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CONDITIONS OF ANALYTICITY FOR FUNCTIONS OF ONE
COMPLEX VARIABLE

T. ROZGONYI AND M. TAR

Abstract. In this paper certain necessary and sufficient conditions are con-
sidered for the analyticity of nonlinear functions of one complex variable in
terms of the their monogenity set.

Let f : D → C be a function, continuous over the domain D ⊂ C, and let z ∈ D
be its any fixed point. Put

ϕz(h) =
f(z + h)− f(z)

h
,

defined over the domain Qε = {h ∈ C | 0 < |h| < ε} with ε = ε(z), where ε(z)
denotes the distance from z to the boundary of D.

Recall that for the set of monogenity (the set of differential numbers) Mz(f) of
f at the point z is given by Luzin’s equality [1]

Mz = ∩ε>0Mε(z),

where Mε(z) = {ξ ∈ C | ξ = ϕz(h), h ∈ Qε}.
The following assertion gives a sufficient condition for analyticity.

Theorem 1. Let f : D → C be a function which is continuous on the domain D
and monogenic in each everywhere dense subset E of D. If f satisfies the condition

(a) at any point ξ ∈ C there are at most a countable family of sets Mz contain-
ing ξ,

then f is a nonlinear analytic function over D.

Proof. Assume the contrary. Then there exists a perfect subset P ⊂ D, at the
points of P f is not analytic.

The condition (a) immediately implies that the set Mz is not the complete plane
for all z ∈ D, with the possible exception of countable set H ⊂ D.

Let {ξk} be the set of points of the plane C with rational coordinates, and denote
Pn,k (n, k ∈ N) the subset of the points z ∈ P \H with

(0.1) |ϕz(h)− ξk| ≥
1
n

for all h satisfying 0 < |h| < 1
n and z + h ∈ D.

As {ξk} is an everywhere dense subset of the C = C ∪ {∞} and Mz is closed in
C, it is easy to see

P \H =
⋃
n,k

Pn,k.
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Moreover, since f is continuous, all the sets Pn,k are closed.
The perfect set P is of second category (in itself), hence there exist indices n = n0

and k = k0 such that Pn0,k0 is everywhere dense in some subset P0 of P . Since
Pn0,k0 is closed, we have P0 = Pn0,k0 and it can be written in the form P0 = P ∩G0,
where G0 ⊂ D is a domain. Consider the function g(z) = f(z)− cz, where c = ξk0 .
By (1) for z ∈ P0 and 0 < |h| < 1

n0
the function g(z) satisfies

(0.2)
∣∣∣∣g(z + h)− g(z)

h

∣∣∣∣ ≥ 1
n0
.

If we put z = z1, z + h = z2 into (2), we obtain

(0.3) |g(z2)− g(z1)| ≥ 1
n0
|z2 − z1| ,

for all z2 ∈ K0 and z1 ∈ K0 ∩ P0 := P1, where K0 ⊂ G0 is an arbitrary circle of
diameter 1

n0
.

Therefore, the function g(z) is single leafed on the perfect set P1 and analytical
on the open set K0 \P1 (if it is nonempty). By Theorem 9 [2] there exists a domain
G1 ⊂ K0 on which the function g(z) single leafed if G1 ∩ P1 = P2 is nonempty.
Let us consider the inverse z = g−1(w) of the function w = g(z) on the domain
G∗1 = g(G1).

From (3) it follows that the function g−1(w) satisfies

(0.4)
∣∣g−1(w1)− g−1(w2)

∣∣ ≤ n0 |w1 − w2|

for any w1 ∈ P ∗2 = g(P2) and w2 ∈ G∗1. According to (4) the set Mw(g−1) for
w ∈ P ∗2 is bounded. By Theorem 2 [2] the function has a complete differential
almost everywhere on P ∗2 . Let us denote the corresponding subset of P ∗2 by Q.

We have two cases to distinquish
Case 1. The set P ∗2 is everywhere dense in a circle K ⊂ G∗1. Since P2 ⊂ P1, we

infer that the function g(z) is single leafed in the domain G2 = g−1(K).
We claim that the function g−1(w) is monogenic almost everywhere in K, i.e. in

Q ∩K = Q1.
Suppose the contrary, the function g−1 is not monogenic at a point w0 ∈ Q1.

Then Mw0(g−1) is a complete circle ([2], p. 21). Put E∗ = g(E ∩ G2). Since
the function g(z) is continuous and single leafed in the domain G2 the set E∗ is
everywhere dense in the circle K = g(G2).

