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EXPLODED AND COMPRESSED NUMBERS

I. SZALAY

Abstract. In this paper we introduce the concept of exploded and com-
pressed real number such that the set of exploded real numbers contains the set
of real numbers. Moreover, the concept of equality, ordering, neighbourhood

and convergence will be extended for the set of exploded real numbers. We will
find operations for exploded real numbers such that the set of exploded real

numbers will be isomorphic to the set of real numbers. The set of compressed
real numbers is a subset of real numbers and a model for the relationship of

the sets of real numbers and exploded real numbers, respectively. Introducing
the concept of super-function we extend the concept of continuity to functions
with one variable. Finally, we say a few words on the repeated explosions and
compressions.

Preliminary: the genesis of exploded real numbers

The concept of natural numbers 1, 2, 3, . . . originates from the pre-historical ages.
The oldest documents for example the Rhind papyrus or the column of Hammurabi
(see [1] pp. 1-3.) contain the operations addition and multiplication. In the modern
language of algebra we say that the set of natural numbers with respect to addi-
tion forms a commutative semigroup and with respect to multiplication forms a
commutative semigroup with the unity element 1 (See [2] pp. 28., 32., 35. and 29.)
Moreover, the distributivity

(n+m)k = nk +mk

is valid. The use of (small) natural numbers was an essential step in the development
of human language. The ordering of natural numbers was also known and if n < m
then

n+ k < m+ k (monotonity of addition)
and

nk < mk (monotonity of multiplication)
were evident.

Some concrete positive rational numbers originate from the ancient times. The
set of positive rational numbers with respect to multiplication is already a group
([2] p. 35.) and the former algebraic properties together with the properties of
ordering remain valid.

The first number which was discovered in a mathematical way - between 600 and
300 B.C.- in all probability was the zero. It was signed by Hindi mathematicians by
0. On the other hand, in the set of non-negative integer (or rational) numbers the
number 0 has not a multiplicative inverse, so this set is only a semigroup again, with
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respect to multiplication. The monotonity of addition is true, but the monotonity
of multiplication remains valid under the condition

k > 0

only.
In China about the centuries 2-1 B.C. we can find negative integer numbers.

(See [3] p. 236.) The set {0,±1,±2, . . .} is an integrity domain ([2] p. 64.). The
monotonity of addition is true and the monotonity of multiplication, with k > 0,
remains valid.

The set of rational numbers forms a field with respect to addition and multipli-
cation ([2] p. 36. point 7.). Moreover, if a, b and c are rational numbers and a < b
then

a+ c < b+ c

and
ac < bc (c > 0)

hold. So, we can see that the set of rational numbers is an ordered field ([2] p.
568.).

Irrational numbers were discovered by the Pythagoreans. The incommensurable
magnitudes caused a crisis in the development of Mathematics, which was resolved
in the fourth century B.C. (See [1] pp. 10-15.) In geometric algebra “number” is
illustrated by a segment of the real axis. The exact introduction of real numbers is
from Dedekind in 1872 ([3] p. 281.). In a certain sense, the concept of real number
is the top of development of the numbers concept because the set of real numbers is
an ordered field such that it is a perfect hull of the ordered field of rational numbers
([2] p. 602.).

Complex numbers originate from the 16th century but the pure algebraic intro-
duction is from Hamilton and J. Bolyai independently from each other in 1837. (See
[3] pp. 152-153.) Geometric introduction is from Gauss in 1831. (See [3] p. 131.)
By the Gauss-plane we can consider the set of complex numbers as a transversal
extension of the set of real numbers.

The set of complex numbers is isomorphic with the set of real numbers such
that it is an algebraically closed field with respect to the extended addition and
multiplication. On the other hand, the set of complex numbers is not an ordered
field.

The set of exploded real numbers is another - so-called “longitudinal” - extension
of the set of real numbers with the following postulates and requirements

POSTULATE OF EXTENSION:
The set of real numbers is a proper subset of the set of exploded real num-
bers. For any real number x there exists one exploded real number which is
called exploded x or the exploded of x. Moreover, the set of exploded x is
called the set of exploded real numbers.

POSTULATE OF UNAMBIGUITY:
For any pair of real numbers x and y, their explodeds are equal if and only
if x is equal to y.

POSTULATE OF ORDERING:
For any pair of real numbers x and y, the exploded x is less than exploded
y if and only if x less than y.

POSTULATE OF SUPER-ADDITION: For any pair of real numbers x and
y, the super-sum of their explodeds is the exploded of their sum.

POSTULATE OF SUPER-MULTIPLICATION:
For any pair of real numbers x and y, the super-product of their explodeds
is the exploded of their product.
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REQUIREMENT OF EQUALITY FOR EXPLODED REAL NUMBERS:
If x and y are real numbers then x as an exploded real number equals to y
as an exploded real number if they are equal in the traditional sense.

REQUIREMENT OF ORDERING FOR EXPLODED REAL NUMBERS:
If x and y are real numbers then x as an exploded real number is less than
y as an exploded real number if x is less than y in the traditional sense.

REQUIREMENT OF MONOTONITY OF SUPER-ADDITION:
If u and v are arbitrary exploded real numbers and u is less than v then,
for any exploded real number w, u superplus w is less than v superplus w.

REQUIREMENT OF MONOTONITY OF SUPER-MULTIPLICATION:
If u and w are arbitrary exploded real numbers and u is less than v then,
for any positive exploded real number w, u super-multiplayed by w is less
than v super-multiplayed by w.

