```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
19 (2003), 227-231
www.emis.de/journals
```


($n-1$)-DIMENSIONAL GENERALIZED NULL SCROLLS IN R_{1}^{n}

HANDAN BALGETIR AND MAHMUT ERGÜT

Abstract

In this paper, we obtained relationships between the principal curvatures of an $(n-1)$-dimensional generalized null scroll M which is a ruled hypersurface in R_{1}^{n}. We calculated the normal curvature of M and a characterized the curvature lines.

1. Preliminaries

Let M be an m-dimensional Lorentzian submanifold of R_{1}^{n}. Let $\bar{\nabla}$ and ∇ denote the Levi-Civita connections of R_{1}^{n} and M, respectively. For any vector fields X, Y tangent to M we have the Gauss formula

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.1}
\end{equation*}
$$

where h denotes the second fundamental form of M in R_{1}^{n}. Our second fundamental equation is the Weingarten formula

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{1.2}
\end{equation*}
$$

where ξ is a normal vector field to M, A_{ξ} is the Weingarten map with respect to ξ and D is the normal connection of M [4]. It is also well-known that h and A are related by

$$
\begin{equation*}
<h(X, Y), \xi>=<A_{\xi} X, Y> \tag{1.3}
\end{equation*}
$$

Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-m}\right\}$ be a local orthonormal frame field for $\chi^{\perp}(M)$. Then the mean curvature vector field H of M in R_{1}^{n} is given by [4]

$$
\begin{equation*}
H=\sum_{j=1}^{n-m} \frac{\operatorname{trace} A_{\xi_{j}}}{m} \xi_{j} . \tag{1.4}
\end{equation*}
$$

Let ξ be a unit normal vector field to M. The Lipschitz-Killing curvature in the direction ξ at a point $p \in M$ is defined by

$$
\begin{equation*}
G(p, \xi)=\operatorname{det} A_{\xi}(p) \tag{1.5}
\end{equation*}
$$

while the Gauss curvature at p is

$$
\begin{equation*}
G(p):=\sum_{j=1}^{n-m} G\left(p, \xi_{j}\right) \tag{1.6}
\end{equation*}
$$

If $G(p)=0$ for all $p \in M$, we say that M is developable [5].

[^0]Let M be a n-dimensional Lorentzian manifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $T_{p}(M), p \in M$. The scalar curvature of M is defined by

$$
\begin{equation*}
\mathbf{r}=\sum_{i=1}^{n} \varepsilon_{i} \operatorname{Ric}\left(e_{i}, e_{i}\right) \tag{1.7}
\end{equation*}
$$

where

$$
\varepsilon_{i}=<e_{i}, e_{i}>, \quad \varepsilon_{i}=\left\{\begin{aligned}
-1, & \text { if } e_{i} \text { is timelike } \\
1, & \text { if } e_{i} \text { is spacelike }
\end{aligned}\right.
$$

and Ric is the Ricci curvature tensor field of M [4].
Now, suppose that M is a hypersurfaces in R_{1}^{n} and let A be the shape tensor of M.

The normal curvature of M along a unit tangent direction X_{p} in $T_{p} M$ is defined by

$$
\begin{equation*}
k_{n}\left(X_{p}\right)=<A_{p}\left(X_{p}\right), X_{p}> \tag{1.8}
\end{equation*}
$$

Let α be a null curve on the hypersurfaces M. According to [4], if the equality

$$
\begin{equation*}
<A(\alpha(t)), \alpha(t)>=0 \tag{1.9}
\end{equation*}
$$

is satisfied, then α is said to be an asymptotic curve on M. The null curve α is called a line of curvature on M if

$$
\begin{equation*}
A o \alpha^{\prime}=k . \alpha^{\prime} \quad\left(k \in \mathbf{R}^{*}\right) \tag{1.10}
\end{equation*}
$$

2. $(n-1)$-DIMENSIONAL GENERALIZED NULL SCROLLS IN R_{1}^{n} AND THEIR CURVATURES

We recall the notion of a generalized null scroll in R_{1}^{n} [1]. Let M be an $(n-1)$ dimensional generalized null scroll in R_{1}^{n} and suppose that the base null curve α is an pseudo-orthogonal trajectory of the generating space of M. Then we may parametrize M as

$$
\begin{equation*}
\varphi\left(t, u_{0}, u_{1}, \ldots, u_{n-3}\right)=\alpha(t)+u_{0} Y(t)+\sum_{i=1}^{n-3} u_{i} Z_{i}(t) \tag{2.1}
\end{equation*}
$$

where $\left\{Y(t), Z_{1}(t), \ldots, Z_{n-3}(t)\right\}$ is the null basis of the generating space and

$$
\left\{X(t), Y(t), Z_{1}(t), \ldots, Z_{n-3}(t)\right\}
$$

with $X=\varphi_{*}\left(\frac{\partial}{\partial t}\right)$ is pseudo-orthonormal basis of $T_{\varphi(t)} M$. We recall that a basis $\left\{X, Y, Z_{1}, \ldots, Z_{n-2}\right\}$ of R_{1}^{n} is said to be pseudo-orthonormal if the following conditions are fulfilled [3]:

$$
\begin{aligned}
& <\quad X, X>=<Y, Y>=0 ; \quad<X, Y>=-1 \\
& <\quad X, Z_{i}>=<Y, Z_{i}>=0 ; \quad \text { for } 1 \leq i \leq n-2 \\
& <\quad Z_{i}, Z_{j}>=\delta_{i j}, \quad \text { for } 1 \leq i \leq n-2
\end{aligned}
$$