Write
E∗a =

{
w ∈ E∗ | [g−1(w)]′ = a

}
,

where a ∈ S, S is a circle with boundary Mw0(g−1). It is easy to see that E∗ ⊃
∪aE∗a, therefore the sets E∗a are disjoint. Since E∗ is a countable set and S is not,
there exists a = a0 such that E∗a0

= ∅, therefore [g−1(w)]′ 6= a0 for any w ∈ E∗.
Let us consider the function ψ(w) = g−1(w)−a0w (w ∈ K). By our assumption

0 /∈Mw(ψ) for w ∈ K \R, with a countable set R. It is easy to see that the function
ψ(w) is single leafed in an open set ∆ everywhere which is dense in K. To see this
it suffices to take

Mn =
{
w ∈ K |

∣∣∣∣ϕ(w + t)− ϕ(w)
t

∣∣∣∣ ≥ 1
n
, 0 < |t| < 1

n

}
,

and argue as in the proof of the inequality (3).
Since for any w ∈ E∗ there exists ψ′(w) 6= 0, the mapping z = ψ(w) preserves

the orientation of each component ∆k (k = 1, 2, . . .) of the open set ∆.
Now we show that the function z = ψ(w) realizes an inner mapping (in the sense

of S. Stoylov) of the circle K.



CONDITIONS OF ANALYTICITY. . . 59

Again, suppose the contrary, and let ∆ ⊂ K (∆ 6= K) be the maximal open
subset of K on which the mapping z = ψ(w) is inner.

Analogously, to our previous argument let us consider a subset L0 of the perfect
set L = K \∆ on which the function ψ(w) is single leafed. Clearly, we may assume
L0 = K1 ∩ L, where K1 ⊂ K is some circle. Since ψ(w) is single leafed the set
ψ(L0) is nowhere dense. Hence, by Theorem 8 [2], mapping z = ψ(w) is inner in
the circle K1, which is a contradiction to the maximality of ∆.

Consequently, mapping z = ψ(w) is inner in the circle K. It is well-known that
an inner mapping either preserves or inverts the orientation at any point of the
domain. As it is shown above, z = ψ(w) preserves the orientation of the domains
∆k (k = 1, 2, . . .). On the other hand, at the point w0 it inverts the orientation,
therefore, the circle

Mw0(ψ) =
{
ω ∈ C | ω = ψw0 + ψw0e

−2iβ , β ∈ [0, 2π]
}

contains an inner point ω = 0. Hence the Jacobian mapping

J(w0) = |ψw0 |2 − |ψw0 |2

is negative.
We have obtained a contradiction, so the function f is analytical over the domain

D.
Case 2. Let P ∗2 nowhere dense in the domain G∗1. Then the function ψ(w) is

analytical on the open set G∗1 \ P ∗2 which is everywhere dense in the domain G∗1, is
single leafed on P ∗2 . Hence, by Theorem 9 [2], function z = ψ(w) realizes an inner
mapping of the domain G∗1. The remaining part of the statement can be proved
analogously to Case 1.

The nonlinearity of f easily follows from the condition (a), because for a linear
function f(z) = cz + d we have Mz(f) = {c} for any z ∈ C. �

Remark 1. We show that the condition (a) is also necessary for the analyticity of
a nonlinear function f : D → C defined on a domain D ⊂ C.

Indeed, for an analytic function f and for z ∈ D we have

(0.5) Mz(f) = {f ′(z)} .

Assume that our assertion is not true. Then, by (5), there exist a c ∈ C and an
uncountable set M ⊂ D such that f ′(z) = c for z ∈ M . It is easy to see that
there exists a subdomain D1 ⊂ D such that M1 = M ∩D1 is an un-countable set.
By the Theorem of uniqueness for analytic functions we get f ′(z) ≡ c (z ∈ D). It
follows that f(z) = cz + c0 (z ∈ D), i.e., f is a linear function, which contradicts
our assumption.

We point out another property of analytic functions in the next statement.

Theorem 2. Let w = f(z) be a nonlinear function which is analytic in the domain
D and let S0 ⊂ D be a set of points z ∈ D with f ′′(z) = 0. Then for any closed
domain D0 ⊂ D \ S0 there exists ε > 0 such that

(0.6) f ′(z) /∈Mε(z),

where z0 ∈ D0.

Proof. First note that each subdomain D0 ⊂ D contains at most a finite set of
points of S0. In the opposite case by the Theorem of uniqueness for analytic
functions we have f ′′(z) ≡ 0 for any z ∈ D, i.e., f is linear.

Suppose that the assertion of theorem 2 is false. Then either in some subdomain
D0 ⊂ D \ S0 for any n ∈ N (n ≥ n0) there exists a point zn ∈ D0 such that



60 T. ROZGONYI AND M. TAR

f ′(zn) ∈M 1
n

(zn), or there exists ξn ∈ C such that

(0.7) f ′(zn) =
f(ξn)− f(zn)

ξn − zn
,

and 0 < |ξn − zn| < 1
n .