In this way, we can find that the set of exploded real number is an ordered field with
respect to super-addition and super-multiplication. It is isomorphic with the set of
real numbers but super-operations are not extensions of traditional operations.

1. The set of exploded numbers

Our starting point is the set of real numbers R with its familiar relations, oper-
ations, as equality, ordering, addition and subtraction, multiplication and division.
Moreover, we use the concepts of neighbourhood, convergence, monotonity and
boundedness in a traditional sense. Our aim is to construct the set of exploded real
numbers R with the following requirements.

A. The set R will be the proper subset of R, that is

(1.1) R ⊂ R.

B. To find an equality-relation for R which extends the concept of familiar
equality defined for R.

C. To find an ordering-relation for R which extends the concept of the familiar
ordering defined for R.

D. To find a neighbourhood basis for the elements of R which is an extension
of a neighbourhood basis defined for R.

E. To find the concept of convergence for the sequences {un}∞n=1 where un ∈ R
which is an extension of concept of convergence used for the sequences of
real numbers.

F. To find suitable operations on R for which R has an isomorphic algebraic
structure with R.

For any x ∈ R we denote by x the exploded of x which is a symbol, merely. The
set of symbols x is R. Moreover, x is called an exploded real number.

Definition 1.2. For any x, y ∈ R, x R= y if and only if x = y.

Clearly, the relation “R=” is reflexive, symmetrical and transitive. Definition 1.2
means, that for any u ∈ R there exists a unique x ∈ R such that

(1.3) u
R= x.

Moreover, we say that x is the compressed of u:

(1.4) x = u.

(1.3) and (1.4) yield the identities

(1.5) (u) R= u, u ∈ R
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and

(1.6) (x) = x, x ∈ R.

Definition 1.7. For any u, v ∈ R we say that u
R
< v if and only if u < v. (u, v ∈ R.)

Clearly, the relation “
R
<” is irreflexive, antisymmetric and transitive.

Definition 1.8. The exploded real number u is called positive if u > 0 and it is
called negative if u < 0.

Definition 1.9. For any u0 ∈ R, with a, b ∈ R such that a
R
< u0

R
< b the set

(1.10) Iu0(a, b) =
{
u ∈ R : a

R
< u

R
< b
}

is called a super-interval neighbourhood of u0.

Definitions 1.7 and 1.9 yield

Theorem 1.11. The exploded real number u belongs to the super-interval neigh-
bourhood Iu0(a, b) if and only if

(1.12) a < u < b · (a, u, b ∈ R.)

Definition 1.7 - 1.9 and Theorem 1.11 give the following properties.

Property 1.13. For any u0 ∈ R there exists a set Iu0(a, b) such that u0 ∈ Iu0(a, b).

Property 1.14. If u0, v0 ∈ R and u0 6= v0 then there exists sets Iu0(a, b) and
Iv0(c, d) such that

Iu0(a, b) ∩ Iv0(c, d) = ∅.

Property 1.15. If Iu0(a1, b1) and Iu0(a2, b2) are arbitrary given then there exists
Iu0(a3, b3) such that

Iu0(a3, b3) ⊂
(
Iu0(a1, b1) ∩ Iu0(a2, b2)

)
.

Property 1.16. If v0 ∈ Iu0(a, b) then there exists Iv0(c, d) such that

Iv0(c, d) ⊂ Iu0(a, b).

Definition 1.17. The sequence of exploded real numbers {un}∞n=1 is called con-
vergent in R if there exists and exploded real number u0 such that for any Iu0(a, b)
there is a positive real number ν that if n > ν then un ∈ Iu0(a, b). We say that the
sequence {un}∞n=1 converges to the limit u0 and we write

u0 = lim
n→∞

R

un.

Property 1.14 yields

Theorem 1.18. Any convergent sequence of exploded real numbers may have only
one limit in R.

Definition 1.17 and Theorem 1.11 yield

Theorem 1.19. For any sequence of exploded real numbers

u0 = lim
n→∞

R

un if and only if u0 = lim
n→∞

un

where the latter convergence is understood in a traditional sense.
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Definition 1.20. The sequence of exploded real numbers {un}∞n=1 is called mono-
tonic increasing in R if

un
R
≤ un+1, n = 1, 2, 3, . . .

and monotonic decreasing if

un
R
≥ un+1, n = 1, 2, 3 . . . .

Definitions 1.7 and 1.20 yield

Remark 1.21. The sequence of exploded real numbers {un}∞n=1 is monotonic in-
creasing or decreasing in R if and only if the sequence {un}∞n=1 is monotonic in-
creasing or decreasing, respectively. The monotonity of {un}∞n=1 is understood in
a traditional sense.

Definition 1.22. The sequence of exploded real numbers {un}∞n=1 is bounded in
R if there exists a super-interval neighbourhood I

0
(a, b) such that un ∈ I

0
(a, b),

n = 1, 2, 3 . . ..

Definition 1.22 and Theorem 11 yield

Remark 1.23. The sequence of exploded real numbers {un}∞n=1 is bounded in R if
and only if the sequence {un}∞n=1 is bounded in a traditional sense.

It is well known that every monotonic and bounded sequence of real numbers
is convergent. (Monotonity, boundedness and convergence are understood in a
traditional sense.) Applying this with Theorem 1.19 and Remarks 1.21 and 1.23
we have

Theorem 1.24. Any monotonic and bounded sequence of exploded real numbers is
convergent in R.

Referring back to Requirements B − E, we gave definitions for equality, order-
ing, neighbourhood and convergence in R. In the following we give definitions for
Requirement F .

