```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 17 (2001), 171-177
www.emis.de/journals
```


ON RICCI CURVATURE OF C-TOTALLY REAL SUBMANIFOLDS IN SASAKIAN SPACE FORMS

LIU XIMIN

Abstract

Let M^{n} be a Riemannian n-manifold. Denote by $S(p)$ and $\overline{\operatorname{Ric}}(p)$ the Ricci tensor and the maximum Ricci curvature on M^{n}, respectively. In this paper we prove that every C-totally real submanifolds of a Sasakian space form $\bar{M}^{2 m+1}(c)$ satisfies $S \leq\left(\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}\right) g$, where H^{2} and g are the square mean curvature function and metric tensor on M^{n}, respectively. The equality holds identically if and only if either M^{n} is totally geodesic submanifold or $n=2$ and M^{n} is totally umbilical submanifold. Also we show that if a C totally real submanifold M^{n} of $\bar{M}^{2 n+1}(c)$ satisfies $\overline{\mathrm{Ric}}=\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}$ identically, then it is minimal.

1. Introduction

Let M^{n} be a Riemannian n-manifold isometrically immersed in a Riemannian m manifold $\bar{M}^{m}(c)$ of constant sectional curvature c. Denote by g, R and h the metric tensor, Riemannian curvature tensor and the second fundamental form of M^{n}, respectively. Then the mean curvature vector H of M^{n} is given by $H=\frac{1}{n}$ trace h. The Ricci tensor S and the scalar curvature ρ at a point $p \in M^{n}$ are given by $S(X, Y)=\sum_{i=1}^{n}<R\left(e_{i}, X\right) Y, e_{i}>$ and $\rho=\sum_{i=1}^{n} S\left(e_{i}, e_{i}\right)$, respectively, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the tangent space $T_{p} M^{n}$. A submanifold M^{n} is called totally umbilical if h, H and g satisfy $h(X, Y)=g(X, Y) H$ for X, Y tangent to M^{n}.

The equation of Gauss for the submanifold M^{n} is given by

$$
\begin{align*}
g(R(X, Y) Z, W)=c(g(X, W) & g(Y, Z)-g(X, Z) g(Y, W)) \tag{1}\\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)),
\end{align*}
$$

where $X, Y, Z, W \in T M^{n}$. From (1) we have

$$
\begin{equation*}
\rho=n(n-1) c+n^{2} H^{2}-|h|^{2}, \tag{2}
\end{equation*}
$$

where $|h|^{2}$ is the squared norm of the second fundamental form. From (2) we have

$$
\rho \leq n(n-1) c+n^{2} H^{2}
$$

with equality holding identically if and only if M^{n} is totally geodesic.
Let $\overline{\operatorname{Ric}}(p)$ denote the maximum Ricci curvature function on M^{n} defined by

$$
\overline{\operatorname{Ric}}(p)=\max \left\{S(u, u) \mid u \in T_{p}^{1} M^{n}, p \in M^{n}\right\}
$$

where $T_{p}^{1} M^{n}=\left\{v \in T_{p} M^{n} \mid<v, v>=1\right\}$.

In [3], Chen proves that there exists a basic inequality on Ricci tensor S for any submanifold M^{n} in $\bar{M}^{m}(c)$, i.e.

$$
\begin{equation*}
S \leq\left((n-1) c+\frac{n^{2}}{4} H^{2}\right) g \tag{3}
\end{equation*}
$$

with the equality holding if and only if either M^{n} is a totally geodesic submanifold or $n=2$ and M^{n} is a totally umbilical submanifold. And in [4], Chen proves that every isotropic submanifold M^{n} in a complex space form $\bar{M}^{m}(4 c)$ satisfies $\overline{\mathrm{Ric}} \leq(n-1) c+\frac{n^{2}}{4} H^{2}$, and every Lagrangian submanifold of a complex space form satisfying the equality case identically is a minimal submanifold. In the present paper, we would like to extend the above results to the C-totally real submanifolds of a Sasakian space form, namely, we prove that every C-totally real submanifolds of a Sasakian space form $\bar{M}^{2 m+1}(c)$ satisfies $S \leq\left(\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}\right) g$, and the equality holds identically if and only if either M^{n} is totally geodesic submanifold or $n=2$ and M^{n} is totally umbilical submanifold. Also we show that if a C totally real submanifold M^{n} of a Sasakian space form $\bar{M}^{2 n+1}(c)$ satisfies $\overline{\operatorname{Ric}}=$ $\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}$ identically, then it is minimal.

