```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
18 (2002), 57-61
www.emis.de/journals
```


CONDITIONS OF ANALYTICITY FOR FUNCTIONS OF ONE COMPLEX VARIABLE

T. ROZGONYI AND M. TAR

Abstract

In this paper certain necessary and sufficient conditions are considered for the analyticity of nonlinear functions of one complex variable in terms of the their monogenity set.

Let $f: D \rightarrow \mathbb{C}$ be a function, continuous over the domain $D \subset \mathbb{C}$, and let $z \in D$ be its any fixed point. Put

$$
\varphi_{z}(h)=\frac{f(z+h)-f(z)}{h}
$$

defined over the domain $Q_{\varepsilon}=\{h \in \mathbb{C}|0<|h|<\varepsilon\}$ with $\varepsilon=\varepsilon(z)$, where $\varepsilon(z)$ denotes the distance from z to the boundary of D.

Recall that for the set of monogenity (the set of differential numbers) $\mathfrak{M}_{z}(f)$ of f at the point z is given by Luzin's equality [1]

$$
\mathfrak{M}_{z}=\cap_{\varepsilon>0} \overline{\mathfrak{M}_{\varepsilon}(z)}
$$

where $\mathfrak{M}_{\varepsilon}(z)=\left\{\xi \in \mathbb{C} \mid \xi=\varphi_{z}(h), h \in Q_{\varepsilon}\right\}$.
The following assertion gives a sufficient condition for analyticity.
Theorem 1. Let $f: D \rightarrow \mathbb{C}$ be a function which is continuous on the domain D and monogenic in each everywhere dense subset E of D. If f satisfies the condition
(a) at any point $\xi \in \mathbb{C}$ there are at most a countable family of sets \mathfrak{M}_{z} containing ξ,
then f is a nonlinear analytic function over D.
Proof. Assume the contrary. Then there exists a perfect subset $P \subset D$, at the points of $P f$ is not analytic.

The condition (a) immediately implies that the set \mathfrak{M}_{z} is not the complete plane for all $z \in D$, with the possible exception of countable set $H \subset D$.

Let $\left\{\xi_{k}\right\}$ be the set of points of the plane \mathbb{C} with rational coordinates, and denote $P_{n, k}(n, k \in \mathbb{N})$ the subset of the points $z \in P \backslash H$ with

$$
\begin{equation*}
\left|\varphi_{z}(h)-\xi_{k}\right| \geq \frac{1}{n} \tag{0.1}
\end{equation*}
$$

for all h satisfying $0<|h|<\frac{1}{n}$ and $z+h \in D$.
As $\left\{\xi_{k}\right\}$ is an everywhere dense subset of the $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and \mathfrak{M}_{z} is closed in $\overline{\mathbb{C}}$, it is easy to see

$$
P \backslash H=\bigcup_{n, k} P_{n, k}
$$

[^0]Moreover, since f is continuous, all the sets $P_{n, k}$ are closed.
The perfect set P is of second category (in itself), hence there exist indices $n=n_{0}$ and $k=k_{0}$ such that $P_{n_{0}, k_{0}}$ is everywhere dense in some subset P_{0} of P. Since $P_{n_{0}, k_{0}}$ is closed, we have $P_{0}=P_{n_{0}, k_{0}}$ and it can be written in the form $P_{0}=P \cap G_{0}$, where $G_{0} \subset D$ is a domain. Consider the function $g(z)=f(z)-c z$, where $c=\xi_{k_{0}}$. By (1) for $z \in P_{0}$ and $0<|h|<\frac{1}{n_{0}}$ the function $g(z)$ satisfies

$$
\begin{equation*}
\left|\frac{g(z+h)-g(z)}{h}\right| \geq \frac{1}{n_{0}} \tag{0.2}
\end{equation*}
$$

If we put $z=z_{1}, z+h=z_{2}$ into (2), we obtain

$$
\begin{equation*}
\left|g\left(z_{2}\right)-g\left(z_{1}\right)\right| \geq \frac{1}{n_{0}}\left|z_{2}-z_{1}\right| \tag{0.3}
\end{equation*}
$$

for all $z_{2} \in K_{0}$ and $z_{1} \in K_{0} \cap P_{0}:=P_{1}$, where $K_{0} \subset G_{0}$ is an arbitrary circle of diameter $\frac{1}{n_{0}}$.

