Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
 18 (2002), 1-6
 www.emis.de/journals

SUBALGEBRA BASES AND RECOGNIZABLE PROPERTIES

CASAPENKO LOUISA U

Abstract

The paper considers computer algebra in a non-commutative setting. The theory of Gröbner bases of ideals in polynomial rings gives the possibility of obtaining a series of effective algorithms for symbolic calculations. Recognizable properties of associative finitely presented algebras with the finite Gröbner basis were investigated by V. N. Latyshev, T. Gateva-Ivanova in [1]. While subalgebras may not be as important as ideals, they are the second major type of subobject in ring theory. The paper considers recognizable properties of subalgebras with finite standard basis, or SAGBI-basis (Subalgebra Analogue to Gröbner Basis for Ideals).

The paper considers computer algebra in a non-commutative setting. The theory of Gröbner bases of ideals in polynomial rings gives the possibility of obtaining a series of effective algorithms for symbolic calculations. Recognizable properties of associative finitely presented algebras with the finite Gröbner basis were investigated by V. N. Latyshev, T. Gateva-Ivanova in [1]. While subalgebras may not be as important as ideals, they are the second major type of subobject in ring theory. The paper considers recognizable properties of subalgebras with finite standard basis, or SAGBI-basis (Subalgebra Analogue to Gröbner basis for ideals). SAGBIbasis in polynomial rings was suggested by L. Robbiano, M. Sweedler in [5] and D. Kapur , K. Madlener in [3]. SAGBI-basis of subalgebras in free associative algebras was introduced in [2]. V. N. Latyshev suggested in [4] a general approach to standard bases. It allows to define SAGBI-basis of subalgebras in monomial algebras in this article. The paper considers subalgebras with finite $S A G B I$-basis. It is shown that algebraic property such that being finite-dimensional is algorithmically recognizable. It is also recognizable that $S A G B I$-basis generates free subalgebra.

Main Result

In this paper \mathcal{N} denotes the set of the naturals, \mathcal{K} denotes a fixed field, of arbitrary characteristic, and the term \mathcal{K}-algebra is used to denote an associative algebra over \mathcal{K}. We use the presentation of \mathcal{K}-algebra A in the form $A=\mathcal{K}\langle X\rangle /(\mu)$, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of indeterminates, $\mathcal{K}\langle X\rangle$ is a free \mathcal{K}-algebra on it, and (μ) is an monomial ideal. Let $\mu=\left\{m_{1}, \ldots, m_{M}\right\} \subset\langle X\rangle$ be a generating set for (μ). In this paper, our starting point is a monomial algebra A.

Let $\langle X\rangle$ denote the free semigroup generated by X; we consider the empty word as belonging to $\langle X\rangle$, and denote it by 1 . The elements of $\langle X\rangle$ are ordered as follows:

- $x_{1}<\ldots<x_{n}$;
- if $u, v \in\langle X\rangle$ are of the same degree, then $<$ refers to the lexicographic order;
- if $u, v \in\langle X\rangle$ are of degree d_{1}, d_{2} respectively, and $d_{1}<d_{2}$, then $u<v$.

[^0]Let E_{A} denote the \mathcal{K}-linear basis of the algebra A
Umirbaev showed unsolvability that the finite subset $G=\left\{g_{1}, \ldots, g_{N}\right\}$ in a free associative algebra generates a free subalgebra (see [8]). This problem is algorithmically solvable for the monomial generating set G (see [6]). We will consider this problem for generating set $G=\left\{g_{1}, \ldots, g_{N}\right\}$ in the monomial algebra A. For this purpose we use a concept of a standard basis.

Let \bar{f} denote the highest term of $f \in A$ which is normal respect to μ.
The product $g_{i_{1}} \ldots g_{i_{r}}$ of elements $g_{i_{1}}, \ldots, g_{i_{r}} \in A$ is called essential if $\overline{g_{i_{1}} \ldots g_{i_{r}}}=$ $\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}$. Otherwise, the product $g_{i_{1}} \ldots g_{i_{r}}$ is called inessential.

Let $G=\left\{g_{1}, \ldots, g_{N}\right\}$ generates a subalgebra B in the algebra A.
Let the highest coefficients of g_{i} 's are equal to 1 .
The generating set G is called standard basis (SAGBI-basis) of subalgebra B if for any $b \in B$ exists the essential product $g_{i_{1}} \ldots g_{i_{r}}$ such that $\bar{b}=\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}$.