2. Preliminaries

Let $\bar{M}^{2 m+1}$ be an odd dimensional Riemannian manifold with metric g. Let ϕ be a (1,1)-tensor field, ξ a vector field, and η a 1 -form on $\bar{M}^{2 m+1}$, such that

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

If, in addition, $d \eta(X, Y)=g(\phi X, Y)$, for all vector fields X, Y on $\bar{M}^{2 m+1}$, then $\bar{M}^{2 m+1}$ is said to have a contact metric structure (ϕ, ξ, η, g), and $\bar{M}^{2 m+1}$ is called a contact metric manifold. If moreover the structure is normal, that is if $[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[X, \phi Y]-\phi[\phi X, Y]=-2 d \eta(X, Y) \xi$, then the contact metric structure is called a Sasakian structure (normal contact metric structure) and $\bar{M}^{2 m+1}$ is called a Sasakian manifold. For more details and background, see the standard references [1] and [8].

A plane section σ in $T_{p} \bar{M}^{2 m+1}$ of a Sasakian manifold $\bar{M}^{2 m+1}$ is called a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent vector field orthogonal to ξ. The sectional curvature $\bar{K}(\sigma)$ with respect to a ϕ-section σ is called a ϕ-sectional curvature. If a Sasakian manifold $\bar{M}^{2 m+1}$ has constant ϕ-sectional curvature c, $\bar{M}^{2 m+1}$ is called a Sasakian space form and is denoted by $\bar{M}^{2 m+1}(c)$.

The curvature tensor \bar{R} of a Sasakian space form $\tilde{M}^{2 m+1}(c)$ is given by [8]:

$$
\begin{aligned}
\tilde{R}(X, Y) Z= & \frac{c+3}{4}(g(Y, Z) X-g(X, Z) Y) \\
& +\frac{c-1}{4}(\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z),
\end{aligned}
$$

for any tangent vector fields X, Y, Z to $\bar{M}^{2 m+1}(c)$.
An n-dimensional submanifold M^{n} of a Sasakian space form $\bar{M}^{2 m+1}(c)$ is called a C-totally real submanifold of $\bar{M}^{2 m+1}(c)$ if ξ is a normal vector field on M^{n}. A direct consequence of this definition is that $\phi\left(T M^{n}\right) \subset T^{\perp} M^{n}$, which means that M^{n} is an anti-invariant submanifold of $\bar{M}^{2 m+1}(c)$. So we have $n \leq m$.

The Gauss equation implies that

$$
\begin{align*}
& R(X, Y, Z, W)=\frac{1}{4}(c+3)(g(Y, Z) g(X, W)-g(X, Z) g(Y, W)) \tag{4}\\
&+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{align*}
$$

for all vector fields X, Y, Z, W tangent to M^{n}, where h denotes the second fundamental form and R the curvature tensor of M^{n}.

Let A denote the shape operator on M^{n} in $\bar{M}^{2 m+1}(c)$. Then A is related to the second fundamental form h by

$$
\begin{equation*}
g(h(X, Y), \alpha)=g\left(A_{\alpha} X, Y\right) \tag{5}
\end{equation*}
$$

where α is a normal vector field on M^{n}.
For C-totally real submanifold in $\bar{M}^{2 m+1}(c)$, we also have (for example, see [7])

$$
\begin{gather*}
A_{\phi Y} X=-\phi h(X, Y)=A_{\phi X} Y, \quad A_{\xi}=0 \tag{6}\\
g(h(X, Y), \phi Z)=g(h(X, Z), \phi Y) \tag{7}
\end{gather*}
$$

