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18 (2002), 71–76
www.emis.de/journals

NORMAL STRUCTURE AND FIXED POINTS OF
NONEXPANSIVE MAPS IN GENERAL TOPOLOGICAL SPACES

M. AAMRI AND D. EL MOUTAWAKIL

Abstract. The main purpose of this paper is to define the concept of p-normal
structure and give some new fixed point theorems of nonexpansive maps in
general topological space (X, τ) by introducing the notion of a τ -symmetric

function p : X×X → R
+. An application to symmetrizable topological spaces

has been made.

1. Introduction

The concept of normal structure was introduced by Brodskii and Milman [1] for
the case of linear normed spaces. It was frequently used to prove existence theorems
in fixed point theory. There were also some attempts to generalize the concept of
normal structure to metric spaces [5, 9] and more abstract sets [3, 4].

Let (X, d) be a metric space. A selfmapping T of X is said to be nonexpansive
if for each x, y ∈ X, d(Tx, Ty) ≤ d(x, y). Although such mappings are natural
extension of the contraction mappings, it was clear from the outset that the study
of fixed points of nonexpansive mappings required techniques which go far beyond
the purely metric approch.The property of normal structure was introduced into
fixed point theory for mappings of this class by W.A. Kirk in Banach spaces and
since then a number of absract results were discovered, along with important dis-
coveries related both to the structure of the fixed point sets and to techniques for
approximating fixed points.

On the other hand, it has been observed that the distance function used in
metric fixed point theorems proofs need not satisfy the triangular inequality nor
d(x, x) = 0 for all x ∈ X. Motivated by this idea, Hicks [2] established several
important common fixed point theorems for general contractive selfmappings of a
symmetrizable (resp. semi-metrizable) topological spaces. Recall that a symmetric
function on a set X is a nonnegative real valued function d defined on X ×X by

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x)

A symmetric function d on a set X is a semi-metric if for each x ∈ X and each
ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) ≤ ε} is a neighborhood of x in the topology t(d)
defined as follows

τ = {U ⊆ X/ ∀x ∈ U, Bd(x, ε) ⊂ U, for some ε > 0}
A topological space X is said to be symmetrizable (semi-metrizable) if its topology
is induced by a symmetric (semi-metric) on X. Moreover, Hicks [2] proved that
very general probabilistic structures admit a compatible symmetric or semi-metric.
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For further details on semi-metric spaces (resp. probabilistic metric spaces), see,
for example, [11] (resp. [10]).

In this paper, we follow ideas in [6, 7, 3, 4] to establish a generalization of the
well known extension of Kirk’s fixed point theorem [4]. Let (X, τ) be a topological
space. The paper is structured as follows: We define a new function called τ -
symmetric which extend the usual symmetric function and define the concept of
p-normal structure and give some new fixed point theorems of nonexpansive maps
in general topological space (X, τ) by introducing the notion of a τ -symmetric
function p : X×X → R

+. An application to symmetrizables topological spaces has
been made.

2. τ-symmetric function

Let (X, τ) be a topological space and p : X × X → R
+ be a function. For any

ε > 0 and any x ∈ X, let Bp(x, ε) = {y ∈ X : p(x, y) < ε} and B′p(x, ε) = {y ∈ X :
p(x, y) ≤ ε}. B′p(x, ε) will be said “band”.

Definition 2.1. The function p is said to be a τ -symmetric if
(τ1) For all x, y ∈ X, p(x, y) = p(y, x),
(τ2) For each x ∈ X and any neighborhood V of x, there exists ε > 0 with

Bp(x, ε) ⊂ V .

Examples 2.1. 1. Let X = R
+ and τ = {X, ∅}. It is well known that the

space (X, τ) is not metrisable. Consider the function p defined on X × X by
p(x, y) = (x − y)2 for all x, y ∈ X. It is easy to see that the function p is a
τ -symmetric.

2. Each symmetric function d on a nonempty set X is a τ -symmetric on X where
the topology τ is defined as follows: U ∈ τ if ∀x ∈ U , Bd(x, ε) ⊂ U, for some
ε > 0.

3. Let X = [0,+∞[ and d(x, y) = |x−y| the usual metric. Consider the function
p : X ×X → R

+ defined by

p(x, y) = e|x−y|, ∀x, y ∈ X

It is easy to see the function p is a τ -symmetric on X where τ is the usual toplogy
since ∀x ∈ X, Bp(x, ε) ⊂ Bd(x, ε), ε > 0. Moreover, (X, p) is not a symmetric
space since for all x ∈ X, p(x, x) = 1.