Definition 1.25. For any pair of exploded real numbers x, y the operation −©−\
/

/

\
+

for which

(1.26) x−©−\
/

/

\
+ y

R= x+ y, x, y ∈ R

is called super-addition where x −©−\
/

/

\
+ y is the super-sum of x and y.

Clearly, super-addition is commutative, associative, has the additive unit-element
0 and every x has the additive inverse-element − x.

Using x
R= u and y

R= v and applying (1.4) by (1.26) we have

(1.27) u−©−\
/

/

\
+ v

R= u+ v, u, v ∈ R.

Definition 1.28. For any pair of exploded real numbers x, y the operation −©−\
/

/

\
−

for which

(1.29) x−©−\
/

/

\
− y

R= x−©−\
/

/

\
+ − y, x, y ∈ R

is called super-subtraction where x −©−\
/

/

\
− y is the super-difference of x and y.
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By (1.5), (1.29) and (1.27) we can write

(1.30) u−©−\
/

/

\
− v

R= u− v, u, v ∈ R.

Definition 1.31. For any pair of exploded real numbers x, y the operation −©−\
/

/

\
·

for which

(1.32) x−©−\
/

/

\
· y

R= x · y,

is called super-multiplication where x −©−\
/

/

\
· y is the super-product of x and y.

Clearly, the super-multiplication is commutative, associative, has the multiplica-
tive unit-element 1 and, except for 0, every x has the multicative inverse-element
( 1
x ).

Using x
R= u and y

R= v and applying (1.4) by (1.32) we have

(1.33) u−©−\
/

/

\
· v = u · v, u, v ∈ R.

Definition 1.34. Assuming that y R=6 0, for any pair of exploded real numbers x,
y, the operation −©−\

/

/

\
: for which

(1.35) x−©−\
/

/

\
: y

R= x−©−\
/

/

\
· (

1
y

), x, y(6= 0) ∈ R

is called super-division.

By (1.32) we can write

(1.36) x−©−\
/

/

\
: y

R= (
x

y
), x, y(6= 0) ∈ R.

Definitions 1.26 and 1.31 show that the distributivity

(1.37) (x−©−\
/

/

\
+ y)−©−\

/

/

\
· z

R= (x−©−\
/

/

\
· z)−©−\

/

/

\
+ (y−©−\

/

/

\
· z), x, y, z ∈ R

holds.
Moreover, we have

Theorem 1.38. The set of exploded real numbers R is a field with operations
super-addition and super-multiplication.

Clearly, the fields R and R are isomorphic by the transformation

x →− x, x ∈ R

+ →− −©−\
/

/

\
+

· →− −©−\
/

/

\
· .

Moreover, Definitions 1.7, 1.8 and Theorem 1.11 with (1.5), (1.27) and (1.33)

yield the monotonity of super-addition: if u, v, w ∈ R and u
R
< v then u −©−\

/

/

\
+ w

R
<

v−©−\
/

/

\
+ w. Moreover, if w

R
> 0 then u −©−\

/

/

\
· w

R
< v −©−\

/

/

\
· w.
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2. The exploder-function

First of all we say that a function f is traditional if its domain Df ⊆ R and
range Rf ⊆ R, (where Rf is defined under (4.1)). Moreover, a traditional function
σ is called an exploder-function if it has the following properties.

Property 2.1. The open interval (-1,1) is a subset of the definition-domain of the
function σ, that is

(−1, 1) ⊆ Dσ.

Property 2.2. For any x ∈ (−1, 1) the equation σ(−x) = −σ(x) holds.

Property 2.3. The function σ is continuous on the interval (−1, 1).

Property 2.4. The function σ is strictly monotonic increasing on the interval
[0,1).

Property 2.5.
lim
x→1
x<1

σ(x) =∞.

Property 2.6. For any x ∈ (0, 1) the inequality x < σ(x) holds.

Remark 2.7. Properties 2.2, 2.5 and 2.6 yield

(2.8) σ(0) = 0,

(2.9) lim
x→−1
x>−1

σ(x)−∞

and for any x ∈ (−1, 0)

(2.10) σ(x) < x.

We have already mentioned that the exploded real number x (x ∈ R) is merely
a symbol. Now, using the exploder-function σ we give a concrete meaning for the
explodeds of real numbers having absolute values less than 1.

Definition 2.11. For any x ∈ (−1, 1) we say that the σ-exploded of x will be

(2.12) xσ = σ(x).

By Property 2.1 we have that for any x ∈ (−1, 1) the exploded real number xσ
is a real number, too. Using the Bolzano-Darboux property Properties 2.1, 2.2, 2.3,
2.4 and 2.5 with (2.9) give

(2.13) Rσ = R

which shows that Requirement A is fulfilled.
Considering the exploder-function restricted for the open interval (−1, 1) we have

its inverse function σ which is called compressor-function. Clearly,

(2.14) Dσ = R

and

(2.15) Rσ = (−1, 1).

Moreover, for any x, y ∈ (−1, 1) Definition 2.11 shows that if xσ = yσ then x = y.
Considering (2.15), (2.14) and Property 2.1 for any u ∈ R
(2.16) u = σ(σ(u)), (u ∈ R),

is obtained.
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Theorem 2.17. Assuming that u, v ∈ R the equality

(2.18) u
R= v

is valid if and only if the equality u = v holds.