3. Ricci tensor of C-totally real submanifolds

We will need the following algebraic lemma due to Chen [2].
Lemma 3.1. Let a_{1}, \ldots, a_{n}, c be $n+1(n \geq 2)$ real numbers such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+c\right) \tag{8}
\end{equation*}
$$

Then $2 a_{1} a_{2} \geq c$, with equality holding if and only if $a_{1}+a_{2}=a_{3}=\cdots=a_{n}$.
For a C-totally real submanifold M^{n} of $\bar{M}^{2 m+1}(c)$, we have
Theorem 3.1. If M^{n} is a C-totally real summanifold of $\bar{M}^{2 m+1}(c)$, then the Ricci tensor of M^{n} satisfies

$$
\begin{equation*}
S \leq\left(\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}\right) g \tag{9}
\end{equation*}
$$

and the equality holds identically if and only if either M^{n} is totally geodesic or $n=2$ and M^{n} is totally umbilical.

Proof. From Gauss equation (4), we have

$$
\begin{equation*}
\rho=\frac{n(n-1)(c+3)}{4}+n^{2} H^{2}-|h|^{2} . \tag{10}
\end{equation*}
$$

Put $\delta=\rho-\frac{n(n-1)(c+3)}{4}-\frac{n^{2}}{2} H^{2}$. Then from (10) we obtain

$$
\begin{equation*}
n^{2} H^{2}=2\left(\delta+|h|^{2}\right) \tag{11}
\end{equation*}
$$

Let L be a linear $(n-1)$-subspace of $T_{p} M^{n}, p \in M^{n}$, and

$$
\left\{e_{1}, \ldots, e_{2 m}, e_{2 m+1}=\xi\right\}
$$

an orthonormal basis such that
(1) e_{1}, \ldots, e_{n} are tangent to M^{n}, (2) $e_{1}, \ldots, e_{n-1} \in L$ and
(3) if $H(p) \neq 0, e_{n+1}$ is in the direction of the mean curvature vector at p.

Put $a_{i}=h_{i i}^{n+1}, i=1, \ldots, n$. Then from (11) we get

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=2\left\{\delta+\sum_{i=1}^{n} a_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\} . \tag{12}
\end{equation*}
$$

Equation (12) is equivalent to

$$
\begin{align*}
&\left(\sum_{i=1}^{3} \bar{a}_{i}\right)^{2}=2\left\{\delta+\sum_{i=1}^{3} \bar{a}_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}\right. \tag{13}\\
&\left.+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\sum_{2 \leq i \neq j \leq n-1} a_{i} a_{j}\right\}
\end{align*}
$$

where $\bar{a}_{1}=a_{1}, \bar{a}_{2}=a_{2}+\cdots+a_{n-1}, \bar{a}_{3}=a_{n}$.
By Lemma 3.1 we know that if $\left(\sum_{i=1}^{3} \bar{a}_{i}\right)^{2}=2\left(c+\sum_{i=1}^{3} \bar{a}_{i}^{2}\right)$, then $2 \bar{a}_{1} \bar{a}_{2} \geq c$ with equality holding if and only if $\bar{a}_{1}+\bar{a}_{2}=\bar{a}_{3}$. Hence from (13) we can get

$$
\begin{equation*}
\sum_{1 \leq i \neq j \leq n-1} a_{i} a_{j} \geq \delta+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{14}
\end{equation*}
$$

which gives
(15) $\frac{n(n-1)(c+3)}{4}+\frac{n^{2}}{2} H^{2} \geq$

$$
\rho-\sum_{1 \leq i \neq j \leq n-1} a_{i} a_{j}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

Using Gauss equation we have

$$
\begin{align*}
& \rho-\sum_{1 \leq i \neq j \leq n-1} a_{i} a_{j}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{16}\\
& =2 S\left(e_{n}, e_{n}\right)+\frac{(n-1)(n-2)(c+3)}{4}+2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2} \\
& \quad+\sum_{r=n+2}^{2 m+1}\left[\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right] .
\end{align*}
$$

