```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
18 (2002), 63-65
www.emis.de/journals
```


FEKETE-SZEGÖ FUNCTIONAL FOR NON-BAZILEVIČ FUNCTIONS

NIKOLA TUNESKI AND MASLINA DARUS

Abstract

Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ be an analytic function in the unit disk \mathcal{U} and let the class of non-Bazilevič functions, for $0<\lambda<1$, be described with $\operatorname{Re}\left\{f^{\prime}(z)(z / f(z))^{1+\lambda}\right\}>0, z \in \mathcal{U}$. In this paper we obtain sharp upper bound of $\left|a_{2}\right|$ and of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the class of non-Bazilevič functions and for some of its subclasses.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathcal{U}=\{z:|z|<1\}$ normalized such that $f(0)=f^{\prime}(0)-1=0$, i.e., of type $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$.

A function $f \in \mathcal{A}$ is said to be of Bazilevič type if for a starlike function $g(g \in \mathcal{A}$ is starlike if and only if $\left.\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}>0, z \in \mathcal{U}\right)$ we have

$$
\operatorname{Re}\left\{f^{\prime}(z)(f(z) / z)^{\alpha+i \gamma-1}(g(z) / z)^{-\alpha}\right\}>0
$$

$z \in \mathcal{U}$ (see more in [1]). This class and its subclasses were widely studied in the past decades. Specially, in [4] sharp upper bound of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ is obtained for all real μ when $\gamma=0$. That result was partially extended in [2] to a wider subclass satisfying

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f^{1-\alpha}(z) g^{\alpha}(z)}\right\}>\beta, \quad z \in \mathcal{U}
$$

where $\alpha>0$ and $0 \leq \beta<1$.
In [5], Obradović introduced a class of functions $f \in \mathcal{A}$ that for $0<\lambda<1$ is defined by

$$
\operatorname{Re}\left\{f^{\prime}(z)(z / f(z))^{1+\lambda}\right\}>0, \quad z \in \mathcal{U}
$$

Recently, in his talk at the Conference 'Computational Methods and Function Theory 2001', he called this functions to be of non-Bazilevič type. By now, this class was studied in a direction of finding necessary conditions over λ that embeds this class into the class of univalent function or its subclasses, which is still an open problem. Here we will find sharp upper bound of $\left|a_{2}\right|$ and of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the class of non-Bazilevič functions and for some its subclasses. In that purpose we will need the following lemma.
Lemma 1. ([6], p.166, formula (10)) ([3], p.41) Let $p \in \mathcal{P}$, that is, p be analytic in \mathcal{U}, be given by $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ and $\operatorname{Re} p(z)>0$ for $z \in \mathcal{U}$. Then

$$
\left|p_{2}-p_{1}^{2} / 2\right| \leq 2-\left|p_{1}\right|^{2} / 2
$$

and $\left|p_{n}\right| \leq 2$ for all $n \in \mathbb{N}$.

2. Main results

Theorem 1. Let $f \in \mathcal{A}, 0<\lambda<1$ and $0 \leq \alpha<1$. If

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)(z / f(z))^{1+\lambda}\right\}>\alpha, \quad z \in \mathcal{U} \tag{1}
\end{equation*}
$$

then $\left|a_{2}\right| \leq 2(1-\alpha) /(1-\lambda)$ and for all $\mu \in \mathbb{C}$ the following bound is sharp

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{2-\lambda} \max \left\{1,\left|1+\frac{2(1+\lambda-\mu)(2-\lambda)(1-\alpha)}{(1-\lambda)^{2}}\right|\right\} .
$$

Proof. Condition (1) is equivalent to

$$
f^{\prime}(z)=(f(z) / z)^{1+\lambda}[(1-\alpha) p(z)+\alpha], \quad z \in \mathcal{U}
$$

for some $p \in \mathcal{P}$. Equating coefficients we obtain $a_{2}=p_{1}(1-\alpha) /(1-\lambda)$,

$$
a_{3}=\frac{1-\alpha}{2-\lambda} p_{2}+\frac{(1-\alpha)^{2}(1+\lambda)}{2(1-\lambda)^{2}} p_{1}^{2}
$$

and further

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{1-\alpha}{2-\lambda}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+ \\
& +\frac{(1-\alpha)(1-\lambda)^{2}+(1-\alpha)^{2}(1+\lambda-2 \mu)(2-\lambda)}{2(2-\lambda)(1-\lambda)^{2}} p_{1}^{2}
\end{aligned}
$$

Now, using Lemma 1 we receive $\left|a_{3}-\mu a_{2}^{2}\right| \leq H(x)=A+A B x^{2} / 4$ where $x=$ $\left|p_{1}\right| \leq 2, A=2(1-\alpha) /(2-\lambda)>0, B=\left(|C|-(1-\lambda)^{2}\right) /(1-\lambda)^{2}$ and $C=$ $(1-\lambda)^{2}+(1-\alpha)(1+\lambda-2 \mu)(2-\lambda)$. So, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}H(0)=A, & |C| \leq(1-\lambda)^{2} \\ H(2)=A|C| /(1-\lambda)^{2}, & |C| \geq(1-\lambda)^{2}\end{cases}
$$