Proof. Using (2.16) and (2.12) we have for any u, v ∈ R that

u = (σ(u)
σ

) and v = (σ(v)
σ

)

holds. Definition 1.2 says that the equality (2.18) is valid if and only if σ(u) = σ(v).
Using Property 2.4 (together with Property 2.2) we have that the compressor-
function is strictly increasing, too. Hence, u = v. �

By Theorem 2.17 we can see that Requirement B is fulfilled so we may use the
traditional sign of equality “=” for elements u, v ∈ R, too

Using (2.12) and (2.16) by (1.3), (1.4) and (1.5) we have that for any u ∈ R its
compressed is

(2.19) u
σ

= σ(u), u ∈ R.

Theorem 2.20. Assuming that u, v ∈ R the inequality

u
R
< v

is valid if and only if the inequality

u < v

holds.

Using Definition 1.7 instead of Definition 1.2 the proof of Theorem 2.20 is very
similar to the proof of Theorem 2.17, so we omit it.

By Theorem 2.20 we can see that Requirement C is fulfilled so we may use the
tradition sign “<” for elements u, v ∈ R, too.

Remark 2.21. If u0, un (n = 1, 2, . . .) are real numbers and

(2.22) lim
n→∞

un = u0

then we have that for any a, b ∈ R such that a < u0 < b, there is a real number ν
such that if n > ν then a < un < b. So, by Definition 1.9, un ∈ Iu0(a, b). Hence,
with respect to (1.1) Definition 1.17 says that (2.22) implies the convergence

lim
n→∞

R

un = u0

too.

In the following we give some exemplas of exploder-functions satisfying Proper-
ties 1-6.

Definition 2.23. In the cases

(2.24) σ(x) = area thx and σ(x) = thx

σ(x) =
2
π

tg
π

2
x and σ(x) =

2
π

arc tg
π

2
x

and
σ(x) =

x

1− |x|
and σ(x) =

x

1 + |x|
we speak of hyperbolic, trigonometric and geometric explosions, respectively.
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In the following we will mostly use the hyperbolic explosion and compression.
So, with respect to (2.12) and (2.19) for the hyperbolic explosion and compression
we write

(2.25) x = area thx, x ∈ (−1, 1)

and

(2.26) u = thu, u ∈ R
while for the other special σ-functions given under Definition 2.23 we write

xT =
2
π

tg
π

2
x and u

T
=

2
π

arc tg
π

2
u

and
xG =

x

1− |x|
and u

G
=

u

1 + |u|
,

respectively.
Considering (2.8), (2.12), (2.19), (2.25) and (2.26) we can write

(2.27) 0 = 0 and 0 = 0,

so we can say that the 0 is explosion- and compression-invariant. This is not
fulfilled for the other real numbers. Namely, for any x ∈ R+ (2.26) yields

(2.28) 0 < x < x, (x ∈ R+).

Hence, the identity (1.5) and Definition 1.7 (with (2.17)) say

(2.29) 0 < x < x, (x ∈ R+).

Similarly, for any x ∈ R− we have

(2.30) x < x < 0, (x ∈ R−)

and

(2.31) x < x < 0, (x ∈ R−).

(2.25) shows that an exploded real number x is a real number if and only if x ∈
(−1, 1). We call this kind of exploded real numbers visible real exploded numbers.
Otherwise, we say that the exploded real number x is invisible. The exploded real
number 1 is the smallest exploded real number which is greater than any element
of R. The exploded real number −1 is the greatest invisible exploded real number
which is smaller than any element of R. With respect to Definition 1.8 the invisible
exploded real numbers 1 and −1 are called positive- and negative discriminators,
respectively. By Definition 1.7 we can say that x ∈ R if and only if −1 < x < 1.
We remark, that the traditional expression of this is −∞ < x < ∞. Moreover,
applying Theorem 1.24 we have that any monotonic sequence of real numbers is
convergent in R.

Considering an exploded real number x with x ∈ (−1, 1) its additive inverse
element is given by (2.25) such that

−x = −x, x ∈ (−1, 1).

By this identity we extend the use of sign “-”.

Definition 2.32. For any exploded real number x with x ∈ R its additive inverse
element is denoted by (−x), that is

(2.33) −x = −x, x ∈ R.
Using (1.3), (1.4), and (2.33) the identity (1.6) yields the identity

(2.34) −u = −u, u ∈ R.
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(We may check identity (2.34) for u ∈ R by (2.26).)

Using Definition 2.32 and 1.8 we extend the concept of absolute value for ex-
ploded real numbers by

Definition 2.35. For any u ∈ R we say that

|u| =


u if u > 0,
0 if u = 0,
−u if u < 0.

Applying (1.3), (1.4), (2.27) and (2.33) Definitions 1.7, 1.8 and 2.35 yield the
identity

(2.36) |x| = |x|, x ∈ R.
Moreover, by (1.3), (1.4) and (1.6) the identity (2.36) yields the identity

(2.37) |u| = |u|, u ∈ R.
Using Definition 1.7 by (1.6) and (1.27) the identity (2.37) yields the super-triangle
inequality

(2.38) |u−©−\
/

/

\
+ v| ≤ |u| −©−\

/

/

\
+ |v|, u, v ∈ R.

Using Definition 1.2 by (1.5) and (1.33) the identity (2.37) yields that equality

(2.39) |u−©−\
/

/

\
· v| = |u| −©−\

/

/

\
· |v|, u, v ∈ R.

Remark 2.40. Applying Definition2.35 the positive discriminator characterizes the
set R such that u ∈ R if and only if the inequality

(2.41) |u| < 1, (u ∈ R),

is valid. Moreover, (2.41), Definition 1.7 with (1.6), (1.33) with (2.39) show that
the super-multiplication is an operation in R, too. Considering that the super-
multiplication is commutative and associative, set R is a commutative semi-group
with respect to the operation super-multiplication.