Lemma 2.1. Let (X, τ) be a topological space with a τ -symmetric p.
(a) Let (xn) be arbitrary sequence in X and (αn) be a sequence in R+ converging

to 0 such that p(xn, x) ≤ αn for all n ∈ N. Then (xn) converges to x with
respect to the topology τ .

(b) If τ is Hausdorff, then
(b1) p(x, y) = 0 implies x = y
(b2) Given (xn) in X, conditions lim

n→∞
p(x, xn) = 0 and lim

n→∞
p(xn, y) = 0,

imply x = y.

Proof. (a) Let V be a neighborhood of x. Since lim
n→∞

p(x, xn) = 0, there exists
N ∈ N such that ∀n ≥ N , xn ∈ V . Therefore lim

n→∞
xn = x with respect to τ .

(b1) Since p(x, y) = 0, then p(x, y) < ε for all ε > 0. Let V be a neighborhood of
x. Then there exists ε > 0 such that Bp(x, ε) ⊂ V , which implies that y ∈ V . Since
V is arbitrary, we conclude y = x.

(b2) From (a), lim
n→∞

p(x, xn) = 0 and lim
n→∞

p(y, xn) = 0 imply lim
n→∞

xn = x and
lim
n→∞

xn = y with respect to the topology τ which is Hausdorff. Thus x = y. �
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Let us recall that each family (An) of closed nonempty subsets of a complete
metric space (X, d) such that lim

n→∞
δ(An) = 0, where δ(A) = sup{d(x, y) : x, y ∈ A},

has a nonempty intersection. It will be helpfull in the sequal to generalize this result
to our setting. First, we give the following definition

Definition 2.2. Let (X, τ) be a topological space with a τ -symmetric p.

(1) We say that a nonempty subset A of X is p-closed iff

A
p

= {x ∈ X : p(x,A) = 0} ⊂ A

where p(x,A) = inf{p(x, y)/y ∈ A}.
(2) A sequence in X is said p-Cauchy sequence if it satisfies the usual metric

condition. There are several concepts of completeness in this setting.
(2.1) X is S-complete if for every p-Cauchy sequence (xn), there exists x in

X with lim
n→∞

p(xn, x) = 0

(2.2) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there
exists x in X with lim

n→∞
xn = x with respect to the topology τ

(3) We say that X is sequentially p-compact if each sequence (xn) of X has a p-
convergente subsequence (xn′), i-e. there exists x ∈ X with lim

n→∞
p(x, xn′) =

0.

Remark 2.1. Let (X, τ) be a topological space with a τ -symmetric p and let (xn)
be a p-Cauchy sequence. Suppose that X is S-complete, then there exists x ∈ X
such that lim

n→∞
p(xn, x) = 0. Lemma 1(a) then gives lim

n→∞
xn = x with respect to the

topology τ . Therefore S-completeness implies p-Cauchy completeness. Moreover,
it is easy to see that sequentially p-compactness implies that (X, τ) is sequentially
compact.

Lemma 2.2. Let (X, τ) be a Hausdorff topological space with a τ -symmetric p. Sup-
pose that for each x ∈ X, the function p(x, .) : X → R

+ is lower semi-continuous.
Then for each x ∈ X, the band B′p(x, r) is p-closed.

Proof. Let y ∈ B′p(x, r)
p
. Then p(y,B′p(x, r)) = 0 and therefore, for all n ∈ N∗,

there exists a sequence (yn) in B′p(x, r) such that lim
n→∞

p(y, yn) = 0, which implies

that lim
n→∞

yn = y with respect to the topology τ (lemma 2.1(a)). Since p(x, yn) ≤ r
and p(x, .) is lower semi-continuous, we get, by letting n to infty, p(x, y) ≤ r. Hence
y ∈ B′p(x, r) and therefore B′p(x, r) is p-closed. �

Proposition 2.1. Let (X, τ) be a Hausdorff topological space with a τ -symmetric
p. Suppose that X is S-complete and p-bounded. Let (An) be a family of p-closed
nonempty subsets of a X such that lim

n→∞
δp(An) = 0. Then ∩n∈NAn = {a} for some

a ∈ X.

Proof. As in metric case, we can show that there exists a ∈ X with a ∈ An for all
n ∈ N. Lemma 1.(b1) then assures the uniqueness of a. �

Definition 2.3. Let F be a nonempty family of subset of X. We say that F defines
a convexity structure on X if and only if it is stable by intersection.