Say the equality

$$
\begin{equation*}
b=\sum_{(i) \in I} \lambda_{(i)} g_{i_{1}} \ldots g_{i_{r}} \tag{1}
\end{equation*}
$$

$b \in B, \lambda_{(i)} \in \mathcal{K}, g_{i_{1}}, \ldots, g_{i_{r}} \in G$, is the representation of $b \in B$ if all products $g_{i_{1}} \ldots g_{i_{r}}$ are essential. The greatest basic vector w among the $\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}$'s is termed a parameter of this representation. If $\bar{b}=w$, then the equality above is called H representation of $b \in B$.

Let the essential products $g_{i_{1}} \ldots g_{i_{r}}, g_{j_{1}} \ldots g_{j_{t}}$ have the same highest term $w=$ $\overline{g_{i_{1}} \ldots g_{i_{r}}}=\overline{g_{j_{1}} \ldots g_{j_{t}}}$. Then $s=g_{i_{1}} \ldots g_{i_{r}}-g_{j_{1}} \ldots g_{j_{t}}$ is called s-element with the initial parameter w.

For any essential product $p(G)=g_{i_{1}} \ldots g_{i_{r}}, u=\overline{g_{i_{1}} \ldots g_{i_{r}}} \in E_{A}$ define a reduction $r_{p(G)}: A \rightarrow A$, which is a linear transformation on A sending u to the element $r_{p(G)}(u)=u-g_{i_{1}} \ldots g_{i_{r}}$ and fixing all basic elements from E_{A} other than u.

Denote \mathcal{R}_{G} the set of all reductions together with the identity mapping e. Then $\left(A, \leq, \mathcal{R}_{G}\right)$ is a linear scheme of simplification.

We may consider the subalgebra B of the algebra A as a subact of a linear act A over a free monoid $\omega=\langle\Sigma\rangle$, where $\Sigma=\left\{\sigma_{0}=e, \sigma_{1} \ldots, \sigma_{N}\right\}, \sigma_{i}: a \mapsto g_{i} a$, $i=1,2, \ldots, N, a \in A$. Standard basis of a subact in a linear act is defined by Latyshev in [4]. As a consequence of this work results we obtain the following theorem.

Theorem 1. In the above notation let $B \subset A$ be a subalgebra of the algebra $A=\mathcal{K}\langle X\rangle / I$ and $G=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}$ be essential generators of B. Then the following are equivalent.
(i): G is a standard basis.
(ii): Any element b of B is reducible to zero.
(iii): Any element b of B has an H-representation.
(iv): Any s-element has a representation (via G) with a parameter less than its initial parameter.
$(\mathrm{v}):\left(A, \leq, R_{G}\right)$ is a linear scheme of simplification with the canonization property.
Let $F\left(y_{1}, \ldots, y_{N}\right)$ be a polynomial in variables $y_{1}, y_{2}, \ldots, y_{N}$ such that

$$
F\left(y_{1}, \ldots, y_{N}\right) \not \equiv 0
$$

in y_{i} 's and $F\left(g_{1}, \ldots, g_{N}\right) \equiv 0$ in x_{i} 's. Then we say that $F\left(g_{1}, \ldots, g_{N}\right)=0$ is a polynomial relation between g_{1}, \ldots, g_{N}.

Let $G=\left\{g_{1}, \ldots, g_{N}\right\}$ be a $S A G B I$-basis of the subalgebra B.
Then any inessential product $p=g_{i_{1}} \ldots g_{i_{r}}$ has an H-representation, as an element of the subalgebra B. Let φ be this H-representation. A polynomial relation $p-\varphi=0$ between g_{1}, \ldots, g_{N} is called a p-relation.

Any s-element $s=g_{i_{1}} \ldots g_{i_{r}}-g_{j_{1}} \ldots g_{j_{t}}$ has an H-representation also. Let δ be this H-representation. A polynomial relation $s-\delta=0$ between g_{1}, \ldots, g_{N} is called an s-relation.

Theorem 2. Any polynomial relation between generators g_{1}, \ldots, g_{N} is a linear combination of $p-, s$-relations.

Theorem 3. Let $G=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}$ be a SAGBI-basis of the subalgebra B of the monomial algebra $A=\mathcal{K}\langle X\rangle /(\mu)$. Then it is a recognizable property that G generates a free subalgebra B.