For the convergence problems the following theorem will be important.

Theorem 2.42. An exploded real number u belongs to the super-interval neigh-
bourhood Iu0(a, b) if and only if there are positive exploded real numbers

(2.43) ε1 = u0−©−
\

/

/

\
− a and ε2 = b−©−\

/

/

\
− u0

such that

(2.44) u0−©−
\

/

/

\
− ε1 < u < u0−©−

\

/

/

\
+ ε2

is valid.

Proof. By Definition 1.9 we have that a < u0 < b. Considering (1.30), Definitions
1.7 and 1.8 say that ε1 and ε2 under (2.43) are positive. Considering (1.10) and
(2.43) by Theorem 1.38 we have that (2.44) is valid if and only if a < u < b. So,
Definition 1.9 says that Iu0(a, b) = Iu0(u0 −©−

\

/

/

\
− ε1, u0 −©−

\

/

/

\
+ ε2). �

Applying Properties 1.13-1.16 by Theorem 2.42 we can use the super-symmetrical
neighbourhoods

(2.45) Iu0(u0−©−
\

/

/

\
− ε, u0−©−

\

/

/

\
+ ε), ε > 0

instead of Iu0(a, b).
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Theorem 2.46. The sequence of exploded real numbers {un}∞n=1 is convergent in
R to the exploded real number u0 if and only if for any positive ε there exists real
number ν such that if n > ν then

|un −©−
\

/

/

\
− u0| < ε.

Proof. Using Definition 1.7, by (2.37), (1.30) and (1.6) we obtain that this inequality
is equivalent with the inequality

|un − u0| < ε.

Having that for any ε∗(= ε) we have a real number ν such that if n > ν then
|un − u0| < ε∗ holds, we obtain that

lim
n→∞

un = u0

which, by Theorem 1.19, is equivalent with lim
n→∞

R

un = u0. �

Theorem 2.47. If u0, un, n = 1, 2, . . . are real numbers then limn→∞ un = u0 if
and only if lim

n→∞

R

un = u0.

Proof. Having Remark 2.21 it is sufficient to show that the condition

(2.48) lim
n→∞

R

un = u0

implies

(2.49) lim
n→∞

un = u0.

By Theorem 1.19 the condition (2.48) implies that limn→∞ un = u0 which using
the compressor-function under (2.26) means that

lim
n→∞

thun = thu0.

Hence, by the continuity of the exploder-function considered under (2.25) we have
that limn→∞ area th(thun) = area th(thu0) which shows that (2.49) is true. �

Theorem 2.47 shows that Requirement E is fulfilled. So, we can use “limn→∞”
instead of “ lim

n→∞

R

” for any cases of sequences {un}∞n=1. In addition, we have to

investigate for sequences of real numbers the cases

(2.50) lim
n→∞

un =∞, un ∈ R, n = 1, 2, . . .

and

(2.51) lim
n→∞

un = −∞, un ∈ R, n = 1, 2, . . . .

Using (2.26), condition (2.50) implies that

(2.52) lim
n→∞

un = 1, un ∈ R, n = 1, 2, . . . .

Conversely, using (2.25), condition (2.52) implies (2.50). So, conditions (2.50) and
(2.52) are equivalent. On the other hand, by (1.5), Theorem 1.19 says that the
condition (2.52) is equivalent with the condition

(2.53) lim
n→∞

un = 1, un ∈ R, n = 1, 2, . . . .

Hence the conditions (2.50) and (2.53) are equivalent. Similarly using (2.33) the
equivalence of conditions (2.51) and

(2.54) lim
n→∞

un = −1, un ∈ R, n = 1, 2, . . .
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is obtained.

Remark 2.55. Generally, the meaning of the condition

lim
n→∞

un = 1, (un ∈ R),

is not the same as the meaning of (2.50) because (2.50) can be considered merely
for the sequences of real numbers, while in the other case, un > 1 is allowed, that
is un may be an invisible exploded number, too. Similarly, if

lim
n→∞

un = −1

then the exploded real number un may be smaller than the negative discriminator
−1. So, we can use (2.53) instead of (2.50) (or (2.54) instead of (2.51)) with un ∈ R,
n = 1, 2, . . ..

Closing Part 2, we give

Definition 2.56. For any subset S ⊂ R the set of explodeds of elements of S is
called the exploded of S and denoted by S. Similarly, we use the compressed set
of S ⊂ R, denoted by S. Clearly, R = (−1, 1).

3. The field R

Using the compressor-function considered under (2.26), any real number ξ be-
longs to the set R if and only if there exists and unambiguously determined real
number x such that

(3.1) ξ = thx(= x)

is fulfilled. Our aim is to find the operations ⊕ and � such that for any x, y ∈ R
(3.2) th(x+ y) = thx⊕ th y

and

(3.3) th(x · y) = thx� th y

will be satisfied. Using the identity

th(x+ y) =
thx+ thy

1 + thx · th y
the suitable definition of the ⊕ is clearly: for any ξ, η ∈ R

(3.4) ξ ⊕ η =
ξ + η

1 + ξ · η
, (ξ, η ∈ (−1, 1)).

Moreover, by (3.1) we have

(3.5) x = area th ξ (= ξ), ξ ∈ (−1, 1),

so the definition of � is: for any ξ, η ∈ R

(3.6) ξ � η = th(area th ξ · area th η), ξ, η ∈ (−1, 1).

