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SUBALGEBRA BASES AND RECOGNIZABLE PROPERTIES

CASAPENKO LOUISA U.

Abstract. The paper considers computer algebra in a non-commutative set-

ting. The theory of Gröbner bases of ideals in polynomial rings gives the pos-

sibility of obtaining a series of effective algorithms for symbolic calculations.
Recognizable properties of associative finitely presented algebras with the fi-

nite Gröbner basis were investigated by V. N. Latyshev, T. Gateva-Ivanova in
[1]. While subalgebras may not be as important as ideals, they are the second
major type of subobject in ring theory. The paper considers recognizable prop-

erties of subalgebras with finite standard basis, or SAGBI-basis (Subalgebra
Analogue to Gröbner Basis for Ideals).

The paper considers computer algebra in a non-commutative setting. The the-
ory of Gröbner bases of ideals in polynomial rings gives the possibility of obtaining
a series of effective algorithms for symbolic calculations. Recognizable properties
of associative finitely presented algebras with the finite Gröbner basis were investi-
gated by V. N. Latyshev, T. Gateva-Ivanova in [1]. While subalgebras may not be
as important as ideals, they are the second major type of subobject in ring theory.
The paper considers recognizable properties of subalgebras with finite standard
basis, or SAGBI-basis (Subalgebra Analogue to Gröbner basis for ideals). SAGBI-
basis in polynomial rings was suggested by L. Robbiano, M. Sweedler in [5] and
D. Kapur , K. Madlener in [3]. SAGBI-basis of subalgebras in free associative alge-
bras was introduced in [2]. V. N. Latyshev suggested in [4] a general approach to
standard bases. It allows to define SAGBI-basis of subalgebras in monomial alge-
bras in this article. The paper considers subalgebras with finite SAGBI-basis. It is
shown that algebraic property such that being finite-dimensional is algorithmically
recognizable. It is also recognizable that SAGBI-basis generates free subalgebra.

Main Result

In this paper N denotes the set of the naturals, K denotes a fixed field, of
arbitrary characteristic, and the term K-algebra is used to denote an associative
algebra over K. We use the presentation of K-algebra A in the form A = K〈X〉/(µ),
where X = {x1, . . . , xn} is a set of indeterminates, K〈X〉 is a free K-algebra on it,
and (µ) is an monomial ideal. Let µ = {m1, . . . ,mM} ⊂ 〈X〉 be a generating set
for (µ). In this paper, our starting point is a monomial algebra A.

Let 〈X〉 denote the free semigroup generated by X; we consider the empty word
as belonging to 〈X〉, and denote it by 1. The elements of 〈X〉 are ordered as follows:

• x1 < . . . < xn;
• if u, v ∈ 〈X〉 are of the same degree, then < refers to the lexicographic

order;
• if u, v ∈ 〈X〉 are of degree d1, d2 respectively, and d1 < d2, then u < v.
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of subalgebras in monomial algebras.
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Let EA denote the K-linear basis of the algebra A
Umirbaev showed unsolvability that the finite subset G = {g1, . . . , gN} in a free

associative algebra generates a free subalgebra (see [8]). This problem is algorith-
mically solvable for the monomial generating set G (see [6]). We will consider this
problem for generating set G = {g1, . . . , gN} in the monomial algebra A. For this
purpose we use a concept of a standard basis.

Let f denote the highest term of f ∈ A which is normal respect to µ.
The product gi1 . . . gir of elements gi1 , . . . , gir ∈ A is called essential if gi1 . . . gir =

gi1 . . . gir . Otherwise, the product gi1 . . . gir is called inessential.
Let G = {g1, . . . , gN} generates a subalgebra B in the algebra A.
Let the highest coefficients of gi’s are equal to 1.
The generating set G is called standard basis (SAGBI-basis) of subalgebra B if

for any b ∈ B exists the essential product gi1 . . . gir such that b = gi1 . . . gir .
Say the equality

(1) b =
∑
(i)∈I

λ(i)gi1 . . . gir ,

b ∈ B, λ(i) ∈ K, gi1 , . . . , gir ∈ G, is the representation of b ∈ B if all products
gi1 . . . gir are essential. The greatest basic vector w among the gi1 . . . gir ’s is termed
a parameter of this representation. If b = w, then the equality above is called H-
representation of b ∈ B.

