
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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SOME INEQUALITIES FOR RICCI CURVATURE OF CERTAIN

SUBMANIFOLDS IN SASAKIAN SPACE FORMS

DRAGOS CIOROBOIU

Abstract. In the present paper, we obtain sharp inequalities between the
Ricci curvature and the squared mean curvature for slant,semi-slant and bi-
slant submanifolds in Sasakian space forms. Also, estimates of the scalar
curvature and the k-Ricci curvature respectively, in terms of the squared mean
curvature, are proved.

1. Preliminaries

A (2m + 1)-dimensional Riemannian manifold (M̃, g) is said to be a Sasakian

manifold if it admits an endomorphism φ of its tangent bundle T M̃ , a vector field
ξ and a 1-form η, satisfying:











φ2 = −Id + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xφ)Y = −g(X, Y )ξ + η(Y )X, ∇̃Xξ = φX,

for any vector fields X, Y on TM̃ , where ∇̃ denotes the Riemannian connection
with respect to g.

A plane section π in TpM̃ is called a φ-section if it is spanned by X and φX ,
where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a
φ-section is called a φ-sectional curvature. A Sasakian manifold with constant φ-
sectional curvature c is said to be a Sasakian space form and is denoted by M̃(c).

The curvature tensor of M̃(c) of a Sasakian space form M̃(c) is given by [1]

(1.1)

R̃(X, Y )Z =
c + 3

4
{g(Y, Z)X − g(X, Z)Y }+

+
c − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ+

+g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ},
for any tangent vector fields X, Y, Z on M̃(c).

As examples of Sasakian space forms we mention R
2m+1 and S2m+1, with stan-

dard Sasakian structures (see [1]).
In [9], A. Lotta has introduced the following notion of slant immersion in almost

contact metric manifolds.

Definition. We call a differentiable distribution D on M a slant distribution if for
each x ∈ M and each nonzero vector X ∈ Dx, the angle θD(X) between φX and
the vector subspace Dx is constant, which is independent of the choice of x ∈ M
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and X ∈ Dx. In this case, the constant angle θD is called the slant angle of the
distribution D.

Definition. A submanifold M tangent to ξ is said to be slant if for any x ∈ M

and any X ∈ TxM , linearly independent of ξ, the angle between φX and TxM is a

constant θ ∈ [0,
π

2
], called the slant angle of M in M̃ .

Examples of slant submanifolds. (see [2]).

Example 1. For any constant k,

x(u, v, t) = 2(eku cosu cos v, eku sinu cos v, eku cosu sin v, eku sin u sin v, t)

defines a slant submanifold of dimension 3 with slant angle θ = arccos
|k|√

1 + k2
,

scalar curvature τ =
−k2

3(1 + k2)
and non-constant mean curvature given by ‖H‖ =

2e−ku

3
√

1 + k2
. Hence, the submanifold is not minimal.

Example 2. For any constant k,

x(u, v, t) = 2(u, k cos v, v, k sin v, t)

defines a slant submanifold M with slant angle θ = arccos
1√

1 + k2
, scalar curvature

τ =
−1

3(1 + k2)
, constant mean curvature given by ‖H‖ =

|k|
3(1 + k2)

. Moreover, the

following statements are equivalent:

(a) k = 0;
(b) M is invariant;
(c) M is minimal;
(d) M has parallel mean curvature vector.

Invariant and anti-invariant immersions are slant immersions with slant angle

θ = 0 and θ =
π

2
, respectively. A slant immersion which is neither invariant nor

anti-invariant is called a proper slant immersion.

Definition. We say that a submanifold M tangent to ξ is a bi-slant submanifold
of M̃ if there exist two orthogonal distributions D1 and D2 on M such that :

i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ {ξ}.
ii) For any i = 1, 2, Di is slant distribution with slant angle θi.

Let 2d1 = dimD1 and 2d2 = dimD2.

Remark. If either d1 or d2 vanishes, the bi-slant submanifold is a slant subman-
ifold. Thus, slant submanifolds (and, therefore, invariant and anti-invariant sub-
manifolds) are particular cases of bi-slant submanifolds.

Examples of bi-slant submanifolds. (see [2], [3])

Example 1. For any θ1, θ2 ∈ [0,
π

2
],

x(u, v, w, s, t) = 2(u, 0, w, 0, v cos θ1, v sin θ1, s cos θ2, s sin θ2, t)

defines a five-dimensional bi-slant submanifold M , with slant angles θ1 and θ2, is
R9 with its usual Sasakian structure (φ0, ξ, η, g).
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Furthermore, it is easy to see that

e1 = 2(
∂

∂x1
+ y1 ∂

∂z
), e2 = cos θ1(2

∂

∂y1
) + sin θ1(2

∂

∂y2
),

e3 = 2(
∂

∂x3
+ y3 ∂

∂z
), e4 = cos θ2(2

∂

∂y3
) + sin θ2(2

∂

∂y4
),

e5 = 2
∂

∂z
= ξ,

form a local orthonormal frame of TM . We define the distributions D1 = 〈e1, e2〉
and D2 = 〈e3, e4〉.