Theorem 4. Let $G=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}$ be a SAGBI-basis of the subalgebra B of the monomial algebra $A=\mathcal{K}\langle X\rangle /(\mu)$. Then it is a recognizable property that A is finite dimensional.

Proofs

Proof of Theorem 2. Let $F\left(g_{1}, \ldots, g_{N}\right)=0$ be a polynomial relation between generators g_{1}, \ldots, g_{N}.

$$
\begin{gathered}
F\left(g_{1}, \ldots, g_{N}\right)=\sum_{(i) \in I} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}=\sum_{k=1}^{L} F_{k}=0 \\
F_{k}=\sum_{(i) \in I_{k}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}} \\
\frac{g_{i_{1}} \ldots g_{i_{r}}}{}=w_{k} \quad \forall(i) \in I_{k} \\
w_{1}>w_{2}>\ldots>w_{L}
\end{gathered}
$$

We may regard the monomial w_{1} as a parameter of this relation.
(2)
$F\left(g_{1}, \ldots, g_{N}\right)=\alpha_{\left(i_{1}\right)} g_{i_{11}} \ldots g_{i_{1, r(1)}}+\ldots+\alpha_{\left(i_{q}\right)} g_{i_{q, 1}} \ldots g_{i_{q, r(q)}}+\sum_{(i) \in I \backslash I_{1}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}$
$\left(i_{1}\right),\left(i_{2}\right), \ldots,\left(i_{q}\right) \in I_{1},\left|I_{1}\right|=q$.
We have $q \geq 2, \quad \sum_{(i) \in I_{1}} \alpha_{(i)}=0$.
Let $F\left(g_{1}, \ldots, g_{N}\right)$ be not in $\operatorname{Span}\{p-\varphi, s-\delta\}$ and it has the minimal parameter w_{1} and minimal value $Q=\left|I_{1}\right|=q$ among such polynomial relations.

One can select the following cases.
(1) All products

$$
p_{1}(G)=g_{i_{11}} \ldots g_{i_{1, r(1)}}, p_{2}(G)=g_{i_{21}} \ldots g_{i_{2, r(2)}}, \ldots, p_{q}(G)=g_{i_{q 1}} \ldots g_{i_{q, r(q)}}
$$ are inessential.

(2) There exists exactly one essential product among the products

$$
p_{1}(G), p_{2}(G), \ldots, p_{q}(G)
$$

(3) There are at least two essential products among the products

$$
p_{1}(G), \ldots, p_{q}(G)
$$

We consider each case in detail.
(1) Subtract the following relation

$$
\alpha_{\left(i_{1}\right)}\left(p_{1}(G)-\varphi\right)=0
$$

from the relation (2). $p_{1}(G)-\varphi=0$ is a p-relation. Let φ be in the form

$$
\begin{equation*}
\varphi=\beta_{\left(j_{1}\right)} g_{j_{11}} \ldots g_{j_{1, t(1)}}+\sum_{(j) \in J} \beta_{(j)} g_{j_{1}} \ldots g_{j_{t}} \tag{3}
\end{equation*}
$$

$$
\overline{g_{j_{11}} \ldots g_{j_{1, t(1)}}}=\overline{g_{j_{11}}} \ldots \overline{g_{j_{1, t(1)}}}>\overline{g_{j_{1}} \ldots g_{j_{t}}}=\overline{g_{j_{1}}} \ldots \overline{g_{j_{t}}} \quad \forall(j) \in J
$$

Then

$$
\begin{gathered}
\alpha_{\left(i_{1}\right)} \beta_{j_{1}} g_{j_{11}} \ldots g_{j_{1, t(1)}}+\alpha_{\left(i_{2}\right)} g_{i_{21}} \ldots g_{i_{2, r(2)}}+\cdots+\alpha_{\left(i_{q}\right)} g_{i_{q, 1}} \ldots g_{i_{q, r(q)}}+ \\
\quad+\sum_{(i) \in I \backslash I_{1}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}+\sum_{(j) \in J} \alpha_{\left(i_{2}\right)} \beta_{(j)} g_{j_{1}} \ldots g_{j_{t}}=0
\end{gathered}
$$

