniques. In fact there are many different
approaches of decoupling operation, namely, increasing the order of the difference
equation, approximation methods, diagonalization of the transformed system, etc.
These types of approaches depend on the nature of the structure of the system one
deals with. In many-channel problems one frequently deals with a finite system of
coupled differential equations of the Schrodinger type of the form

∇yi (x) =
∑
j

φij (x) yj (x)

from which the wave function for each channel can be extracted. In which ∇ is
the usual Laplace operator, φij represents the interaction term connecting channel
i to other channels j, see [2]. Our work is developing a method of separation the
coupled difference equations

Λyi (xn) =
∑
j=1,2

φij (xn) yj (xn) + µi (xn) , i = 1, 2

where Λ =
N∑
s=1

rs (xn) ∆s, ∆ is the difference operator i.e.

∆syn =
s∑
i=0

(−1)i
(
s

i

)
yn+s−i,

rs’s, φij ’s and µi (xn)’s are functions of xn where(
s

i

)
=

s!
i! (s− i)!

.

For more explanation we give the following details

∆1yn =
∑
i=0,1

(−1)i
(

1
i

)
yn+1−i =

(
1
0

)
yn+1 + (−1)

(
1
1

)
yn = yn+1 − yn
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and

∆2yn =
2∑
i=0

(−1)i
(

2
i

)
yn+2−i =

(
2
0

)
yn+2 −

(
2
1

)
yn+1 +

(
2
2

)
yn

= yn+2 − 2yn+1 + yn

and so on.
This is extracted from Schrodinger equations. We aim to diagonalize a trans-

formed system of the system

(1.1) ΛY = ΦY + µ

where Φ = (φij) and µ is the column vector of µi’s.
To this end, apply a suitable transformation A = (akl) , such that AT = Z on

system (1.1) to get the form
RZ = Aµ

where R = AΓA−1 is a difference operator which is intended to be diagonalized
and Γ = ΛI − Φ.

We have developed conditions under which one of the variable z`’s can be sep-
arated, and the conditions under which both z1 and z2 can be separated where
Z =

(
z1
z2

)
. In the first case the separated variable can be found out from the sep-

arated equation then replacing it in the second coupled equation from which we
determine the second variable. The hypothesis of Theorems 1 and 2 are necessary
conditions for the separation.

2. Separation of the equations

Consider the following system of two coupled difference equations

(2.1) Λyi (xn) =
∑
j=1,2

φij (xn) yj (xn) + µi (xn) i = 1, 2

where Λ =
N∑
s=1

rs (xn) ∆s, ∆ is the usual difference operator defined by ∆yi (xn) =

yi (xn+1) − yi (xn), rs’s, φij ’s, and µi’s are functions of xn, provided that none of
the coupling functions φ12 and φ21 is zero. We aim to decouple this system. The
technique is to choose a suitable transformation A = (ak`) of size 2 × 2 (where
ak`’s are independent of xn to be determined), and make use of this transformation
in system (2.1). The transformed system will be in the matrix form

(2.2) AΓA−1AY = Aµ

where Γ = ΛI − Φ, I is the identity matrix, Φ = (φij), µ =
(
µ1
µ2

)
, and Y is the

column
(
y1
y2

)
. The required transformation A is that one which makes the matrix

AΓA−1 of the left side of equation (2.2) to be either triangular or diagonal matrix
according to the aim that we are interested in.

Suppose AΓA−1 = B = (bij), so the crossing terms bk`, k 6= ` will be of the form

bk` = akkak` (φkk − φ``)− a2
kkφk` + a2

k`φ`k − akkΛak` + ak`Λakk

since ak`’s are independent of xn, hence

−akkΛak` + ak`Λakk = −akkak`Λ + akkak`Λ = 0.

Therefore
bk` = −a2

kkφk` + (φkk − φ``) ak`akk + φ`ka
2
k`.
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If we assume ak`’s , k 6= ` are non zero constants then,

(2.3) bk` =

[
φk`

(
akk
ak`

)2

− (φkk − φ``)
akk
ak`
− φ`k

] (
−a2

k`

)
.

In order to make the matrix B triangular or diagonal, we have to search for the
roots of the equations

bk` = 0, k 6= `.

This implies

akk
ak`

=
φkk − φ``

2φk`
±

[(
φkk − φ``

2φk`

)2

+
φ`k
φk`

] 1
2

.

If we insert the character

(2.4) Ωtk` =
φkk − φ``

2φk`
+ (−1)t

[(
φkk − φ``

2φk`

)2

+
φ`k
φk`

] 1
2

, ` 6= k

we obtain
akk
ak`

= Ωtk`

i.e.

(2.5) akk = Ωtk`ak`,

where t may be one or zero.
In order to outmatch some important properties of the quantity Ωtk` we justify

the following lemmas
Lemma 1. Ω1

k` 6= 0, and Ω0
k` 6= 0.

Proof. Since none of the coupling functions φ12 and φ21 is zero. So the second term
φ`k
φk`

in the bracket under the square root of the formula (2.4) could not be zero.
This implies the required result. �

Lemma 2. Ωtk` · Ωt`k = 1.

Proof. The proof can be done by using the formula (2.4) and direct computation.
�

Lemma 3. Ω0
12 = Ω1

12 if and only if Ω0
21 = Ω1

21.

Proof. Ω0
12 = Ω1

12 if and only if 1
Ω0

21
= 1

Ω1
21

if and only if Ω0
21 = Ω1

21 �

Lemma 4. Ω0
k` = Ω1

k` if and only if Ω0
`k · Ω1

k` = 1.