The operation ⊕ is called sub-addition and the operation � is called sub-multi-pli-
ca-tion. Clearly, the operations sub-addition and sub-multiplication are commuta-
tive and associative. For any x ∈ R

ξ ⊕ 0 = ξ,

ξ ⊕ (−ξ) = 0,
ξ � 1 = ξ

and if ξ 6= 0 then

ξ � th
1

area th ξ
= 1.
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Moreover, for any ξ, η, ζ ∈ R the distributivity

(ξ ⊕ η)� ζ = (ξ � η)⊕ (η � ζ)

holds. So, we have

Theorem 3.7. The set of compressed real numbers R is a field with operations
sub-addition and sub-multiplication.

Clearly, the fields R and R are isomorphic by the transformation

x →− x, x ∈ R
+ →−⊕,
· →−� .

By Theorem 3.7 we can use the sub-subtraction

ξ 	 η =
ξ − η

1− ξ · η
, ξ, η ∈ (−1, 1)

and sub-division

(3.8) ξ©: η = th
area th ξ
area th η

, ξ, η ∈ (−1, 1) and η 6= 0.

Using (3.1) and η = th y = y by (3.2) and(3.3) the identities

(3.9) x+ y = x⊕ y, x, y ∈ R
and

(3.10) x · y = x� y, x, y ∈ R
are obtained, respectively. Comparing (1.27) to (3.9) and (1.33) to (3.10) we can
see that the field R with the operations sub-addition and sub-multiplication is a
model of the field R with the familiar addition and multiplication. Moreover, the
field R with its familiar operations is a model of the field R with super-addition and
super-multiplication. On the real axis we can imagine the relationship of the fields
R and R by the fields R and R where the “visible” compressed real numbers are in
the interval (-1,1) while the “invisible” numbers belong to the set R\R where 1 and
-1 plays the role of positive and negative discriminators, respectively. Considering
requirements A-E, we mention that for (1.1) R ⊂ (R) = R is obtained. Moreover,
for both R and R the same concepts of equality, arrangement, neighbourhood,
convergence are used. Analogously to Remark 2.40 we have

Remark 3.11. The set R is a commutative semi-group with respect to the operation
of multiplication.

Moreover, we mention

Theorem 3.12. The sequence of compressed real numbers {ξn}∞n=1 is convergent
to ξ0 ∈ R if and only if for any positive ε there exists a real number ν such that if
n > ν then

(3.13) |ξn 	 ξ0| < ε.

Proof. Sufficiency is obvious because the inequality |ξn − ξ0| < 2|ξn 	 ξ0| gives
the convergence of sequence {ξn}∞n=1. On the other hand, if the sequence {ξn}∞n=1

converges to ξ0 ∈ R then it has a bound K ∈ (−1, 1) such that the inequality
−|K| ≤ ξn ≤ |K| holds for any n = 1, 2, . . .. Hence we get the inequality

|ξn 	 ξ0| ≤
1

1−K2
|ξn − ξ0|

which gives the necessity of condition (3.13). �
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Moreover, we can observe that every monotonic sequence of compressed real
numbers is convergent. If the sequence is bounded in R then its limit belongs to
R. Otherwise, its limit is 1 or -1.

4. Super- and sub-functions

Let f be a given traditional function, that is, its domain Df ⊆ R and range
Rf ⊆ R, where

(4.1) Rf = {y ∈ R : y = f(x) and x ∈ Df}.
For any traditional function f we define its super-function denoted by spr f as
follows:

(4.2) Dspr f =
{
u ∈ R : u ∈ Df

}
and

(4.3) spr f(u) = f(u).

Hence,

(4.4) Rspr f =
{
v ∈ R : v = spr f(u) and u ∈ Dspr f

}
.

Clearly, by Definition 2.56 we obtain

(4.5) Dspr f = Df and Rspr f = Rf .

For any function F considered on the Descartes-product R × R that is, its
definition-domain DF ⊆ R and RF ⊆ R, where

(4.6) RF =
{
v ∈ R : v = F (u) and u ∈ DF

}
we define its sub-function, denoted by subF as follows:

(4.7) DsubF = {x ∈ R : x ∈ DF }
and

(4.8) subF (x) = F (x).

Hence,

(4.9) RsubF = {y ∈ R : y = subF (x) and x ∈ DsubF }.
Clearly,

(4.10) DsubF = DF and RsubF = RF .

Theorem 4.11. Every function F considered on the Descartes-product R × R is
the super-function of its sub-function, that is

(4.12) F = spr(subF ).

Proof. Considering subF as a traditional function (see (4.1) (4.9)) by (4.2) and
(4.10) we obtain

Dspr(subF ) =
{
u ∈ R : u ∈ DF 〈=〉u ∈ DF

}
,

that is Dspr(subF ) = DF . Moreover, by (4.3) and (4.8)

spr(subF (u)) = subF (u) = (F (u)) = F (u)

is obtained so we have (4.12). �

Corollary 4.13. Every traditional function f is a super-function ϕ considered on
the Descartes-product R× R.
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Proof. By (4.12) we can write

f = spr(sub f).

Moreover, by (4.10)

Dsub f = Df ⊆ R and Rsub f = Rf ⊆ R

hence, ϕ = sub f . �

Theorem 4.14. Every traditional function f is the sub-function of its super-
function, that is

(4.15) f = sub(spr f).

Proof. By (4.10) and (4.5) we can see that Dsub(spr f) = Dspr f = (Df ) = Df .
Moreover, (4.8), (4.3) and (1.6) we obtain for any x ∈ Df that sub(spr f(x)) =
spr f(x) = (f(x)) = f(x). �

In the following we mention some elementary examples for super - and sub-
functions of traditional functions. For the sake of simplicity we denote the tradi-
tional power-function with the exponent α ∈ R by pα, that is

(4.16) pα(x) = xα with Dpα = R+ and Rpα = R+.