This polynomial relation is not in $\operatorname{Span}\{s-\delta, p-\varphi\}$. Its parameter is equal to w_{1}. Its value Q is equal to q. But it has exactly one essential product $g_{j_{11}} \ldots g_{j_{1, t(1)}}$ with the highest term w_{1} (see the case 2).
(2) As $q \geq 2$, there exists an inessential product among them. Let $p_{1}(G)$ be the essential product, then $p_{2}(G)$ is not essential. Subtract the following relation

$$
\alpha_{\left(i_{2}\right)}\left(p_{2}(G)-\varphi\right)=0
$$

from the relation (2). $p_{2}(G)-\varphi=0$ is a p-relation. Let φ be in the form (3). Then

$$
\begin{gathered}
\left(\alpha_{\left(i_{1}\right)}+\alpha_{\left(i_{2}\right)} \beta_{(j-1)}\right) g_{i_{11}} \ldots g_{i_{1, r(1)}}+\alpha_{\left(i_{3}\right)} g_{i_{31}} \ldots g_{i_{3, r(3)}}+\cdots+ \\
+\alpha_{i_{(q)}} g_{i_{q_{1}}} \ldots g_{i_{q, r(q)}}+\sum_{(i) \in I \backslash I_{1}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}+\sum_{(j) \in J} \alpha_{\left(i_{2}\right)} \beta_{(j)} g_{j_{1}} \ldots g_{j_{t}}=0
\end{gathered}
$$

if $g_{i_{11}} \ldots g_{i_{1, r(1)}}$ is equal to $g_{j_{11}} \ldots g_{j_{1, t(1)}}$ lexicographically in g_{i} 's. This polynomial relation is not in $\operatorname{Span}\{p-\varphi, s-\delta\}$. It has the parameter w_{1}. Its value Q is less than q.

$$
Q= \begin{cases}q-1, & \text { if } \alpha_{\left(i_{1}\right)}+\alpha_{\left(i_{2}\right)} \beta_{\left(j_{1}\right)} \neq 0 \\ q-2, & \text { otherwise }\end{cases}
$$

It contradicts to our assumption.

$$
\begin{aligned}
& \alpha_{\left(i_{1}\right)} g_{i_{11}} \ldots g_{1, r(1)}+\alpha_{\left(i_{2}\right)} \beta_{j_{1}} g_{j_{11}} \ldots g_{j_{1, t(1)}}+\alpha_{\left(i_{3}\right)} g_{i_{31} \ldots g_{i_{3, r(3)}}}+\cdots+ \\
+ & \alpha_{\left(i_{q}\right)} g_{i_{q, 1}} \ldots g_{i_{q, r(q)}}+\sum_{(i) \in I \backslash I_{1}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}+\sum_{(j) \in J} \alpha_{\left(i_{2}\right)} \beta_{(j)} g_{j_{1}} \ldots g_{j_{t}}=0,
\end{aligned}
$$

if $g_{i_{11}} \ldots g_{i_{1, r(1)}} \neq g_{j_{11}} \ldots g_{j_{1, t(1)}}$ lexicographically in g_{i} 's. This polynomial relation is not in $\operatorname{Span}\{p-\varphi, s-\delta\}$. Its parameter is equal to w_{1}. Its value Q is equal to q. But it has exactly two essential products with the highest term w_{1} (see the case 3).
(3) Let $p_{1}(G), p_{2}(G)$ be the essential products. Subtract the following relation

$$
\alpha_{\left(i_{1}\right)}\left(p_{1}(G)-p_{2}(G)-\delta\right)=0
$$

from the relation (2). $s=p_{1}(G)-p_{2}(G)$ is an s-element. Then

$$
\begin{gathered}
\left(\alpha_{\left(i_{1}\right)}+\alpha_{\left(i_{2}\right)}\right) p_{2}(G)+\alpha_{\left(i_{3}\right)} p_{3}(G)+\ldots+\alpha_{\left(i_{q}\right)} p_{q}(G)+ \\
+\sum_{(i) \in I \backslash I_{1}} \alpha_{(i)} g_{i_{1}} \ldots g_{i_{r}}+\alpha_{i_{1}} \delta=0 \\
\bar{\delta}<w_{1}=p_{1}(\bar{G})=p_{2}(\bar{G}) .
\end{gathered}
$$

This polynomial relation is not in $\operatorname{Span}\{p-\varphi, s-\delta\}$. Its parameter is equal to w_{1}. The number Q of the products with the highest term w_{1} is less than q.

$$
Q= \begin{cases}q-1, & \text { if } \alpha_{\left(i_{1}\right)}+\alpha_{\left(i_{2}\right)} \neq 0 \\ q-2, & \text { otherwise }\end{cases}
$$

It contradicts to our assumption.
Thus, we complete the proof of the theorem.