Therefore, the function $g(z)$ is single leafed on the perfect set P_{1} and analytical on the open set $K_{0} \backslash P_{1}$ (if it is nonempty). By Theorem 9 [2] there exists a domain $G_{1} \subset K_{0}$ on which the function $g(z)$ single leafed if $G_{1} \cap P_{1}=P_{2}$ is nonempty. Let us consider the inverse $z=g^{-1}(w)$ of the function $w=g(z)$ on the domain $G_{1}^{*}=g\left(G_{1}\right)$.

From (3) it follows that the function $g^{-1}(w)$ satisfies

$$
\begin{equation*}
\left|g^{-1}\left(w_{1}\right)-g^{-1}\left(w_{2}\right)\right| \leq n_{0}\left|w_{1}-w_{2}\right| \tag{0.4}
\end{equation*}
$$

for any $w_{1} \in P_{2}^{*}=g\left(P_{2}\right)$ and $w_{2} \in G_{1}^{*}$. According to (4) the set $\mathfrak{M}_{w}\left(g^{-1}\right)$ for $w \in P_{2}^{*}$ is bounded. By Theorem 2 [2] the function has a complete differential almost everywhere on P_{2}^{*}. Let us denote the corresponding subset of P_{2}^{*} by Q.

We have two cases to distinquish
Case 1. The set P_{2}^{*} is everywhere dense in a circle $K \subset G_{1}^{*}$. Since $P_{2} \subset P_{1}$, we infer that the function $g(z)$ is single leafed in the domain $G_{2}=g^{-1}(K)$.

We claim that the function $g^{-1}(w)$ is monogenic almost everywhere in K, i.e. in $Q \cap K=Q_{1}$.

Suppose the contrary, the function g^{-1} is not monogenic at a point $w_{0} \in Q_{1}$. Then $\mathfrak{M}_{w_{0}}\left(g^{-1}\right)$ is a complete circle ([2], p. 21). Put $E^{*}=g\left(E \cap G_{2}\right)$. Since the function $g(z)$ is continuous and single leafed in the domain G_{2} the set E^{*} is everywhere dense in the circle $K=g\left(G_{2}\right)$.

Write

$$
E_{a}^{*}=\left\{w \in E^{*} \mid\left[g^{-1}(w)\right]^{\prime}=a\right\}
$$

where $a \in S, S$ is a circle with boundary $\mathfrak{M}_{w_{0}}\left(g^{-1}\right)$. It is easy to see that $E^{*} \supset$ $\cup_{a} E_{a}^{*}$, therefore the sets E_{a}^{*} are disjoint. Since E^{*} is a countable set and S is not, there exists $a=a_{0}$ such that $E_{a_{0}}^{*}=\emptyset$, therefore $\left[g^{-1}(w)\right]^{\prime} \neq a_{0}$ for any $w \in E^{*}$.

Let us consider the function $\psi(w)=g^{-1}(w)-a_{0} w(w \in K)$. By our assumption $0 \notin \mathfrak{M}_{w}(\psi)$ for $w \in K \backslash R$, with a countable set R. It is easy to see that the function $\psi(w)$ is single leafed in an open set Δ everywhere which is dense in K. To see this it suffices to take

$$
M_{n}=\left\{w \in K| | \frac{\varphi(w+t)-\varphi(w)}{t}\left|\geq \frac{1}{n}, 0<|t|<\frac{1}{n}\right\}\right.
$$

and argue as in the proof of the inequality (3).
Since for any $w \in E^{*}$ there exists $\psi^{\prime}(w) \neq 0$, the mapping $z=\psi(w)$ preserves the orientation of each component $\Delta_{k}(k=1,2, \ldots)$ of the open set Δ.

Now we show that the function $z=\psi(w)$ realizes an inner mapping (in the sense of S. Stoylov) of the circle K.

Again, suppose the contrary, and let $\Delta \subset K(\Delta \neq K)$ be the maximal open subset of K on which the mapping $z=\psi(w)$ is inner.