Let the essential products gi1 . . . gir , gj1 . . . gjt have the same highest term w =
gi1 . . . gir = gj1 . . . gjt . Then s = gi1 . . . gir − gj1 . . . gjt is called s-element with the
initial parameter w.

For any essential product p(G) = gi1 . . . gir , u = gi1 . . . gir ∈ EA define a reduc-
tion rp(G) : A→ A, which is a linear transformation on A sending u to the element
rp(G)(u) = u− gi1 . . . gir and fixing all basic elements from EA other than u.

Denote RG the set of all reductions together with the identity mapping e. Then
(A,≤,RG) is a linear scheme of simplification.

We may consider the subalgebra B of the algebra A as a subact of a linear act
A over a free monoid ω = 〈Σ〉, where Σ = {σ0 = e, σ1 . . . , σN}, σi : a 7→ gia,
i = 1, 2, . . . , N , a ∈ A. Standard basis of a subact in a linear act is defined by
Latyshev in [4]. As a consequence of this work results we obtain the following
theorem.

Theorem 1. In the above notation let B ⊂ A be a subalgebra of the algebra
A = K〈X〉/I and G = {g1, g2, . . . , gN} be essential generators of B. Then the
following are equivalent.

(i): G is a standard basis.
(ii): Any element b of B is reducible to zero.
(iii): Any element b of B has an H-representation.
(iv): Any s-element has a representation (via G) with a parameter less than

its initial parameter.
(v): (A,≤, RG) is a linear scheme of simplification with the canonization prop-

erty.
Let F (y1, . . . , yN ) be a polynomial in variables y1, y2, . . . , yN such that

F (y1, . . . , yN ) 6≡ 0

in yi’s and F (g1, . . . , gN ) ≡ 0 in xi’s. Then we say that F (g1, . . . , gN ) = 0 is a
polynomial relation between g1, . . . , gN .

Let G = {g1, . . . , gN} be a SAGBI-basis of the subalgebra B.
Then any inessential product p = gi1 . . . gir has an H-representation, as an ele-

ment of the subalgebra B. Let ϕ be this H-representation. A polynomial relation
p− ϕ = 0 between g1, . . . , gN is called a p-relation.
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Any s-element s = gi1 . . . gir − gj1 . . . gjt has an H-representation also. Let δ be
this H-representation. A polynomial relation s− δ = 0 between g1, . . . , gN is called
an s-relation.

Theorem 2. Any polynomial relation between generators g1, . . . , gN is a linear
combination of p-,s-relations.

Theorem 3. Let G = {g1, g2, . . . , gN} be a SAGBI-basis of the subalgebra B
of the monomial algebra A = K〈X〉/(µ). Then it is a recognizable property that G
generates a free subalgebra B.

Theorem 4. Let G = {g1, g2, . . . , gN} be a SAGBI-basis of the subalgebra B of
the monomial algebra A = K〈X〉/(µ). Then it is a recognizable property that A is
finite dimensional.

Proofs

Proof of Theorem 2. Let F (g1, . . . , gN ) = 0 be a polynomial relation between gen-
erators g1, . . . , gN .

F (g1, . . . , gN ) =
∑
(i)∈I

α(i)gi1 . . . gir =
L∑
k=1

Fk = 0.

Fk =
∑

(i)∈Ik

α(i)gi1 . . . gir .

gi1 . . . gir = wk ∀(i) ∈ Ik.
w1 > w2 > . . . > wL.

We may regard the monomial w1 as a parameter of this relation.
(2)
F (g1, . . . , gN ) = α(i1)gi11 . . . gi1,r(1) + . . .+α(iq)giq,1 . . . giq,r(q) +

∑
(i)∈I\I1

α(i)gi1 . . . gir

(i1), (i2), . . . , (iq) ∈ I1, |I1| = q.
We have q ≥ 2,

∑
(i)∈I1

α(i) = 0.

Let F (g1, . . . , gN ) be not in Span{p−ϕ, s−δ} and it has the minimal parameter
w1 and minimal value Q = |I1| = q among such polynomial relations.