The matrix of the shape operator $A_{\varphi(t)}$ with respect to this basis is of the form

$$
M\left(A_{\varphi(t)}\right)=-\left[\begin{array}{cccccc}
b_{10} & b_{00} & c_{01} & c_{02} & \cdots & c_{0(n-3)} \tag{2.2}\\
0 & b_{10} & 0 & 0 & \cdots & 0 \\
0 & b_{11} & 0 & 0 & \cdots & 0 \\
0 & b_{12} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & b_{1(n-3)} & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Thus, the characteristic equation of A is
$\operatorname{det}\left(A-\lambda I_{n-1}\right)=\operatorname{det}\left[\begin{array}{cccccc}-b_{10}-\lambda & -b_{00} & -c_{01} & -c_{02} & \cdots & -c_{0(n-3)} \\ 0 & -b_{10}-\lambda & 0 & 0 & \cdots & 0 \\ 0 & -b_{11} & -\lambda & 0 & \cdots & 0 \\ 0 & -b_{12} & 0 & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -b_{1(n-3)} & 0 & 0 & \cdots & -\lambda\end{array}\right]=0$,
which leads to the relation

$$
\begin{equation*}
\left(b_{10}+\lambda\right)^{2}(-1)^{n-3} \lambda^{n-3}=0 \tag{2.3}
\end{equation*}
$$

Since from equation (2.2) $\operatorname{rank} A=(n-3)$, the eigenvalues of A are

$$
\begin{equation*}
\lambda_{3}=\lambda_{4}=\cdots=\lambda_{n-1}=0 \tag{2.4}
\end{equation*}
$$

hence we obtain

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=-b_{10} \tag{2.5}
\end{equation*}
$$

and

$$
\lambda_{1}+\lambda_{2}=2 \lambda_{1}=2 \lambda_{2}=-2 b_{10},
$$

therefore

$$
\begin{equation*}
\operatorname{trace} A=-2 b_{10} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
H=-\frac{2}{n-1} b_{10} \tag{2.7}
\end{equation*}
$$

If M is a minimal hypersurface, then $H=0$ and we get $b_{10}=0$, i.e., $\lambda_{1}=\lambda_{2}=0$.
Thus we have the following
Corollary 2.1. If an $(n-1)$-dimensional generalized null scroll M is minimal, then the principal curvatures of M vanish at any point.

From the equation (2.5) we infer
Corollary 2.2. For an $(n-1)$-dimensional generalized null scroll, the principal curvatures are equal.

Theorem 2.1. Let M be an $(n-1)$-dimensional generalized null scroll. Then the scalar curvature of M is

$$
r=-2\left\{\sum_{i=1}^{n-3}\left(b_{1 i}\right)^{2}+\lambda^{2}\right\}
$$

where $\lambda_{1}=\lambda_{2}=\lambda$.
Proof. If we take $j=1$ in formula (4.16) of [1] we obtain

$$
r=-2 \sum_{i=1}^{n-3}\left(b_{1 i}\right)^{2}-2\left(b_{10}\right)^{2} .
$$

By equation (2.5), we have

$$
r=-2 \sum_{i=1}^{n-3}\left(b_{1 i}\right)^{2}-2 \lambda_{1}^{2}
$$

or

$$
r=-2 \sum_{i=1}^{n-3}\left(b_{1 i}\right)^{2}-2 \lambda_{2}^{2}
$$

Also, since $\lambda_{1}=\lambda_{2}$, we find

$$
r=-2\left\{\sum_{i=1}^{n-3}\left(b_{1 i}\right)^{2}+\lambda^{2}\right\}
$$

as was to be shown.
For $n \geq 4$, $\operatorname{det} A=0$ by (2.2), so we have the following
Corollary 2.3. The Gauss curvature of an $(n-1)$-dimensional generalized null scroll is identically zero if $n \geq 4$.