From (15) and (16) we have

$$
\begin{align*}
\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2} \geq S\left(e_{n}, e_{n}\right)+2 & \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2} \tag{17}\\
& +\sum_{r=n+2}^{2 m+1}\left[\sum_{i=1}^{n}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right]
\end{align*}
$$

So we have

$$
\begin{equation*}
\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2} \geq S\left(e_{n}, e_{n}\right) \tag{18}
\end{equation*}
$$

with equality holding if and only if

$$
\begin{equation*}
h_{j n}^{s}=0, \quad h_{i n}^{r}=0, \quad \sum_{j=1}^{n-1} h_{j j}^{s}=h_{n n}^{s} \tag{19}
\end{equation*}
$$

for $1 \leq j \leq n-1,1 \leq i \leq n$ and $n+2 \leq r \leq 2 m+1$ and, since Lemma 3.1 states that $2 \bar{a}_{1} \bar{a}_{2}=c$ if and only if $\bar{a}_{1}+\bar{a}_{2}=\bar{a}_{3}$, we also have $h_{n n}^{n+1}=\sum_{j=1}^{n-1} h_{j j}^{n+1}$. Since e_{n} can be any unit tangent vector of M^{n}, then (18) implies inequality (9).

If the equality sign case of (9) holds identically. Then we have

$$
\begin{align*}
& h_{i j}^{n+1}=0 \quad(1 \leq i \neq j \leq n) \\
& h_{i j}^{r}=0 \quad(1 \leq i, j \leq n ; n+2 \leq r \leq 2 m+1) \tag{20}\\
& h_{i i}^{n+1}=\sum_{k \neq i} h_{k k}^{n+1}, \quad \sum_{k \neq i} h_{k k}^{r}=0 \quad(n+2 \leq r \leq 2 m+1)
\end{align*}
$$

If $\lambda_{i}=h_{i i}^{n+1}(1 \leq i \leq n)$, we find $\sum_{k \neq i} \lambda_{k}=\lambda_{i}(1 \leq i \leq n)$ and, since the matrix $A^{(n)}=\left(a_{i j}^{(n)}\right)$ with $a_{i j}^{(n)}=1-2 \delta_{i j}$ is regular for $n \neq 2$ and has kernel $R(1,1)$ for $n=2$, we conclude that M^{n} is either totally geodesic or $n=2$ and M^{n} is totally umbilical.

The converse is easy to prove. This completes the proof of Theorem 3.1.

4. Minimality of C-totally real submanifolds

Theorem 4.1. If M^{n} is a n-dimensional C-totally real submanifold in a Sasakian space form $\bar{M}^{2 n+1}(c)$, then

$$
\begin{equation*}
\overline{R i c} \leq \frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2} \tag{21}
\end{equation*}
$$

If M^{n} satisfies the equality case of (21) identically, then M^{n} is minimal.
Clearly Theorem 4.1. follows immediately from the following Lemma.
Lemma 4.1. If M^{n} is a n-dimensional totally real submanifold in a Sasakian space form $\bar{M}^{2 m+1}(c)$, then we have (21). If a C-totally real submanifold M^{n} in $\bar{M}^{2 m+1}(c)$ satisfies the equality case of (21) at a point p, then the mean curvature vector H at p is perpendicular to $\phi\left(T_{p} M^{n}\right)$.

Proof. Inequality (21) is an immediate consequence of inequality (9).
Now let us assume that M^{n} is a C-totally real submanifold of $\bar{M}^{2 m+1}(c)$ which satisfies the equality sign of (21) at a point $p \in M^{n}$. Without loss of the generality we may choose an orthonormal basis $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ of $T_{p} M^{n}$ such that $\overline{\operatorname{Ric}}(p)=$ $S\left(\bar{e}_{n}, \bar{e}_{n}\right)$. From the proof of Theorem 3.1, we get

$$
\begin{equation*}
h_{i n}^{s}=0, \quad \sum_{i=1}^{n-1} h_{i i}^{s}=h_{n n}^{s}, \quad i=1, \ldots, n-1 ; s=n+1, \ldots, 2 m+1, \tag{22}
\end{equation*}
$$

where $h_{i j}^{s}$ denote the coefficients of the second fundamental form with respect to the orthonormal basis $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ and $\left\{\bar{e}_{n+1}, \ldots, \bar{e}_{2 m+1}=\xi\right\}$.