Proof of theorem 3. The algebraic dependence of the set $G=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}$ means the existence of a polynomial relation between the generators g_{1}, \ldots, g_{N}. It is equivalent to the existence of an inessential product or an s-element respect to G. It is a recognizable property that there exists an inessential product for the given finite set G.

Let d_{μ} denote the maximal degree of monomials m_{1}, \ldots, m_{M} in x_{i} 's. We have to check whether a product $\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}$ is in the ideal (μ) for all $g_{i_{1}}, \ldots, g_{i_{r}} \in G, r \leq d_{\mu}$. If such product exists, then $g_{i_{1}} \ldots g_{i_{r}}$ is not essential. It means the existence of a p-relation. Then the set G is algebraically dependent. Otherwise, $\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}} \notin(\mu)$ $\forall r \leq d_{\mu} \quad \forall g_{i_{1}}, \ldots, g_{i_{r}} \in G$. Then products $g_{i_{1}} \ldots g_{i_{t}} \forall t \in \mathcal{N}$ are essential. There are not any p-relations. Then the existence of an s-element

$$
\begin{gathered}
s=p_{1}(G)-p_{2}(G)=g_{i_{1}} \ldots g_{i_{r}}-g_{j_{1}} \ldots g_{j_{t}}, \\
p_{1}(\bar{G})=\overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}=\overline{g_{j_{1}}} \ldots \overline{g_{j_{t}}}=p_{2}(\bar{G}),
\end{gathered}
$$

means the algebraic dependence of the monomial set $\bar{G}=\left\{\overline{g_{1}}, \overline{g_{2}}, \ldots, \overline{g_{N}}\right\}$ in a free associative algebra $\mathcal{K}\langle X\rangle$. This property is recognizable for the finite set \bar{G}. It was investigated in the code theory (see [7]; [6]).

Proof of theorem 4. Denote $\mathcal{B}=\{p(G)\}$ the set of all essential products such that $p_{1}(\bar{G}) \neq p_{2}(\bar{G})$ in x_{i} 's, $p_{1}(G) \neq p_{2}(G)$ in g_{i} 's. \mathcal{B} is a \mathcal{K}-linear basis of the subalgebra B.

The set \mathcal{B} is linear independent.
Let

$$
\begin{gathered}
\sum_{i=1}^{k} \lambda_{i} p_{i}(G)=0, \\
p_{i}(G) \in \mathcal{B} \quad \forall i=1,2, \ldots, k \\
p_{1}(\bar{G})<p_{2}(\bar{G})<\ldots p_{k}(\bar{G}) \quad \text { in } \quad x_{i}^{\prime} \mathrm{s} .
\end{gathered}
$$

Then

$$
\overline{\sum_{i=1}^{k} \lambda_{i} p_{i}(G)}=p_{k}(\bar{G}) \not \equiv 0 \quad(\bmod (\mu)) .
$$

That's why

$$
\lambda_{k}=0 \quad \sum_{i=1}^{k-1} \lambda_{i} p_{i}(G)=0 .
$$

Then $\lambda_{k-1}=\ldots=\lambda_{1}=0$.
Any element $b \in B$ is a linear combination of elements of \mathcal{B}.
Let b be in the form

$$
\begin{equation*}
b=\sum_{i=1}^{k} \lambda_{i} p_{i}(G) \tag{4}
\end{equation*}
$$

$\lambda_{i} \in \mathcal{K}, p_{i}(G)$ is an essential product for all $i=1,2, \ldots, k$,
$p_{1}(\bar{G}) \leq p_{2}(\bar{G}) \leq \ldots \leq p_{k}(\bar{G})$ in x_{i} 's.
Let k_{0} denote the maximal number such that $p_{k_{0}}(G) \notin \mathcal{B}$. There exists an essential product $p(G) \in \mathcal{B}$ such that $p_{k_{0}}(\bar{G})=p(\bar{G})$ in x_{i} 's. An s-element $s=$ $p_{k_{0}}(G)-p(G)$ has an H-representation

$$
s=\sum_{(i)} \gamma_{(i)} g_{i_{1}} \ldots g_{i_{r}} .
$$

$g_{i_{1}} \ldots g_{i_{r}}$ are essential products for all $(i) . \overline{g_{i_{1}}} \ldots \overline{g_{i_{r}}}<p_{k_{0}}(\bar{G})$. Substitute the equation

$$
p_{k_{0}}(G)=p(G)+\sum_{(i)} \gamma_{(i)} g_{i_{1}} \ldots g_{i_{r}}
$$

to (4). Then we receive the equation with the lesser number of different addendums not belonging to \mathcal{B} and having the highest term $p_{k_{0}}(\bar{G})$. In consequence by force of d.c.c. we receive the presentation of element $b \in B$ in the form of a linear combination of elements of \mathcal{B}.