Example 2.1. Let (X, τ) be a Hausdorff topological space with a τ -symmetric p.
An admissible subset of X is any intersection of “bands”. Let us denote the

family of admissible subsets of X by A(X). It is obvious that A(X) defines a
convexity structure on X.
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Remark 2.2. 1. In view of lemma 2.2, if for each x in X, the function p(x, .) : X →
R

+ is lower semi-continuous, then each admissible subset of X is p-closed.
2. In this work, we suppose that any other convexity structure F on X, contains

A(X).

Definition 2.4. We say that F has the property (R) if and only if any decreasing
sequence (An) of nonempty p-bounded and p-closed subsets of X with An ∈ F , has
a nonempty intersection.

Proposition 2.2. Let (X, τ) be a Hausdorff topological space with a τ -symmetric
p. Assume that X is S-complete and sequentially p-compact. Then

(1) Let C be a nonempty p-closed subset of X. Let a ∈ X be such that p(a,C) <
∞. Then, there exists b ∈ C such that p(a, b) = p(a,C), where p(a,C) =
inf{p(a, c) : c ∈ C}.

(2) Let (Cn) be a decreasing family of p-closed nonempty subsets of a X. Then
∩n∈NCn 6= ∅.

(3) X has the property (R).

Proof. (1) It is not hard to see that a exists. Let us denote α = p(a,C) <∞. We
can assume that α > 0 (otherwise, a ∈ C since C is p-closed). By the definition
of α, there exists a sequence (xn) in C such that lim

n→∞
p(a, xn) = α. Since X is

sequentially p-compact, there exists a subsequence (xn′) of (xn) and b ∈ X such
that lim

n→∞
p(b, xn′) = 0 which implies that (xn′) converges to b with respect to the

topology τ . Since C is p-closed, we have b ∈ C. Moreover, by using the lower semi-
continuity of the function p(a, .), we get p(a, b) ≤ lim

n→∞
inf p(a, xn′) = α. Hence

p(a, b) = α = p(a,C).
(2) As in (1), it is easy to see that there exists a ∈ X such that for each integer

n, p(a,Cn) < ∞. Since (Cn) is decreasing, the sequence (p(a,Cn)) is increasing
and bounded. Hence, there exists α = lim

n→∞
p(a,Cn) <∞. By (1), for each n ∈ N,

there exists xn ∈ Cn such that p(a, xn) = p(a,Cn). If α = 0 then p(a,Cn) = 0 and
consequently a ∈ Cn for each n ∈ N since (Cn) is decreasing. Assume now that
α > 0. Repeating the argument from the proof of (1), we can prove that for each
integer n, there exists b ∈ Cn (Cn is p-closed) such that p(a, b) = p(a,Cn). Since Cn
are decreasing, it follows then that b ∈ Cn for any natural n. Hence ∩n∈NCn 6= ∅.

(3) It follows immediately from (2). �

Definition 2.5. Let (X, τ) be a toplogical space with a τ -symmetric p. For a
subset A of X, we write

(1) rp,x(A) = sup
y∈A

p(x, y)

(2) rp(A) = inf
x∈A

rp,x(A)

(3) δp(A) = sup
x∈A

rp,x(A)

(4) cov(A) = ∩B′p∈FB
′
p

(5) co(A) = ∩f∈AB′p(f, rp,f (A))

where F is the family of “bands” containing A. Clearly, a subset A of X is admis-
sible if and only if A = cov(A).
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Definition 2.6. We say that X has p-normal structure if there exists a convexity
structure F on X such that

rp(A) < δp(A), for every A ∈ F not reduced to a single point

Remark 2.3. It is clear that if the topology τ is Hausdorff, then δp(A) = 0 implies
that the subset A is reduced to a single point.

Example 2.2. Let (X, d) be a metric space. It is clear that d is a τ -symmetric
where τ is the topology induced by the metric d. Recall that X is said to have
normal structure if there exists a convexity structure F on X such that rd(A) <
δd(A), for any nonempty A ∈ F , which is d-bounded and not reduced to a single
point. Hence, (X, d) has d-normal structure.

In [6], Kirk proved the following lemma in metric spaces. The analogue of this
lemma in our p-normalsetting can be stated by the following lemma. The details
of the proof are essentially the same and we given them for completeness.