If for all tangent vectors u, v and w at $p, g(h(u, v), \phi w)=0$, there is nothing to prove. So we assume that this is not the case. We define a function f_{p} by

$$
\begin{equation*}
f_{p}: T_{p}^{1} M^{n} \rightarrow R: v \mapsto f_{p}(v)=g(h(v, v), \phi v) \tag{23}
\end{equation*}
$$

Since $T_{p}^{1} M^{n}$ is a compact set, there exists a vector $v \in T_{p}^{1} M^{n}$ such that f_{p} attains an absolute maximum at v. Then $f_{p}(v)>0$ and $g(h(v, v), \phi w)=0$ for all w perpendicular to v. So from (5), we know that v is an eigenvector of $A_{\phi v}$. Choose a frame $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{p} M^{n}$ such that $e_{1}=v$ and e_{i} be an eigenvector of $A_{\phi e_{1}}$ with eigenvalue λ_{i}. The function $f_{i}, i \geq 2$, defined by $f_{i}(t)=f_{p}\left(\operatorname{cost} e_{1}+\sin t e_{2}\right)$ has relative maximum at $t=0$, so $f_{i}^{\prime \prime}(0) \leq 0$. This will lead to the inequality $\lambda_{1} \geq 2 \lambda_{i}$. Since $\lambda_{1}>0$, we have

$$
\begin{equation*}
\lambda_{i} \neq \lambda_{1}, \quad \lambda_{1} \geq 2 \lambda_{i}, \quad i \geq 2 \tag{24}
\end{equation*}
$$

Thus, the eigenspace of $A_{\phi e_{1}}$ with eigenvalue λ_{1} is 1-dimensional.
From (22) we know that \bar{e}_{n} is a common eigenvector for all shape operators at p. On the other hand, we have $e_{1} \neq \pm \bar{e}_{n}$ since otherwise, from (22) and $A_{\phi e_{i}} \bar{e}_{n}=$ $\pm A_{\phi e_{i}} e_{1}= \pm A_{\phi e_{1}} e_{i}= \pm \lambda_{i} e_{i} \perp \bar{e}_{n}(i=2, \ldots, n)$, we obtain $\lambda_{i}=0, i=2, \ldots, n$;
and hence $\lambda_{1}=0$ by (22), which is a contradiction. Consequently, without loss of generality we may assume $e_{1}=\bar{e}_{1}, \ldots, e_{n}=\bar{e}_{n}$.

By (6), $A_{\phi e_{n}} e_{1}=A_{\phi e_{1}} e_{n}=\lambda_{n} e_{n}$. Comparing this with (22) we obtain $\lambda_{n}=0$. Thus, by applying (22) once more, we get $\lambda_{1}+\cdots+\lambda_{n-1}=\lambda_{n}=0$. Therefore, trace $A_{\phi e_{1}}=0$.

For each $i=2, \ldots, n$, we have

$$
h_{n n}^{n+i}=g\left(A_{\phi e_{i}} e_{n}, e_{n}\right)=g\left(A_{\phi e_{n}} e_{i}, e_{n}\right)=h_{i n}^{2 n} .
$$

Hence, by applying (22) again, we get $h_{n n}^{n+i}=0$. Combining this with (22) yields $\operatorname{trace} A_{\phi e_{i}}=0$. So we have trace $A_{\phi X}=0$ for any $X \in T_{p} M^{n}$. Therefore, we conclude that the mean curvature vector at p is perpendicular to $\phi\left(T_{p} M^{n}\right)$.