Let

$$
\begin{gathered}
\mathcal{S}=\left\{p_{1,0}(G), p_{1,1}(G), \ldots, p_{1, t(1)}(G), p_{2,0}(G), p_{2,1}(G), \ldots, p_{2, t(2)}(G), \ldots,\right. \\
\left.p_{R, 0}(G), p_{R, 1}(G), \ldots, p_{R, t(R)}(G), \ldots\right\}
\end{gathered}
$$

denote the set of all essential products. $\mathcal{B}=\left\{p_{i, 0}(G)\right\} \subset \mathcal{S}$ is a \mathcal{K}-linear basis of the subalgebra B.

$$
p_{1,0}(\bar{G})<p_{2,0}(\bar{G})<\ldots<p_{R, 0}(G)<\ldots \quad \operatorname{in} x_{i}^{\prime} \mathrm{s}
$$

$\mathcal{S}(i)=\left\{p_{i, j}(G)\right\}_{j=0}^{t(i)}$ is the set of all different essential products such that

$$
p_{i, j}(\bar{G})=p_{i, j^{\prime}}(\bar{G}) \quad \forall j, j^{\prime}=0,1, \ldots, t(i)
$$

$t(i)<\infty$ for any i. Construct the auxiliary monomial algebra

$$
D=\mathcal{K}\left\langle y_{1}, \ldots, y_{N}\right\rangle /(\eta),
$$

where η is a finite monomial set in y_{i} 's. Let the monomial $v=y_{j_{1}} \ldots y_{j_{l}}$ be in $\eta, l \leq d_{\mu}$, if and only if $g_{j_{1}} \ldots g_{j_{l}}$ is an inessential product. Then the monomials $y_{j_{1}} \ldots y_{j_{l}}$ such that $g_{j_{1}} \ldots g_{j_{l}}$ is an essential product form a \mathcal{K}-linear basis of algebra D. As $t(i)<\infty$ for all i, we receive that the subalgebra B is finite dimensional if and only if D is finite dimensional. It is a recognizable property that D is finite dimensional (see [1]). Thus, we complete the proof of the theorem.

References

[1] T. Gateva-Ivanova and V. N. Latyshev. On the recognizable properties of associative algebras. In On comp. aspects comm. algebras, pages 237-254. Acad. Press., London, 1988.
[2] N. K. Iudu. Standard basis and the problem subset in subalgebras in free associative algebras. PhD thesis, Moscow, 1999. in Russian.
[3] D. Kapur and K. Madlener. A completion procedure for computing a canonical basis for a K-subalgebra. In Computers and Mathematics, pages 1-11. Cambridge, MA., 1989.
[4] V. N. Latyshev. An improved version of standard bases. In Proc. of the 12 th intern. conf. FPSAC'00 Moscow, June 26-30, 2000.
[5] L. Robbiano and M. Sweedler. Subalgebra bases. In Comm. algebra. Proc. of the work-shop held at the Federal Univ. of Bahia, Salvador, 1988., volume 1430 of Lect. notes Math., pages 61-87, 1990.
[6] A. Saloma. Pearles of theory of formal languages. Mir, 1986. in Russian.
[7] A. Sardinas and G. Patterson. A nesserary and sufficient condition for the unique decomposition of coded messages. IRE Intern. conv. record., 1958. 104-108.
[8] U. U. Umirbaiev. Some algoritmical questions of associative algebras. Algebra and Logica, 32(4):450-470, 1993.

Received October 31, 2000.

E-mail address: acv@aport.ru
Department of Mechanics and Mathematics (Algebra),
Ulyanovsk State University, 432700 Lev Tolstoy 42, Ulyanovsk, Russia

[^0]: 1991 Mathematics Subject Classification. 16Z05, 68W30.
 Key words and phrases. Standard basis, SAGBI-basis, algorithmically recognizable properties of subalgebras in monomial algebras.