One can select the following cases.
(1) All products

p1(G) = gi11 . . . gi1,r(1) , p2(G) = gi21 . . . gi2,r(2) , . . . , pq(G) = giq1 . . . giq,r(q)

are inessential.
(2) There exists exactly one essential product among the products

p1(G), p2(G), . . . , pq(G).

(3) There are at least two essential products among the products

p1(G), . . . , pq(G).

We consider each case in detail.
(1) Subtract the following relation

α(i1)(p1(G)− ϕ) = 0

from the relation (2). p1(G)− ϕ = 0 is a p-relation. Let ϕ be in the form

(3) ϕ = β(j1)gj11 . . . gj1,t(1) +
∑

(j)∈J

β(j)gj1 . . . gjt .
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gj11 . . . gj1,t(1) = gj11 . . . gj1,t(1) > gj1 . . . gjt = gj1 . . . gjt ∀(j) ∈ J .
Then

α(i1)βj1gj11 . . . gj1,t(1) + α(i2)gi21 . . . gi2,r(2) + · · ·+ α(iq)giq,1 . . . giq,r(q)+

+
∑

(i)∈I\I1

α(i)gi1 . . . gir +
∑

(j)∈J

α(i2)β(j)gj1 . . . gjt = 0.

This polynomial relation is not in Span{s−δ, p−ϕ}. Its parameter is equal
to w1. Its value Q is equal to q. But it has exactly one essential product
gj11 . . . gj1,t(1) with the highest term w1 (see the case 2).

(2) As q ≥ 2, there exists an inessential product among them. Let p1(G) be
the essential product, then p2(G) is not essential. Subtract the following
relation

α(i2)(p2(G)− ϕ) = 0
from the relation (2). p2(G) − ϕ = 0 is a p-relation. Let ϕ be in the form
(3). Then
•
(α(i1) + α(i2)β(j−1))gi11 . . . gi1,r(1) + α(i3)gi31 . . . gi3,r(3) + · · ·+

+αi(q)giq1 . . . giq,r(q) +
∑

(i)∈I\I1

α(i)gi1 . . . gir +
∑

(j)∈J

α(i2)β(j)gj1 . . . gjt = 0,

if gi11 . . . gi1,r(1) is equal to gj11 . . . gj1,t(1) lexicographically in gi’s. This
polynomial relation is not in Span{p−ϕ, s− δ}. It has the parameter
w1. Its value Q is less than q.

Q =

{
q − 1, ifα(i1) + α(i2)β(j1) 6= 0;
q − 2, otherwise.

It contradicts to our assumption.
•

α(i1)gi11 . . . g1,r(1) + α(i2)βj1gj11 . . . gj1,t(1) + α(i3)gi31 . . . gi3,r(3) + · · ·+

+α(iq)giq,1 . . . giq,r(q) +
∑

(i)∈I\I1

α(i)gi1 . . . gir +
∑

(j)∈J

α(i2)β(j)gj1 . . . gjt = 0,

if gi11 . . . gi1,r(1) 6= gj11 . . . gj1,t(1) lexicographically in gi’s. This polyno-
mial relation is not in Span{p − ϕ, s − δ}. Its parameter is equal to
w1. Its value Q is equal to q. But it has exactly two essential products
with the highest term w1 (see the case 3).

(3) Let p1(G), p2(G) be the essential products. Subtract the following relation

α(i1)(p1(G)− p2(G)− δ) = 0

from the relation (2). s = p1(G)− p2(G) is an s-element. Then

(α(i1) + α(i2))p2(G) + α(i3)p3(G) + . . .+ α(iq)pq(G)+

+
∑

(i)∈I\I1

α(i)gi1 . . . gir + αi1δ = 0,

δ < w1 = p1(G) = p2(G).
This polynomial relation is not in Span{p−ϕ, s−δ}. Its parameter is equal
to w1. The number Q of the products with the highest term w1 is less than
q.

Q =

{
q − 1, ifα(i1) + α(i2) 6= 0;
q − 2, otherwise.

It contradicts to our assumption.
Thus, we complete the proof of the theorem. �
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Proof of theorem 3. The algebraic dependence of the setG = {g1, g2, . . . , gN}means
the existence of a polynomial relation between the generators g1, . . . , gN . It is equiv-
alent to the existence of an inessential product or an s-element respect to G. It is
a recognizable property that there exists an inessential product for the given finite
set G.