We shall assume that the sequence {zn} converges to a point z0 ∈ D0. (Otherwise
a convergent subsequence of {zn} can be considered).

Clearly, ξn → z0 ( n→∞).
By decomposing the function f into its Taylor series in the neighbourhoods of

the points zn, (7) can be rewritten as

f ′(zn) = f ′(zn) +
f ′′(zn)

2!
(ξn − zn) +

f ′′′(zn)
3!

(ξn − zn)2 + · · ·

From this we obtain
f ′′(zn)

2!
+
f ′′′(zn)

3!
(ξn − zn) + · · · = 0.

Taking limits we conclude f ′′(z0) = 0. But this contradicts that f ′′(z) 6= 0 for
any z ∈ D0. �

Since for an analytic function f monogenic at the point z we have (5), the
condition in Theorem 2 can be reformulated as follows:

(b) for any closed domain D0 ⊂ D \ S0 there exists ε > 0 such that

(0.8) Mz(f) ∩Mε(z) = ∅,
where z0 ∈ D0.

Note that the condition (b) (if D0 is a circle) with certain additional restrictions
is also sufficient for the analyticity of a nonlinear function.

Theorem 3. Let f : D → C be a continuous function in the domain D ⊂ C,
monogenic almost everywhere in D, and let H ⊂ D be an countable set.

If for any closed circle K ⊂ D there exists ε > 0 such that every z ∈ K \ H
satisfies (8), then f is a nonlinear function which is analytic in the domain D.

Proof. Assume the contrary; then there exists a perfect set P ⊂ D, at the points
where f is not analytic.

Let z0 ∈ P be an arbitrary point, K ⊂ D the circle with centre z0 of radius
r ≤ 1

2ρ(z, ∂D), Kε0 the concentric circle of radius ε0 ≤ min{ε, r2}, where ε is the
number in (8). (Note that (8) also holds for any ε0 with 0 < ε0 < ε).

For any fixed z ∈ Kε0 consider the function ϕz(h), h ∈ Qε0 . We have

ϕz(h+ t)− ϕz(h)
t

=
1
t

[
f(z + h+ t)− f(z)

h+ t
− f(z + h)− f(z)

h

]
=

=
1

th(h+ t)
{[f(z + h+ t)− f(z + h)]h− [f(z + h)− f(z)]t} =

=
f(z + h+ t)− f(z + h)

t(h+ t)
− f(z + h)− f(z)

h(h+ t)
.

This implies that each differential number ω(ϕz;h) of the function ϕz(h) at the
point h is determined by the equality

ω(ϕz;h) =
1
h
ω(f ; z + h)− 1

h
ϕz(h).

We show that 0 /∈ Mh(ϕz) for any h ∈ Qε0 \ H0, where H0 is an countable set.
Indeed, 0 ∈Mh(ϕz) implies that there exists h such that

ϕz(h) ∈Mz+h(f),
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where z + h ∈ K, or
f(z + h)− f(z)

h
∈Mz+h(f).

Putting z + h = z′ we have
f(z)− f(z′)

z − z′
∈Mz′(f),

where z, z′ ∈ K. However, this contradicts the condition of theorem 2.
If the function ϕz(h) has nonzero differential in a set everywhere dense in Qε0 ,

and 0 /∈ Mh(ϕz) for h ∈ Qε0 \ H0, analogously as in the proof of Theorem 1 we
claim that ϕz(h) (for any fixed z ∈ Kε0) realizes an inner mapping of the domain
Qε0 .

Let M be the set of points for which, in accordance with the conditions of
theorem 2, there exists the differential f ′(z) = ϕz(0), and R = max|h|=ε0 |ϕz(h)|
for any z ∈ D0.

Since the mapping ξ = ϕz(h) is inner in the circle K0 = {h | |h| < ε0}, we
assume |ϕz(h)| ≤ R for any h, |h| < ε0 and z ∈M .

Choose an arbitrary point z0 ∈ Kε0 \M . By the continuity of the function ϕz(h)
of the variable z (for any fixed h) we get

lim
z→z0z∈M

ϕz(h) = ϕz0(h).

It follows that |ϕz(h)| ≤ R for any h ∈ Qε0 and z ∈ Kε0 , i.e. the sets of monogenity
Mz(f) are bounded in the circle Kε0 . By Lemma 11 [2] we obtain that f is analytic
in the circle Kε0 , which contradicts P0 = P ∩Kε0 6= ∅.

The nonlinearity of f follows from (8), since for a linear function f(z) = cz + c0
we have

Mz(f) = Mε(z) = {c}
for any z ∈ C. �
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