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ON RICCI CURVATURE OF C-TOTALLY REAL
SUBMANIFOLDS IN SASAKIAN SPACE FORMS

LIU XIMIN

Abstract. Let Mn be a Riemannian n-manifold. Denote by S(p) and Ric(p)
the Ricci tensor and the maximum Ricci curvature on Mn, respectively. In this

paper we prove that every C-totally real submanifolds of a Sasakian space form

M̄2m+1(c) satisfies S ≤ (
(n−1)(c+3)

4
+ n2

4
H2)g, where H2 and g are the square

mean curvature function and metric tensor on Mn, respectively. The equality

holds identically if and only if either Mn is totally geodesic submanifold or

n = 2 and Mn is totally umbilical submanifold. Also we show that if a C-

totally real submanifold Mn of M̄2n+1(c) satisfies Ric =
(n−1)(c+3)

4
+ n2

4
H2

identically, then it is minimal.

1. Introduction

Let Mn be a Riemannian n-manifold isometrically immersed in a Riemannian m-
manifold M̄m(c) of constant sectional curvature c. Denote by g, R and h the metric
tensor, Riemannian curvature tensor and the second fundamental form of Mn,
respectively. Then the mean curvature vector H of Mn is given by H = 1

n traceh.
The Ricci tensor S and the scalar curvature ρ at a point p ∈ Mn are given by
S(X,Y ) =

∑n
i=1 < R(ei, X)Y, ei > and ρ =

∑n
i=1 S(ei, ei), respectively, where

{e1, . . . , en} is an orthonormal basis of the tangent space TpMn. A submanifold
Mn is called totally umbilical if h, H and g satisfy h(X,Y ) = g(X,Y )H for X, Y
tangent to Mn.

The equation of Gauss for the submanifold Mn is given by

(1) g(R(X,Y )Z,W ) = c(g(X,W )g(Y, Z)− g(X,Z)g(Y,W ))

+ g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )),

where X,Y, Z,W ∈ TMn. From (1) we have

(2) ρ = n(n− 1)c+ n2H2 − |h|2,

where |h|2 is the squared norm of the second fundamental form. From (2) we have

ρ ≤ n(n− 1)c+ n2H2,

with equality holding identically if and only if Mn is totally geodesic.
Let Ric(p) denote the maximum Ricci curvature function on Mn defined by

Ric(p) = max{S(u, u)|u ∈ T 1
pM

n, p ∈Mn},

where T 1
pM

n = {v ∈ TpMn| < v, v >= 1}.
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In [3], Chen proves that there exists a basic inequality on Ricci tensor S for any
submanifold Mn in M̄m(c), i.e.

(3) S ≤ ((n− 1)c+
n2

4
H2)g,

with the equality holding if and only if either Mn is a totally geodesic submanifold
or n = 2 and Mn is a totally umbilical submanifold. And in [4], Chen proves
that every isotropic submanifold Mn in a complex space form M̄m(4c) satisfies
Ric ≤ (n−1)c+ n2

4 H
2, and every Lagrangian submanifold of a complex space form

satisfying the equality case identically is a minimal submanifold. In the present
paper, we would like to extend the above results to the C-totally real submanifolds
of a Sasakian space form, namely, we prove that every C-totally real submanifolds
of a Sasakian space form M̄2m+1(c) satisfies S ≤ ( (n−1)(c+3)

4 + n2

4 H
2)g, and the

equality holds identically if and only if either Mn is totally geodesic submanifold
or n = 2 and Mn is totally umbilical submanifold. Also we show that if a C-
totally real submanifold Mn of a Sasakian space form M̄2n+1(c) satisfies Ric =
(n−1)(c+3)

4 + n2

4 H
2 identically, then it is minimal.

2. Preliminaries

Let M̄2m+1 be an odd dimensional Riemannian manifold with metric g. Let φ
be a (1,1)-tensor field, ξ a vector field, and η a 1-form on M̄2m+1, such that

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ).