In certain special cases Dpα and Rpα may be wider, for example Dp3 = Rp3 = R.
Hence, (4.16) and (4.2)-(4.4) yield

(4.17) spr pα(u) = (u)α, with Dspr pα = R+ and Rspr pα = R+.

Moreover, we can write

(4.18) spr expu = (eu), with Dspr exp = R and Rspr exp = R+,

(4.19) spr lnu = (ln u), with D spr ln = R+ and Rspr ln = R.

By (4.19), (1.6), (4.18) and (1.5) we have that spr exp(spr lnu) = u, u ∈ R+. In
general, we have that if the traditional function f has the inverse function f , then

(4.20) spr f(spr f(u)) = u, u ∈ Dspr f

because (4.2), (4.3), (1.6) and (1.5) yield

spr f(spr f(u)) = spr f (f(u)) = f(f(u)) = (u) = u.

By (4.6)-(4.9) we can consider the sub-functions. For example

sub exp ξ = eξ, ξ ∈ R.

Similarly to (4.20) we have

(4.21) sub f(sub f(ξ)) = ξ, ξ ∈ Dsub f .

Especially interesting is the case of the exploder-function. Namely, for any u ∈ R,
(4.3) and (2.26) yield

(4.22) spr area thu = u.

Moreover, for any u ∈ R, (4.22) and (2.25) show

(4.23) spr area thu = area thu.

So, in this case we can use the extension of exploder-function

(4.24) area thu = u with Darea th = R and Rarea th = R.
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Similarly, for any u ∈ R we have

(4.25) spr thu = thu

so, we have the extension of compressor-function

(4.26) thu = u with Dth = R and Rth = R.

On the other hand, by (4.8), (2.25) and (1.6) for any ξ ∈ (−1, 1)

(4.27) sub area th ξ = area th ξ = ((ξ)) = ξ = area th ξ

is obtained. Similarly, by (4.8), (2.26) and (1.5) give for any ξ ∈ R

(4.28) sub th ξ = th ξ = ((ξ)) = ξ = th ξ.

Identities (4.23), (4.25), (4.27) and (4.28) show that the exploder and compressor-
functions are invariant for the construction of super- or sub-functions.

For any function F considered on the Descartes-product R× R, we have

Theorem 4.29. Let us assume that the interval I is a subset of DF . The func-
tion F is monotonic increasing (or decreasing) on the interval I if and only if the
function subF is monotonic increasing (or decreasing) on the interval I.

Proof. By Definition 2.56. and (4.7) we have that I ⊆ DsubF . Let us assume that
u1, u2 ∈ I and u1 < u2 implies F (u1) ≤ F (u2). Denoting u1 = x1 and u2 = x2 we
have that x1, x2 ∈ I. Moreover, Definition 1.7 with (1.6) say that x1 < x2 if and
only if u1 < u2. Similarly, by the identity (4.8) we have that F (x1) ≤ F (x2) if and
only if subF (x1) ≤ subF (x2). �

Theorems 4.11, 4.14 and 4.29 yield

Corollary 4.30. The monotonity is invariant for the construction of super- or
sub-functions.

Now, we turn to the limit of function F considered on the Descartes-product
R× R. Let us assume that u0 ∈ R and it has a neighbourhood

Iu0(u0−©−
\

/

/

\
− ε1, u0−©−

\

/

/

\
+ ε2)

with ε1, ε2 > 0 such that

(4.31) Iu0(u0 −©−
\

/

/

\
− ε1, u0 −©−

\

/

/

\
+ ε2)\u0 ⊂ DF .

Definition 4.32. The exploded real number v0 is called the limit of the function F
at the point u0 having (4.31) if for any sequence of exploded real numbers {un}∞n=1,
where un 6= u0 and

(4.33) lim
n→∞

un = u0

the

(4.34) lim
n→∞

F (un) = v0

holds. This is denoted by

(4.35) lim
u→u0

F (u) = v0.

Theorem 4.36. The limit under (4.35) exists if and only if

(4.37) lim
x→u0

subF (x) = v0

holds.
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Proof. Denoting by un = xn, n = 1, 2, . . ., and u0 = x0 Theorem 1.19 with identity
(1.6) says that (4.33) is valid if and only if

lim
n→∞

xn = x0.

On the other hand, (4.34) is valid if and only if

lim
n→∞

F (xn) = v0.

Hence, (4.8) shows that subF (xn) = F (xn), so (4.37) and (4.35) are equivalent. �

Considering that subF is a traditional function it is well known that (4.37) is
valid if and only if for any ε(> 0) there exists a δ(> 0) such that if

(4.38) |x− u0| < δ (x 6= u0)

then

(4.39) | subF (x)− v0| < ε.

Denoting by x = u and using (1.6), (1.30) and (2.37), Definition 1.7 says that
(4.38) is equivalent with

(4.40) |u−©−\
/

/

\
− u0| < δ (u 6= u0).

Similarly, by (4.8), (1.6), (1.30) and (2.37), Definition 1.7 says that (4.39) is equiv-
alent with

(4.41) |F (u)−©−\
/

/

\
− v0| < ε.

Hence, Theorem 4.36 with Definition 4.32 yields

Corollary 4.42. The limit under (4.35) exists if and only if for any ε(> 0) there
exists a δ(> 0) such that if (4.40) is valid then (4.41) holds.