Proof. From lemma 2 we get

Ω0
k` · Ω1

`k =
Ω0
k`

Ω1
k`

.

Hence if Ω0
k` = Ω1

k` then Ω0
k` · Ω1

`k = 1; if Ω0
k` · Ω1

`k = 1 then Ω0
k`

Ω1
k`

= 1, so Ω0
k` =

Ω1
k`. �

Returning back to the transformation A concerning the relation (2.5) the trans-
formation will be in the form

A =
(

Ωt112a12 a12

a21 Ωt221a21

)
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where t1 = 0, 1 and t2 = 0, 1 and a12, a21may be any nonzero numbers. For
simplicity choose a12 = a21 = 1, therefore

A =
(

Ωt112 1
1 Ωt221

)
.

In order to avoid the singularity of this transformation, we may choose either
(t1 = 0, t2 = 1) or (t1 = 1, t2 = 0), with a necessary condition Ω0

12 6= Ω1
12.

Now we are ready to introduce our first theorem on the separation of system
(2.1).
Theorem 1. If both of the quantities Ω0

12 and Ω1
12(and hence Ω0

21 and Ω1
21) are

distinct real and independent of xn, then system (2.1) can be decoupled in the form
Amzm = Ωm−1

m,3−mµm + µ3−m where

Am = Λ− φmm

+
1

Ω0
12Ω1

21

{
φ3−m,3−m + φmm + Ωm−1

m,3−mφm,3−m − Ω2−m
3−m,mφ3−m,m

}
,

m = 1, 2.

Proof. Consider the transformation

A =
(

Ω0
12 1
1 Ω1

21

)
.

This matrix is nonsingular since its determinant is 1 − Ω0
12Ω1

21and this different
from zero see Lemma 4. Make use of this transformation in system (2.1) we get the
matrix equation of the form

AΓA−1Y Y = Aµ,

i.e.
Bz = Aµ

where B = (bij) = AΓA−1, z = AY , and Γ as defined before. Therefor

bk` = −φk`
(
Ωk−1
k`

)2
+ (φkk − φ``) Ωk−1

k` + φ`k − Ωk−1
k` Λ + ΛΩk−1

k` .

Since Ωk−1
k` is independent of xn, the last two terms of this equation is zero. Hence

bk` = −φk`
(
Ωk−1
k`

)2
+ (φkk − φ``) Ωk−1

k` + φ`k

but Ωk−1
k` is nothing but the zero root of this equation which implies bk` = 0, in

other words b12 = b21 = 0. Therefore the matrix B is now diagonal matrix and the
diagonal terms are

b11 = Λ +
1

Ω0
12Ω1

21 − 1
{
−Ω0

12Ω1
21φ11 + Ω0

12φ12 − Ω1
21φ21 + φ22

}
b22 = Λ +

1
Ω0

12Ω1
21 − 1

{
−Ω0

12Ω1
21φ22 − Ω0

12φ12 + Ω1
21φ21 + φ11

}
Simplifying these equations we get

b11 = Λ− φ11 +
1

Ω0
12Ω1

21 − 1
{
φ22 − φ11 + Ω0

12φ12 − Ω1
21φ21

}
b22 = Λ− φ22 +

1
Ω0

12Ω1
21 − 1

{
φ11 − φ22 + Ω1

21φ21 − Ω0
12φ12

}
.

Unifying these two equations in one formula assuming A1 = b11 and A2 = b22, the
required form in the statement of the theorem will be obtained. �
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Theorem 2. If one of the quantities Ω0
12 or Ω1

12 is independent of xn (and hence
Ω0

21 or Ω1
21) and denoted by Ωt0 , then system (2.1) can be decoupled in the form

Amzm = (m− 1) [(φ22 − Λ) z1 + µ1] + (2−m)
[
Ωt0µ1 + µ2

]
where

Am = (m− 1)
[
φ22Ωt0 − ΛΩt0 − φ21

]
+ (2−m)

[
Λ− Ωt0φ12 − φ22

]
, m = 1, 2.

Proof. Consider the nonsingular matrix transformation

A =
(

Ωt0 1
1 0

)
.

Make use of this transformation on system (2.1) we get a matrix equation of the
form

(2.6) Bz = Aµ

where B = (bij) = AΓA−1, z = AY , Γ as defined before. Hence the entry b12 is

b12 = φ12

(
Ωt0
)2 − (φ11 − φ12) Ωt0 − φ21 + Ωt0Λ− ΛΩt0 .

Since Ωt0 is independent of xn, of Ωt0Λ− ΛΩt0 = 0. Therefore

b12 = φ12

(
Ωt0
)2 − (φ11 − φ12) Ωt0 − φ21.

Recall that Ωt0 is nothing but a zero of the right hand side of this equation,
hence b12 = 0. Therefore the equations of the system (2.6 ) will be in the form

b11z1 = Ωt0µ1 + µ2,

b21z1 + b22z2 = µ1

where

b11 = Λ− Ωt0φ12 − φ22,

b21 = Λ− φ22,

b22 = −Ωt0Λ + Ωt0φ22 − φ21.

Using the notation A1 = b11, A2 = b22 we get the required form stated in the
theorem. �

Case of Ω0
k` = Ω1

k` is included in Theorem 2 as a case of the identity

(φkk − φ``)2 + 4φ`kφk` = 0.
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