If, in addition, dη(X,Y ) = g(φX, Y ) , for all vector fields X,Y on M̄2m+1,
then M̄2m+1 is said to have a contact metric structure (φ, ξ, η, g), and M̄2m+1

is called a contact metric manifold. If moreover the structure is normal, that is
if [φX, φY ] + φ2[X,Y ] − φ[X,φY ] − φ[φX, Y ] = −2dη(X,Y )ξ , then the contact
metric structure is called a Sasakian structure (normal contact metric structure)
and M̄2m+1 is called a Sasakian manifold. For more details and background, see
the standard references [1] and [8].

A plane section σ in TpM̄2m+1 of a Sasakian manifold M̄2m+1 is called a φ-section
if it is spanned by X and φX, where X is a unit tangent vector field orthogonal to ξ.
The sectional curvature K̄(σ) with respect to a φ-section σ is called a φ-sectional
curvature. If a Sasakian manifold M̄2m+1 has constant φ-sectional curvature c,
M̄2m+1 is called a Sasakian space form and is denoted by M̄2m+1(c).

The curvature tensor R̄ of a Sasakian space form M̃2m+1(c) is given by [8]:

R̃(X,Y )Z =
c+ 3

4
(
g(Y, Z)X − g(X,Z)Y

)
+

c− 1
4
(
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ
)
,

for any tangent vector fields X,Y, Z to M̄2m+1(c).
An n-dimensional submanifold Mn of a Sasakian space form M̄2m+1(c) is called

a C-totally real submanifold of M̄2m+1(c) if ξ is a normal vector field on Mn. A
direct consequence of this definition is that φ(TMn) ⊂ T⊥Mn, which means that
Mn is an anti-invariant submanifold of M̄2m+1(c). So we have n ≤ m.
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The Gauss equation implies that

(4) R(X,Y, Z,W ) =
1
4

(c+ 3)
(
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

)
+ g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )),

for all vector fields X,Y, Z,W tangent to Mn, where h denotes the second funda-
mental form and R the curvature tensor of Mn.

Let A denote the shape operator on Mn in M̄2m+1(c). Then A is related to the
second fundamental form h by

(5) g(h(X,Y ), α) = g(AαX,Y ),

where α is a normal vector field on Mn.
For C-totally real submanifold in M̄2m+1(c), we also have (for example, see [7])

AφYX = −φh(X,Y ) = AφXY, Aξ = 0.(6)

g(h(X,Y ), φZ) = g(h(X,Z), φY ).(7)

3. Ricci tensor of C-totally real submanifolds

We will need the following algebraic lemma due to Chen [2].

Lemma 3.1. Let a1, . . . , an, c be n+ 1 (n ≥ 2) real numbers such that

(8)
( n∑
i=1

ai

)2

= (n− 1)
( n∑
i=1

a2
i + c

)
.

Then 2a1a2 ≥ c, with equality holding if and only if a1 + a2 = a3 = · · · = an.

For a C-totally real submanifold Mn of M̄2m+1(c), we have

Theorem 3.1. If Mn is a C-totally real summanifold of M̄2m+1(c), then the Ricci
tensor of Mn satisfies

(9) S ≤ (
(n− 1)(c+ 3)

4
+
n2

4
H2)g,

and the equality holds identically if and only if either Mn is totally geodesic or
n = 2 and Mn is totally umbilical.

Proof. From Gauss equation (4), we have

(10) ρ =
n(n− 1)(c+ 3)

4
+ n2H2 − |h|2.

Put δ = ρ− n(n−1)(c+3)
4 − n2

2 H
2. Then from (10) we obtain

(11) n2H2 = 2(δ + |h|2).

Let L be a linear (n− 1)-subspace of TpMn, p ∈Mn, and

{e1, . . . , e2m, e2m+1 = ξ}

an orthonormal basis such that

(1) e1, . . . , en are tangent to Mn, (2) e1, . . . , en−1 ∈ L and
(3) if H(p) 6= 0, en+1 is in the direction of the mean curvature vector at p.