Lemma 2.3. Let (X, τ) be a topological space with a τ -symmetric p. Assume that
X is p-bounded and has p-normal structure. Let T be a nonexpansive selfmapping
of X. If D ∈ A(X) is T -invariant set, then there exists a nonempty admissible
subset D∗ of D, which is T -invariant, and such that

δp(D∗) ≤
1
2

(δp(D) + rp(D))

Proof. Set r = 1
2 (δp(D) + rp(D)). We can assume that δp(D) > 0, otherwise

we can take D∗ = D. Since X has p-normal structure, we have rp(D) < δp(D).
Therefore, the set A = {f ∈ D : D ⊂ B′p(f, r)} is nonempty subset of X. Moreover,
A = ∩f∈DB′p(f, r) ∩ D, which implies that A is admissible. Clearly, there is no
reason for A to be T -invariant. Put ϑ = {M ∈ A(X) : A ⊂ MandT (M) ⊂ M}
and L = ∩M∈ϑM . Note that ϑ is nonempty since X ∈ ϑ. The set L is T -invariant,
admissible subset of X and contains A. Consider C = A ∪ T (L), and observe that
co(C) = L. Indeed, since C ⊂ L and L ∈ A(X), we have co(C) ⊂ L. From this
we obtain T (co(C)) ⊂ T (L) ⊂ C, hence C ∈ A(X), and therefore L ⊂ co(C). This
gives the desired equality. Define D∗ = {f ∈ L : L ⊂ B′p(f, r)}. We claim that
D∗ is the desired set. Observe that D∗ is nonempty since it contains A. Using the
same argument we can prove that D∗ is an admissible subset of X. On the other
hand, it is clear that δp(D∗) ≤ r. To complete the proof, we have to show that
D∗ is T -invariant. Let f ∈ D∗. By definition of D∗, we have L ⊂ B′p(f, r). Since
T is nonexpansive, we have T (L) ⊂ B′p(T (f), r). Let g ∈ A. Then L ⊂ B′p(g, r).
But T (f) ∈ L, so that T (f) ∈ Bp(g, r), which is equivalent to g ∈ B′p(T (f), r).
Therefore A ⊂ B′p(T (f), r). Since C = A∪ T (L), we deduce that C ⊂ B′p(T (f), r).
Thus, we have co(C) = L ⊂ B′p(T (f), r). By the definition of D∗, it follows that
T (f) ∈ D∗. In other words, D∗ is T -invariant. �

Now we are ready to prove the following result

Theorem 2.1. Let (X, τ) be a topological space with a τ -symmetric p. Assume
that X is S-complete, p-bounded, has p-normal structure and satisfies the property
(R). Let T be a nonexpansive selfmapping of X. Then T has a fixed point.

Proof. Let F = {M ∈ A(X) : M 6= ∅ and T (M) ⊂ M}. The family F is stable
by intersection and not empty since X ∈ F . Define the function α : F → R

+ as
follows

α(M) = inf{δp(A) : A ∈ F and A ⊂M}
Put M1 = X. From the definition of α, we can define M2 ∈ F by δp(M2) ≤
α(M1) + ε1 and M2 ⊂M1, where (εn) is a sequence of positive numbers such that
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lim
n→∞

εn = 0. Assume that Mi have been constructed for i ≤ n, and define Mn+1 ∈ F
by δp(Mn+1) ≤ α(Mn) + εn and Mn+1 ⊂ Mn. Put D = ∩nMn. By our previous
remarks on F , we deduce that D ∈ F . Moreover, property (R) implies that D 6= ∅.
Suppose that D is not reduced to a single point. Since D satisfies all hypotheses of
lemma 2.3, there exists D∗ in F , contained in D, such that

(6) δp(D∗) ≤
1
2

(δp(D) + rp(D))

We have δp(D∗) ≤ δp(D) ≤ δp(Mn+1) ≤ α(Mn) + εn, for all n ∈ N. Also, by the
definition of α, we have α(Mn) ≤ δp(D∗). Since n is arbitrary and lim

n→∞
εn = 0, we

deduce that δp(D∗) = δp(D). Then the inequality (6) implies that δp(D) ≤ rp(D),
which gives a contradiction. Consequently, D is reduced to a single point which is
then a fixed point for T . �

Recently, T.L. Hicks [2] established some common fixed point theorems for gen-
eral contractive maps in symmetric spaces and proved that very general probabilistic
structures admit a compatible symmetric or semi-metric. Now we look at applica-
tion of our main results to the setting of symmetric spaces. Note that every metric
spaces is a symmetric space.

Corollary 2.1. Let (X, d) be a symmetric space. Assume that X is S-complete,
d-bounded, has d-normal structure and satisfies the property (R). Let T be a non-
expansive selfmapping of X. Then T has a fixed point.
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