Analogously, to our previous argument let us consider a subset L_{0} of the perfect set $L=K \backslash \Delta$ on which the function $\psi(w)$ is single leafed. Clearly, we may assume $L_{0}=K_{1} \cap L$, where $K_{1} \subset K$ is some circle. Since $\psi(w)$ is single leafed the set $\psi\left(L_{0}\right)$ is nowhere dense. Hence, by Theorem 8 [2], mapping $z=\psi(w)$ is inner in the circle K_{1}, which is a contradiction to the maximality of Δ.

Consequently, mapping $z=\psi(w)$ is inner in the circle K. It is well-known that an inner mapping either preserves or inverts the orientation at any point of the domain. As it is shown above, $z=\psi(w)$ preserves the orientation of the domains $\Delta_{k}(k=1,2, \ldots)$. On the other hand, at the point w_{0} it inverts the orientation, therefore, the circle

$$
\mathfrak{M}_{w_{0}}(\psi)=\left\{\omega \in \mathbb{C} \mid \omega=\psi_{w_{0}}+\psi_{\overline{w_{0}}} e^{-2 i \beta}, \beta \in[0,2 \pi]\right\}
$$

contains an inner point $\omega=0$. Hence the Jacobian mapping

$$
J\left(w_{0}\right)=\left|\psi_{w_{0}}\right|^{2}-\left|\psi_{\overline{w_{0}}}\right|^{2}
$$

is negative.
We have obtained a contradiction, so the function f is analytical over the domain D.

Case 2. Let P_{2}^{*} nowhere dense in the domain G_{1}^{*}. Then the function $\psi(w)$ is analytical on the open set $G_{1}^{*} \backslash P_{2}^{*}$ which is everywhere dense in the domain G_{1}^{*}, is single leafed on P_{2}^{*}. Hence, by Theorem 9 [2], function $z=\psi(w)$ realizes an inner mapping of the domain G_{1}^{*}. The remaining part of the statement can be proved analogously to Case 1.

The nonlinearity of f easily follows from the condition (a), because for a linear function $f(z)=c z+d$ we have $\mathfrak{M}_{z}(f)=\{c\}$ for any $z \in \mathbb{C}$.

Remark 1. We show that the condition (a) is also necessary for the analyticity of a nonlinear function $f: D \rightarrow \mathbb{C}$ defined on a domain $D \subset \mathbb{C}$.

Indeed, for an analytic function f and for $z \in D$ we have

$$
\begin{equation*}
\mathfrak{M}_{z}(f)=\left\{f^{\prime}(z)\right\} \tag{0.5}
\end{equation*}
$$

Assume that our assertion is not true. Then, by (5), there exist a $c \in \mathbb{C}$ and an uncountable set $M \subset D$ such that $f^{\prime}(z)=c$ for $z \in M$. It is easy to see that there exists a subdomain $\overline{D_{1}} \subset D$ such that $M_{1}=M \cap \overline{D_{1}}$ is an un-countable set. By the Theorem of uniqueness for analytic functions we get $f^{\prime}(z) \equiv c(z \in D)$. It follows that $f(z)=c z+c_{0}(z \in D)$, i.e., f is a linear function, which contradicts our assumption.

We point out another property of analytic functions in the next statement.
Theorem 2. Let $w=f(z)$ be a nonlinear function which is analytic in the domain D and let $S_{0} \subset D$ be a set of points $z \in D$ with $f^{\prime \prime}(z)=0$. Then for any closed domain $\overline{D_{0}} \subset D \backslash S_{0}$ there exists $\varepsilon>0$ such that

$$
\begin{equation*}
f^{\prime}(z) \notin \mathfrak{M}_{\varepsilon}(z), \tag{0.6}
\end{equation*}
$$

where $z_{0} \in \overline{D_{0}}$.
Proof. First note that each subdomain $\overline{D_{0}} \subset D$ contains at most a finite set of points of S_{0}. In the opposite case by the Theorem of uniqueness for analytic functions we have $f^{\prime \prime}(z) \equiv 0$ for any $z \in D$, i.e., f is linear.