Let dµ denote the maximal degree of monomials m1, . . . ,mM in xi’s. We have to
check whether a product gi1 . . . gir is in the ideal (µ) for all gi1 , . . . , gir ∈ G, r ≤ dµ.
If such product exists, then gi1 . . . gir is not essential. It means the existence of a
p-relation. Then the set G is algebraically dependent. Otherwise, gi1 . . . gir 6∈ (µ)
∀r ≤ dµ ∀gi1 , . . . , gir ∈ G. Then products gi1 . . . git∀t ∈ N are essential. There
are not any p-relations. Then the existence of an s-element

s = p1(G)− p2(G) = gi1 . . . gir − gj1 . . . gjt ,

p1(G) = gi1 . . . gir = gj1 . . . gjt = p2(G),

means the algebraic dependence of the monomial set G = {g1, g2, . . . , gN} in a free
associative algebra K〈X〉. This property is recognizable for the finite set G. It was
investigated in the code theory (see [7]; [6]). �

Proof of theorem 4. Denote B = {p(G)} the set of all essential products such that
p1(G) 6= p2(G) in xi’s, p1(G) 6= p2(G) in gi’s. B is a K-linear basis of the subalgebra
B.

The set B is linear independent.
Let

k∑
i=1

λipi(G) = 0,

pi(G) ∈ B ∀i = 1, 2, . . . , k,

p1(G) < p2(G) < . . . pk(G) in x′is.

Then
k∑
i=1

λipi(G) = pk(G) 6≡ 0 (mod(µ)).

That’s why

λk = 0
k−1∑
i=1

λipi(G) = 0.

Then λk−1 = . . . = λ1 = 0.
Any element b ∈ B is a linear combination of elements of B.
Let b be in the form

(4) b =
k∑
i=1

λipi(G)

λi ∈ K, pi(G) is an essential product for all i = 1, 2, . . . , k,
p1(G) ≤ p2(G) ≤ . . . ≤ pk(G) in xi’s.

Let k0 denote the maximal number such that pk0(G) 6∈ B. There exists an
essential product p(G) ∈ B such that pk0(G) = p(G) in xi’s. An s-element s =
pk0(G)− p(G) has an H-representation

s =
∑
(i)

γ(i)gi1 . . . gir .



6 CASAPENKO LOUISA U.

gi1 . . . gir are essential products for all (i). gi1 . . . gir < pk0(G). Substitute the
equation

pk0(G) = p(G) +
∑
(i)

γ(i)gi1 . . . gir

to (4). Then we receive the equation with the lesser number of different addendums
not belonging to B and having the highest term pk0(G). In consequence by force
of d.c.c. we receive the presentation of element b ∈ B in the form of a linear
combination of elements of B.

Let

S = {p1,0(G), p1,1(G), . . . , p1,t(1)(G), p2,0(G), p2,1(G), . . . , p2,t(2)(G), . . . ,

pR,0(G), pR,1(G), . . . , pR,t(R)(G), . . .}
denote the set of all essential products. B = {pi,0(G)} ⊂ S is a K-linear basis of
the subalgebra B.

p1,0(G) < p2,0(G) < . . . < pR,0(G) < . . . inx′is.

S(i) = {pi,j(G)}t(i)j=0 is the set of all different essential products such that

pi,j(G) = pi,j′(G) ∀j, j′ = 0, 1, . . . , t(i).

t(i) <∞ for any i. Construct the auxiliary monomial algebra

D = K〈y1, . . . , yN 〉/(η),

where η is a finite monomial set in yi’s. Let the monomial v = yj1 . . . yjl be in
η, l ≤ dµ, if and only if gj1 . . . gjl is an inessential product. Then the monomials
yj1 . . . yjl such that gj1 . . . gjl is an essential product form a K-linear basis of algebra
D. As t(i) < ∞ for all i, we receive that the subalgebra B is finite dimensional if
and only if D is finite dimensional. It is a recognizable property that D is finite
dimensional (see [1]). Thus, we complete the proof of the theorem. �
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