Remark 4.1. From the proof of Lemma 4.1 we know that if M^{n} is a C-totally real submanifold of $\bar{M}^{2 n+1}(c)$ satisfying

$$
\begin{equation*}
\overline{\mathrm{Ric}}=\frac{(n-1)(c+3)}{4}+\frac{n^{2}}{4} H^{2}, \tag{25}
\end{equation*}
$$

then M^{n} is minimal and $A_{\phi v}=0$ for any unit tangent vector satisfying $S(v, v)=$
 tangent to M^{n} and any v satisfying $S(v, v)=\overline{\text { Ric }}$. Conversely, if M^{n} is a minimal C-totally real submanifold of $\bar{M}^{2 n+1}(c)$ such that for each $p \in M^{n}$ there exists a unit vector $v \in T_{p} M^{n}$ such that $h(v, X)=0$ for all $X \in T_{p} M^{n}$, then it satisfies (25) identically.

For each $p \in M^{n}$, the kernel of the second fundamental form is defined by

$$
\begin{equation*}
\mathcal{D}(p)=\left\{Y \in T_{p} M^{n} \mid h(X, Y)=0, \forall X \in T_{p} M^{n}\right\} . \tag{26}
\end{equation*}
$$

From the above discussion, we conclude that M^{n} is a minimal C-totally real submanifold of $\bar{M}^{2 m+1}(c)$ satisfying (25) at p if and only if $\operatorname{dim} \mathcal{D}(p)$ is at least 1dimensional.

Following the same argument as in [4], we can prove
Theorem 4.2. Let M^{n} be a minimal C-totally real submanifold of $\bar{M}^{2 n+1}(c)$. Then
(1) M^{n} satisfies (25) at a point p if and only if $\operatorname{dim} \mathcal{D}(p) \geq 1$.
(2) If the dimension of $\mathcal{D}(p)$ is positive constant d, then \mathcal{D} is a completely integral distribution and M^{n} is d-ruled, i.e., for each point $p \in M^{n}$, M^{n} contains a ddimensional totally geodesic submanifold N of $\bar{M}^{2 n+1}(c)$ passing through p.
(3) A ruled minimal C-totally real submanifold M^{n} of $\bar{M}^{2 n+1}(c)$ satisfies (24) identically if and only if, for each ruling N in M^{n}, the normal bundle $T^{\perp} M^{n}$ restricted to N is a parallel normal subbundle of the normal bundle $T^{\perp} N$ along N.
Acknowledgments. This work was carried out during the author's visit to Max-Planck-Institut für Mathematik in Bonn. The author would like to express his thanks to Professor Yuri Manin for the invitation and very warm hospitality.

References

[1] D.E. Blair. Contact manifolds in Riemannian geometry, volume 509 of Lecture Notes in Math. Springer Verlag, Berlin, 1976.
[2] B.Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 60:568-578, 1993.
[3] B.Y. Chen. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension. Glasgow Math. J., 41:33-41, 1999.
[4] B.Y. Chen. On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms. Arch. Math., 74:33-41, 2000.
[5] B.Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken. Totally real submanifolds of $C P^{n}$ satisfying a basic equality. Arch. Math., 63:553-564, 1994.
[6] F. Defever, I. Mihai, and L. Verstraelen. B.-Y. Chen's inequality for C-totally real submanifolds of Sasakian space forms. Boll. Un. Mat. Ital., B(7)(11):365-374, 1997.

ON RICCI CURVATURE OF C-TOTALLY REAL SUBMANIFOLDS...
[7] F. Dillen and L. Vrancken. C-totally real submanifolds of Sasakian space forms. J. Math. Pures Appl., 69:85-93, 1990.
[8] K. Yano and M. Kon. Structures on manifolds, volume 3 of Ser. Pure Math. World Scientific, Singapore, 1984.

Received February 22, 2001.

Department of Applied Mathematics,
Dalian University of Technology,
Dalian 116024, China
E-mail address: xmliu@dlut.edu.cn
Department of Mathematics,
Rutgers University,
Camden, New Jersey 08102, USA
E-mail address: xmliu@camden.rutgers.edu