Put ai = hn+1
ii , i = 1, . . . , n. Then from (11) we get

(12)
( n∑
i=1

ai

)2

= 2
{
δ +

n∑
i=1

a2
i +

∑
i 6=j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2
}
.
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Equation (12) is equivalent to

(13)
( 3∑
i=1

āi

)2

= 2
{
δ +

3∑
i=1

ā2
i +

∑
i 6=j

(hn+1
ij )2

+
2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2 −

∑
2≤i 6=j≤n−1

aiaj

}
,

where ā1 = a1, ā2 = a2 + · · ·+ an−1, ā3 = an.
By Lemma 3.1 we know that if (

∑3
i=1 āi)

2 = 2(c +
∑3
i=1 ā

2
i ), then 2ā1ā2 ≥ c

with equality holding if and only if ā1 + ā2 = ā3. Hence from (13) we can get

(14)
∑

1≤i 6=j≤n−1

aiaj ≥ δ + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2,

which gives

(15)
n(n− 1)(c+ 3)

4
+
n2

2
H2 ≥

ρ−
∑

1≤i 6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2.

Using Gauss equation we have

(16) ρ−
∑

1≤i 6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2

= 2S(en, en) +
(n− 1)(n− 2)(c+ 3)

4
+ 2

∑
i<n

(hn+1
in )2

+
2m+1∑
r=n+2

[
(hrnn)2 + 2

n−1∑
i=1

(hrin)2 +
( n−1∑
j=1

hrjj

)2]
.

From (15) and (16) we have

(17)
(n− 1)(c+ 3)

4
+
n2

4
H2 ≥ S(en, en) + 2

∑
i<n

(hn+1
in )2

+
2m+1∑
r=n+2

[ n∑
i=1

(hrin)2 + (
n−1∑
j=1

hrjj)
2
]
.

So we have

(18)
(n− 1)(c+ 3)

4
+
n2

4
H2 ≥ S(en, en)

with equality holding if and only if

(19) hsjn = 0, hrin = 0,
n−1∑
j=1

hsjj = hsnn

for 1 ≤ j ≤ n− 1, 1 ≤ i ≤ n and n+ 2 ≤ r ≤ 2m+ 1 and, since Lemma 3.1 states
that 2ā1ā2 = c if and only if ā1 + ā2 = ā3, we also have hn+1

nn =
∑n−1
j=1 h

n+1
jj . Since

en can be any unit tangent vector of Mn, then (18) implies inequality (9).
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If the equality sign case of (9) holds identically. Then we have

hn+1
ij = 0 (1 ≤ i 6= j ≤ n),

hrij = 0 (1 ≤ i, j ≤ n;n+ 2 ≤ r ≤ 2m+ 1),

hn+1
ii =

∑
k 6=i

hn+1
kk ,

∑
k 6=i

hrkk = 0 (n+ 2 ≤ r ≤ 2m+ 1).
(20)

If λi = hn+1
ii (1 ≤ i ≤ n), we find

∑
k 6=i λk = λi(1 ≤ i ≤ n) and, since the matrix

A(n) = (a(n)
ij ) with a

(n)
ij = 1 − 2δij is regular for n 6= 2 and has kernel R(1, 1) for

n = 2, we conclude that Mn is either totally geodesic or n = 2 and Mn is totally
umbilical.

The converse is easy to prove. This completes the proof of Theorem 3.1. �

4. Minimality of C-totally real submanifolds

Theorem 4.1. If Mn is a n-dimensional C-totally real submanifold in a Sasakian
space form M̄2n+1(c), then

(21) Ric ≤ (n− 1)(c+ 3)
4

+
n2

4
H2.

If Mn satisfies the equality case of (21) identically, then Mn is minimal.
Clearly Theorem 4.1. follows immediately from the following Lemma.

Lemma 4.1. If Mn is a n-dimensional totally real submanifold in a Sasakian
space form M̄2m+1(c), then we have (21). If a C-totally real submanifold Mn in
M̄2m+1(c) satisfies the equality case of (21) at a point p, then the mean curvature
vector H at p is perpendicular to φ(TpMn).

Proof. Inequality (21) is an immediate consequence of inequality (9).
Now let us assume that Mn is a C-totally real submanifold of M̄2m+1(c) which

satisfies the equality sign of (21) at a point p ∈Mn. Without loss of the generality
we may choose an orthonormal basis {ē1, . . . , ēn} of TpMn such that Ric(p) =
S(ēn, ēn). From the proof of Theorem 3.1, we get

(22) hsin = 0,
n−1∑
i=1

hsii = hsnn, i = 1, . . . , n− 1; s = n+ 1, . . . , 2m+ 1,

where hsij denote the coefficients of the second fundamental form with respect to
the orthonormal basis {ē1, . . . , ēn} and {ēn+1, . . . , ē2m+1 = ξ}.