Equality is attained for functions given by

$$
f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\lambda}=\frac{1+z^{2}(1-2 \alpha)}{1-z^{2}}
$$

and

$$
f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\lambda}=\frac{1+z(1-2 \alpha)}{1-z}
$$

respectively.
For $\alpha=0$ we have the following corollary.
Corollary 1. Let $f \in \mathcal{A}$ and $0<\lambda<1$. If

$$
\operatorname{Re}\left\{f^{\prime}(z)(z / f(z))^{1+\lambda}\right\}>0, \quad z \in \mathcal{U}
$$

then $\left|a_{2}\right| \leq 2 /(1-\lambda)$ and for all $\mu \in \mathbb{C}$ the following bound is sharp

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2}{2-\lambda} \max \left\{1,\left|1+\frac{(1+\lambda-2 \mu)(2-\lambda)}{(1-\lambda)^{2}}\right|\right\} .
$$

Now we will consider one subclass of the class of non-Bazilevič function.
Theorem 2. Let $f \in \mathcal{A}, 0<\lambda<1$ and $0<k \leq 1$. If

$$
\begin{equation*}
\left|f^{\prime}(z)(z / f(z))^{1+\lambda}-1\right|<k, \quad z \in \mathcal{U} \tag{2}
\end{equation*}
$$

then $\left|a_{2}\right| \leq k /(1-\lambda)$ and for all $\mu \in \mathbb{C}$ the following bound is sharp

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{k}{(2-\lambda)} \max \left\{1, \frac{k(2-\lambda)}{(1-\lambda)^{2}}\left|\frac{1+\lambda}{2}-\mu\right|\right\} .
$$

Proof. Similarly as in the proof of Theorem 1, condition (2) implies that there exists a function $p \in \mathcal{P}$ such that for all $z \in \mathcal{U}$

$$
f^{\prime}(z)=(f(z) / z)^{1+\lambda}(2 k /(1+p(z))+1-k) .
$$

Equating the coefficients we obtain $a_{2}=-k p_{1} /(2(1-\lambda))$,

$$
a_{3}=\frac{k^{2}}{8} \frac{1+\lambda}{(1-\lambda)^{2}} p_{1}^{2}-\frac{k}{2(2-\lambda)}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)
$$

and

$$
a_{3}-\mu a_{2}^{2}=-\frac{k}{2(2-\lambda)}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{k^{2} p_{1}^{2}}{4(1-\lambda)^{2}}\left(\frac{1+\lambda}{2}-\mu\right) .
$$

So, $\left|a_{3}-\mu a_{2}^{2}\right| \leq H(x)=A+B x^{2} / 4$ where $x=\left|p_{1}\right| \leq 2, A=k /(2-\lambda)>0$, $B=k^{2}|C| /(1-\lambda)^{2}-k /(2-\lambda)$ and $C=(1+\lambda) / 2-\mu$. Therefore

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
H(0)=A, & |C| \leq(1-\lambda)^{2} /(k(2-\lambda)) \\
H(2)=A k(2-\lambda)|C| /(1-\lambda)^{2}, & |C| \geq(1-\lambda)^{2} /(k(2-\lambda))
\end{array} .\right.
$$

Here equality is attained for the functions given by $f^{\prime}(z)(z / f(z))^{1+\lambda}=1-k z^{2}$ and $f^{\prime}(z)(z / f(z))^{1+\lambda}=1-k z$, respectively.

For $k=1$ we receive the following corollary.
Corollary 2. Let $f \in \mathcal{A}$ and $0<\lambda<1$. If

$$
\left|f^{\prime}(z)(z / f(z))^{1+\lambda}-1\right|<1, \quad z \in \mathcal{U}
$$

then $\left|a_{2}\right| \leq 1 /(1-\lambda)$ and for all $\mu \in \mathbb{C}$ the following bound is sharp

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{(2-\lambda)^{2}} \max \left\{1, \frac{2-\lambda}{(1-\lambda)^{2}}\left|\frac{1+\lambda}{2}-\mu\right|\right\} .
$$

References

[1] I.E. Bazilevič. On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb., 37:471-476, 1955. Russian.
[2] M. Darus. Coeffitient problem for Bazilevič functions. J. Inst. Math. Comput. Sci. Math. Ser., 2, 2000.
[3] P.L. Duren. Univalent functions. Springer-Verlag, 1983.
[4] P.J. Eenigenburg and E.M. Silvia. A coefitient inequality for Bazilevič functions. Annales Univ. Mariae Curie-Sklodowska, 27:5-12, 1973.
[5] M. Obradović. A class of univalent functions. Hokkaido Math. J., 2:329-335, 1988.
[6] C. Pommerenke. Univalent Functions. Studia Mathematica Mathematische Lehrbucher. Vandenhoeck \& Ruprecht, 1975. With a chapter on quadratic differentials by Gerd Jensen.

Received March 25, 2002.

Faculty of Mechanical Engineering, Karpoš II b.b.,
1000 Skopje, Republic of Macedonia
E-mail address: nikolat@ereb1.mf.ukim.edu.mk
School of Mathematical Sciences, Faculty of Sciencs and Technology, University Kebangsaan Malaysia, Bangi 43600 Selangor, Malaysia
E-mail address: maslina@pkrisc.cc.ukm.my