Corollary 2.4. The Lipschitz-Killing curvature of an ($n-1$)-dimensional generalized null scroll in the normal direction is equal to the Gauss curvature.
Proof. If we take $j=1$ in formula (4.11) of [1], the proof is clear.
Now let $V_{p} \in T_{p} M$ and suppose that $V_{p}=\left(v, v_{0}, v_{1}, \ldots, v_{n-3}\right)$. From equation (2.2) we obtain

$$
\begin{gathered}
A\left(V_{p}\right)=-\left[\begin{array}{cccccc}
b_{10} & b_{00} & c_{01} & c_{02} & \cdots & c_{0(n-3)} \\
0 & b_{10} & 0 & 0 & \cdots & 0 \\
0 & b_{11} & 0 & 0 & \cdots & 0 \\
0 & b_{12} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & b_{1(n-3)} & 0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
v \\
v_{0} \\
v_{1} \\
v_{2} \\
\vdots \\
v_{n-3}
\end{array}\right] \\
=\left(-b_{10} v-b_{00} v_{0}-\sum_{i=1}^{n-3} c_{0 i} v_{i},-b_{10} v_{0},-b_{11} v_{0} \ldots,-b_{1(n-3)} v_{0}\right)
\end{gathered}
$$

while by equation (1.8) we get

$$
k_{n}\left(V_{p}\right)=\left(-\frac{n-1}{2} H v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}\right) v-\left(\sum_{i=0}^{n-3} b_{1 i} v_{i}\right) v_{0}
$$

These relations lead to the following
Corollary 2.5. Let M be an $(n-1)$-dimensional generalized null scroll. Then a direction V_{p}, whose first and second components are zero, is an asymptotic direction in M.

Theorem 2.2. Let M be an $(n-1)$-dimensional generalized null scroll. Then a direction $V_{p}=\left(v, v_{0}, v_{1}, \ldots, v_{n-3}\right)$ of M is principal curvature direction for M at p if and only if

$$
\begin{equation*}
-\frac{b_{1 j} v_{0}}{v_{j}}+\frac{b_{10} v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}}{v}=0, \quad j=0,1, \ldots, n-3, \tag{2.8}
\end{equation*}
$$

where $b_{00}, b_{1 j}, c_{0 i}$, are elements of the matrix of A.
Proof. If V_{p} is principal curvature direction for M at p, then from equation (1.10) we have
$\left(-b_{10} v-b_{00} v_{0}-\sum_{i=1}^{n-3} c_{0 i} v_{i},-b_{10} v_{0},-b_{11} v_{0}, \ldots,-b_{1(n-3)} v_{0}\right)=k\left(v, v_{0}, v_{1}, \ldots, v_{n-3}\right)$.
Thus we obtain

$$
\begin{equation*}
k=-\frac{b_{10} v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}}{v} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
k=-\frac{b_{1 j} v_{0}}{v_{j}}, \quad j=0,1, \ldots, n-3 \tag{2.10}
\end{equation*}
$$

From equations (2.9) and (2.10), we get

$$
\begin{equation*}
-\frac{b_{1 j} v_{0}}{v_{j}}+\frac{b_{10} v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}}{v}=0, \quad j=0,1, \ldots, n-3 . \tag{2.11}
\end{equation*}
$$

Conversely, let us assume that equation (2.8) is satisfied. Then we have

$$
\begin{equation*}
v_{j}=\frac{b_{1 j} v_{0} v}{b_{10} v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}}, \quad j=0,1, \ldots, n-3 ; \tag{2.12}
\end{equation*}
$$

and

$$
A\left(V_{p}\right)=-\frac{b_{10} v+b_{00} v_{0}+\sum_{i=1}^{n-3} c_{0 i} v_{i}}{v} V_{p}
$$

which concludes the proof.
Corollary 2.6. A curve β in an $(n-1)$-dimensional generalized null scroll M is a line of curvature if and only if it satisfies the following system of differential equations:
(2.13) $-b_{1 j} \frac{d \beta_{0}}{d t} \frac{d \beta_{j}}{d t}+\frac{d \beta_{j}}{d t}\left(b_{10} \frac{d \beta}{d t}+b_{00} \frac{d \beta_{0}}{d t}+\sum_{i=1}^{n-3} c_{0 i} \frac{d \beta_{i}}{d t}\right)=0, \quad j=0,1, \ldots, n-3$.

Proof. This is clear by putting $v=\frac{d \beta}{d t}, v_{k}=\frac{d \beta_{k}}{d t}, \quad k=0,1, \ldots, n-3$, in Theorem 2.2.

References

[1] H. Balgetir. Generalized null scrolls in the Lorentzian space. PhD thesis, Firat University, 2002.
[2] M. Bektaş. On the curvatures of $(r+1)$-dimensional generalized time-like ruled surface. Acta Mathematica Academiae Paedagogicae Nyíregyháza, 19(1):83-88, 2003.
[3] K.L. Duggal and A. Bejancu. Lightlike Submanifolds of Semi-Riemannian Manifolds and Its Applications. Kluwer, 1996.
[4] B. O'Neill. Semi-Riemannian Geometry. Academic Press, 1983.
[5] C. Thas. Properties of ruled surfaces in the euclidean space e^{n}. Academia Sinica, 6(1):133-142, 1978.

Received December 18, 2002; February 05, 2003, revised.

Department of Mathematics,
Firat University,
23119 Elaziğ
Turkey
E-mail address: hbalgetir@firat.edu.tr
E-mail address: mergut@firat.edu.tr

[^0]: 2000 Mathematics Subject Classification. 53B30.
 Key words and phrases. Null scroll, null curve.