If for all tangent vectors u, v and w at p, g(h(u, v), φw) = 0, there is nothing to
prove. So we assume that this is not the case. We define a function fp by

(23) fp : T 1
pM

n → R : v 7→ fp(v) = g(h(v, v), φv).

Since T 1
pM

n is a compact set, there exists a vector v ∈ T 1
pM

n such that fp
attains an absolute maximum at v. Then fp(v) > 0 and g(h(v, v), φw) = 0 for all w
perpendicular to v. So from (5), we know that v is an eigenvector of Aφv. Choose
a frame {e1, e2, . . . , en} of TpMn such that e1 = v and ei be an eigenvector of Aφe1
with eigenvalue λi. The function fi, i ≥ 2, defined by fi(t) = fp(cos t e1 + sin t e2)
has relative maximum at t = 0, so f ′′i (0) ≤ 0. This will lead to the inequality
λ1 ≥ 2λi. Since λ1 > 0, we have

(24) λi 6= λ1, λ1 ≥ 2λi, i ≥ 2.

Thus, the eigenspace of Aφe1 with eigenvalue λ1 is 1-dimensional.
From (22) we know that ēn is a common eigenvector for all shape operators at

p. On the other hand, we have e1 6= ±ēn since otherwise, from (22) and Aφei ēn =
±Aφeie1 = ±Aφe1ei = ±λiei⊥ēn (i = 2, . . . , n), we obtain λi = 0, i = 2, . . . , n;



176 LIU XIMIN

and hence λ1 = 0 by (22), which is a contradiction. Consequently, without loss of
generality we may assume e1 = ē1, . . . , en = ēn.

By (6), Aφene1 = Aφe1en = λnen. Comparing this with (22) we obtain λn = 0.
Thus, by applying (22) once more, we get λ1 + · · · + λn−1 = λn = 0. Therefore,
traceAφe1 = 0.

For each i = 2, . . . , n, we have

hn+i
nn = g(Aφeien, en) = g(Aφenei, en) = h2n

in .

Hence, by applying (22) again, we get hn+i
nn = 0. Combining this with (22) yields

traceAφei = 0. So we have traceAφX = 0 for any X ∈ TpM
n. Therefore, we

conclude that the mean curvature vector at p is perpendicular to φ(TpMn). �

Remark 4.1. From the proof of Lemma 4.1 we know that if Mn is a C-totally real
submanifold of M̄2n+1(c) satisfying

(25) Ric =
(n− 1)(c+ 3)

4
+
n2

4
H2,

then Mn is minimal and Aφv = 0 for any unit tangent vector satisfying S(v, v) =
Ric. Thus, by (6) we have AφXv = 0. Hence, we obtain h(v,X) = 0 for any X

tangent to Mn and any v satisfying S(v, v) = Ric. Conversely, if Mn is a minimal
C-totally real submanifold of M̄2n+1(c) such that for each p ∈ Mn there exists a
unit vector v ∈ TpMn such that h(v,X) = 0 for all X ∈ TpMn, then it satisfies
(25) identically.

For each p ∈Mn, the kernel of the second fundamental form is defined by

(26) D(p) = {Y ∈ TpMn|h(X,Y ) = 0,∀X ∈ TpMn}.
From the above discussion, we conclude that Mn is a minimal C-totally real sub-
manifold of M̄2m+1(c) satisfying (25) at p if and only if dimD(p) is at least 1-
dimensional.

Following the same argument as in [4], we can prove
Theorem 4.2. Let Mn be a minimal C-totally real submanifold of M̄2n+1(c). Then

(1) Mn satisfies (25) at a point p if and only if dimD(p) ≥ 1.
(2) If the dimension of D(p) is positive constant d, then D is a completely integral

distribution and Mn is d-ruled, i.e., for each point p ∈ Mn, Mn contains a d-
dimensional totally geodesic submanifold N of M̄2n+1(c) passing through p.

(3) A ruled minimal C-totally real submanifold Mn of M̄2n+1(c) satisfies (24)
identically if and only if, for each ruling N in Mn, the normal bundle T⊥Mn

restricted to N is a parallel normal subbundle of the normal bundle T⊥N along N .
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