Remark 4.43. Corollary 4.42 is particularly interesting in the cases of discriminators
that is u0 or v0 are −1 or 1.

For example, if F is a traditional function such that

(4.44) lim
u→∞

F (u) =∞ (u ∈ R)

it means that for any M ∈ R there exists D ∈ R such that u > D then F (u) > M .
On the other hand, Definition 4.32 with (2.50), (2.53) and Remark 2.55 shows that
(4.44) is equivalent with

(4.45) lim
u→1

u<1

F (u) = 1 , (see (2.41)).

Moreover, by (4.40) and (4.41), the limit (4.45) means that for any ε(> 0) there
exists δ(> 0) such that

(4.46) |u−©−\
/

/

\
− 1| < δ, (u < 1),

implies

(4.47) |F (u)−©−\
/

/

\
− 1| < ε, (F (u) < 1).

Let us observe that (4.46) and (4.47) are equivalent with

area th(1− th δ) < u

and
area th(1− th ε) < F (u),
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respectively. Hence, with M = area th(1 − th ε) and D = area th(1 − th δ) the
meaning of (4.44) and (4.45) can be compared immediately.

Definition 4.48. A function F is called continuous at the point u0 having (4.31)
if u0 ∈ DF and the limit (4.35) exists with v0 = F (u0).

Using Corollary 4.42 we have

Corollary 4.49. A function F is continuous at the point u0 if and only if for any
ε(> 0) there exists δ(> 0) such that the inequality (4.40) implies that

|F (u)−©−\
/

/

\
− F (u0)| < ε.

By Definition 4.32 and Theorem 4.36 we immediately have

Theorem 4.50. Let us assume that the interval I is a subset of DF . The function
F is continuous on the interval I if and only if the function subF is continuous on
the interval I.

Example 4.51. Let us consider the function F which can be defined by the equation

(4.52) F (u) = (2−©−\
/

/

\
· u)−©−\

/

/

\
: (1−©−\

/

/

\
+ sup p2(u)).

Using (4.17) with α = 2 and (1.32) we can see that sup p2(u) = u−©−\
/

/

\
· u. Hence,

DF = R. Having the inequality |F (u)| ≤ 1 we obtain that RF ⊆ [−1, 1]. Clearly
F (−1) = −1, F (0) = 0 and F (1) = 1. On the other hand, (4.52), (4.8), (1.32),
(1.26), (1.36) and (1.6) give

(4.53) subF (x) =
2x

1 + x2
, DsubF = R and RsubF = [−1, 1].

Hence, by Theorem 4.11 and (4.5) the (4.53) yields that RF = [−1, 1]. Clearly, the
function subF is an odd function, decreasing on the interval (−∞,−1], increasing
on the interval (-1,1) and decreasing on the interval [1,∞), again. At the points
-1 and 1 it has its minimum and maximum, respectively. Moreover, it is concave
on the intervals (−∞,−

√
3) and (0,

√
3) and convex on the intervals (−

√
3, 0) and

(
√

3,∞). Finally, it is continuous on R. Hence, by Theorem 4.29 the function F is
decreasing on the sets of exploded real numbers{

u ∈ R : u ≤ −1
}

and
{
u ∈ R : u ≥ 1

}
and increasing on R. The latter property can be observed if, using (1.5), (1.27),
(1.32), (1.36), (2.25) and (2.26), we compute

(4.54) F (u) = 2u, u ∈ R.

Theorem 4.50 shows that the function F given by (4.52) is continuous on R. Among
others it is continuous at the point u0 = 1. Checking this fact by (4.54), (4.44) and
(4.45) we can see that limu→∞

u∈R
F (u) =∞.

5. Repeated explosions and compressions

Choosing as our starting point the set of exploded real numbers R and modifying
Requirements A-F such that instead of R and R we write R and (R), respectively,

we can construct the set (R). The extensions mentioned in Requirements B-E can
easily be carried out. Requirement F is more complicated. Our exploder-function
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will be the extended function area th (defined under (4.24)) saying that for any
u ∈ R

u = area thu
while if u ∈ R\R then u is merely a symbol with the operations super-super addition
and super-super-multiplication

(5.1) u−©−\
/

/

\
⊕ v = u−©−\

/

/

\
+ v, u, v ∈ R

and

(5.2) u −©−\
/

/

\
� v = u−©−\

/

/

\
· v, u, v ∈ R,

respectively.
Clearly, (R) is a field with the operations given by (5.1) and (5.2). The additive

unit element is 0 while the multiplicative unit element is (1).
On the other hand, considering (4.28), we can compress R again and have the

field (R) with the operations sub-sub addition and sub-sub multiplication:

(5.3) ξ ⊕ η = th
area th ξ+η

1+ξη

area th th 1+th(area th ξ)(area th η))
1+(th 1)·th((area th ξ)(area th η))

, ξ, η ∈ (R)

and

(5.4) ξ©� η = th(th(area th(area th ξ) · area th(area th η))), ξ, η ∈ (R),

respectively.
Clearly, the fields(

(R), ©⊕ , ©�
)
, (R,⊕,�), (R,+, ·), (R,−©−\

/

/

\
+ ,−©−\

/

/

\
· ),

(
(R),−©−\

/

/

\
⊕ ,−©−\

/

/

\
�
)

are isomorphic.
Having that

lim
n→∞

th . . . th︸ ︷︷ ︸
n

1 = 0

and following the operations (5.1), (5.2), (5.3) and (5.4) we have the double-infinite
sequences of fields

. . . (R) ⊂ R ⊂ R ⊂ R ⊂ (R) . . .

without the narrowest field.
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