Suppose that the assertion of theorem 2 is false. Then either in some subdomain $\overline{D_{0}} \subset D \backslash S_{0}$ for any $n \in \mathbb{N}\left(n \geq n_{0}\right)$ there exists a point $z_{n} \in \overline{D_{0}}$ such that
$f^{\prime}\left(z_{n}\right) \in \mathfrak{M}_{\frac{1}{n}}\left(z_{n}\right)$, or there exists $\xi_{n} \in \mathbb{C}$ such that

$$
\begin{equation*}
f^{\prime}\left(z_{n}\right)=\frac{f\left(\xi_{n}\right)-f\left(z_{n}\right)}{\xi_{n}-z_{n}} \tag{0.7}
\end{equation*}
$$

and $0<\left|\xi_{n}-z_{n}\right|<\frac{1}{n}$.
We shall assume that the sequence $\left\{z_{n}\right\}$ converges to a point $z_{0} \in \overline{D_{0}}$. (Otherwise a convergent subsequence of $\left\{z_{n}\right\}$ can be considered).

Clearly, $\xi_{n} \rightarrow z_{0}(n \rightarrow \infty)$.
By decomposing the function f into its Taylor series in the neighbourhoods of the points $z_{n},(7)$ can be rewritten as

$$
f^{\prime}\left(z_{n}\right)=f^{\prime}\left(z_{n}\right)+\frac{f^{\prime \prime}\left(z_{n}\right)}{2!}\left(\xi_{n}-z_{n}\right)+\frac{f^{\prime \prime \prime}\left(z_{n}\right)}{3!}\left(\xi_{n}-z_{n}\right)^{2}+\cdots
$$

From this we obtain

$$
\frac{f^{\prime \prime}\left(z_{n}\right)}{2!}+\frac{f^{\prime \prime \prime}\left(z_{n}\right)}{3!}\left(\xi_{n}-z_{n}\right)+\cdots=0
$$

Taking limits we conclude $f^{\prime \prime}\left(z_{0}\right)=0$. But this contradicts that $f^{\prime \prime}(z) \neq 0$ for any $z \in \overline{D_{0}}$.

Since for an analytic function f monogenic at the point z we have (5), the condition in Theorem 2 can be reformulated as follows:
(b) for any closed domain $\overline{D_{0}} \subset D \backslash S_{0}$ there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\mathfrak{M}_{z}(f) \cap \mathfrak{M}_{\varepsilon}(z)=\emptyset \tag{0.8}
\end{equation*}
$$

where $z_{0} \in \overline{D_{0}}$.
Note that the condition (b) (if $\overline{D_{0}}$ is a circle) with certain additional restrictions is also sufficient for the analyticity of a nonlinear function.
Theorem 3. Let $f: D \rightarrow \mathbb{C}$ be a continuous function in the domain $D \subset \mathbb{C}$, monogenic almost everywhere in D, and let $H \subset D$ be an countable set.

If for any closed circle $\bar{K} \subset D$ there exists $\varepsilon>0$ such that every $z \in \bar{K} \backslash H$ satisfies (8), then f is a nonlinear function which is analytic in the domain D.
Proof. Assume the contrary; then there exists a perfect set $P \subset D$, at the points where f is not analytic.

Let $z_{0} \in P$ be an arbitrary point, $K \subset D$ the circle with centre z_{0} of radius $r \leq \frac{1}{2} \rho(z, \partial D), K_{\varepsilon_{0}}$ the concentric circle of radius $\varepsilon_{0} \leq \min \left\{\varepsilon, \frac{r}{2}\right\}$, where ε is the number in (8). (Note that (8) also holds for any ε_{0} with $0<\varepsilon_{0}<\varepsilon$).

For any fixed $z \in \overline{K_{\varepsilon_{0}}}$ consider the function $\varphi_{z}(h), h \in Q_{\varepsilon_{0}}$. We have

$$
\begin{gathered}
\frac{\varphi_{z}(h+t)-\varphi_{z}(h)}{t}=\frac{1}{t}\left[\frac{f(z+h+t)-f(z)}{h+t}-\frac{f(z+h)-f(z)}{h}\right]= \\
=\frac{1}{t h(h+t)}\{[f(z+h+t)-f(z+h)] h-[f(z+h)-f(z)] t\}= \\
=\frac{f(z+h+t)-f(z+h)}{t(h+t)}-\frac{f(z+h)-f(z)}{h(h+t)}
\end{gathered}
$$

This implies that each differential number $\omega\left(\varphi_{z} ; h\right)$ of the function $\varphi_{z}(h)$ at the point h is determined by the equality

$$
\omega\left(\varphi_{z} ; h\right)=\frac{1}{h} \omega(f ; z+h)-\frac{1}{h} \varphi_{z}(h) .
$$

We show that $0 \notin \mathfrak{M}_{h}\left(\varphi_{z}\right)$ for any $h \in Q_{\varepsilon_{0}} \backslash H_{0}$, where H_{0} is an countable set. Indeed, $0 \in \mathfrak{M}_{h}\left(\varphi_{z}\right)$ implies that there exists h such that

$$
\varphi_{z}(h) \in \mathfrak{M}_{z+h}(f),
$$

where $z+h \in K$, or

$$
\frac{f(z+h)-f(z)}{h} \in \mathfrak{M}_{z+h}(f) .
$$

Putting $z+h=z^{\prime}$ we have

$$
\frac{f(z)-f\left(z^{\prime}\right)}{z-z^{\prime}} \in \mathfrak{M}_{z^{\prime}}(f)
$$

where $z, z^{\prime} \in K$. However, this contradicts the condition of theorem 2.
If the function $\varphi_{z}(h)$ has nonzero differential in a set everywhere dense in $Q_{\varepsilon_{0}}$, and $0 \notin \mathfrak{M}_{h}\left(\varphi_{z}\right)$ for $h \in Q_{\varepsilon_{0}} \backslash H_{0}$, analogously as in the proof of Theorem 1 we claim that $\varphi_{z}(h)$ (for any fixed $z \in \overline{K_{\varepsilon_{0}}}$) realizes an inner mapping of the domain $Q_{\varepsilon_{0}}$.

Let M be the set of points for which, in accordance with the conditions of theorem 2, there exists the differential $f^{\prime}(z)=\varphi_{z}(0)$, and $R=\max _{|h|=\varepsilon_{0}}\left|\varphi_{z}(h)\right|$ for any $z \in \overline{D_{0}}$.

Since the mapping $\xi=\varphi_{z}(h)$ is inner in the circle $K_{0}=\left\{h| | h \mid<\varepsilon_{0}\right\}$, we assume $\left|\varphi_{z}(h)\right| \leq R$ for any $h,|h|<\varepsilon_{0}$ and $z \in M$.

Choose an arbitrary point $z_{0} \in K_{\varepsilon_{0}} \backslash M$. By the continuity of the function $\varphi_{z}(h)$ of the variable z (for any fixed h) we get

$$
\lim _{z \rightarrow z_{0} z \in M} \varphi_{z}(h)=\varphi_{z_{0}}(h)
$$

It follows that $\left|\varphi_{z}(h)\right| \leq R$ for any $h \in Q_{\varepsilon_{0}}$ and $z \in K_{\varepsilon_{0}}$, i.e. the sets of monogenity $\mathfrak{M}_{z}(f)$ are bounded in the circle $K_{\varepsilon_{0}}$. By Lemma 11 [2] we obtain that f is analytic in the circle $K_{\varepsilon_{0}}$, which contradicts $P_{0}=P \cap K_{\varepsilon_{0}} \neq \emptyset$.

The nonlinearity of f follows from (8), since for a linear function $f(z)=c z+c_{0}$ we have

$$
\mathfrak{M}_{z}(f)=\mathfrak{M}_{\varepsilon}(z)=\{c\}
$$

for any $z \in \mathbb{C}$.

References

[1] V.S. Fedorov. The works of N.N. Luzin on the theory of functions of complex variable. Uspehi-Matem.-Nauk (N.S.), 2(48):7-16, 1952.
[2] Yu.Yu. Trokhimchuk. Continuous mappings and conditions of monogeneity. In Israel Program for Scientific Translations. Daniel Davey \& Co., Inc., New York, Jerusalem, 1964.

Received December 01, 2000.
T. RoZGONYI

Institute of Mathematics and Computer Sience,
College of Nyregyhza,
H4401 Nyregyhza, Pf. 166
E-mail address: rozgonyi@nyf.hu
M. TAR

Department of Mathematics,
Uzhgorod State University,
294000, UzHgorod, Ukraina

[^0]: 2000 Mathematics Subject Classification. 30A05.
 Key words and phrases. Functions of one complex variable, monogenity set.
 Research supported by the Hungarian National Foundation for Scientific Research No. T 025029 .