Then, it is clear that TM = D1 ⊕D2 ⊕〈ξ〉 and it can be easily proved that Di is
a slant distribution with slant angle θi for any i = 1, 2. In particular, if we consider
θ1 = θ2 = θ in the above, it results that M is a θ−slant submanifold.

Example 2. For any θ1 ∈ [0,
π

2
], we chose θ2 ∈ (0,

π

2
], such that cos θ2 =

cos θ1√
2

.

Then

x(u, v, w, s, t) = 2(u, 0, w, 0, v cos θ1, v sin θ1, s cos θ2, s sin θ2, t)

defines a five-dimensional bi-slant submanifold M in (R9, φ0, ξ, η, g), with both
slant angles equal to θ2, but it is not slant submanifold. In fact we can chose a
local orthonormal frame {e1, . . . , e5} of TM such that

e1 =
1√
2
{2(

∂

∂x1
+ y1 ∂

∂z
) + 2(

∂

∂x4
+ y4 ∂

∂z
), e2 = cos θ1(2

∂

∂y1
) + sin θ1(2

∂

∂y2
),

e3 = 2(
∂

∂x3
+ y3 ∂

∂z
), e4 = cos θ2(2

∂

∂y3
) + sin θ2(2

∂

∂y4
),

e5 = 2
∂

∂z
= ξ.

Now we define the distributions D1 = 〈e1, e2〉 and D2 = 〈e3, e4〉. It is easy to see
that both D1 and D2 are slant distribution with the same slant angle θ2. Never-
theless, we can obtain that M is not slant since θ2 6= 0.

Definition. We say that M tangent to ξ is a semi-slant submanifold of M̃ if there
exist two orthogonal distributions D1 and D2 on M such that :

i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ {ξ}.
ii) The distribution D1 is an invariant distribution, i.e., φ(D1) = D1.
ii) The distribution D2 is slant with angle θ 6= 0.

Let 2d1 = dimD1 and 2d2 = dimD2.
In [3], the invariant distribution of a semi-slant submanifold is a slant distribution

with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are

particular cases of bi-slant submanifolds. Moreover, it is clear that, if θ =
π

2
, then

the semi-slant submanifold is a semi-invariant submanifold.

(a) If d2 = 0, then M is an invariant submanifold.

(b) If d1 = 0 and θ =
π

2
, then M is an anti-invariant submanifold.

(c) If d1 = 0 and θ 6= π

2
, then M is a proper slant submanifold, with slant

angle θ.

We say that a semi-slant submanifold is proper if d1d2 6= 0 and θ 6= π

2
.
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Examples of semi-slant submanifolds. (see [3])

Example 1. Let R6 be the Euclidian space of dimension 6, with the standard metric

and the almost complex structure given by J(
∂

∂xi
) =

∂

∂xi
, for any i = 1, 2, 3, where

(xi, yi) denote the Cartesian coordinates.

Let R5 ↪→ R6 be the usual immersion. Then, C =
∂

∂y3
is the unit normal to R5

and so, ξ = −JC =
∂

∂x3
.

Now, for any θ 6= 0, we can consider the immersions:

ϕ1 : R4 −→ R6 : (u, v, t, s) 7−→ (u cos θ, u sin θ, t, v, 0, s),

ϕ2 : R3 −→ R5 : (u, v, t) 7−→ (u cos θ, u sin θ, t, v, 0).

We can directly prove that ϕ1 is a semi-slant immersion, with complex distribution

D1 =

〈

∂

∂x3
,

∂

∂y3

〉

and slant distribution, with angle θ,

D2 =

〈

cos θ
∂

∂x1
+ sin θ

∂

∂x2
,

∂

∂y1

〉

.

On the other hand, ϕ2 is a θ-slant immersion, where R5 has the almost contact
metric structure induced by the described almost Hermitian structure on R6.

For the other properties and examples of slant, bi-slant and semi-slant subman-
ifolds in Sasakian manifolds, we refer to [2], [3].

Let M be an n-dimensional submanifold of a Riemannian manifold M̃ . We
denote by K(π) the sectional curvature of M associated with a plane section π ⊂
TpM, p ∈ M , and ∇ the Riemannian connection of M . Also, let h be the second
fundamental form and R the Riemann curvature tensor of M .

Then the equation of Gauss is given by

R̃(X, Y, Z, W ) = R(X, Y, Z, W )+

+g(h(X, W ), h(Y, Z)) − g(h(X, Z), h(Y, W )),
(1.2)

for any vectors X, Y, Z, W tangent to M .
Let p ∈ M and {e1, . . . , en} an orthonormal basis of the tangent space TpM . We

denote by H the mean curvature vector, that is

(1.3) H(p) =
1

n

n
∑

i=1

h(ei, ei).

Also, we set

(1.4) hr
ij = g(h(ei, ej), er)

and

(1.5) ‖h‖2 =

n
∑

i,j=1

g(h(ei, ej), h(ei, ej)).

For any tangent vector field X to M , we put φX = PX + FX , where PX and
FX are the tangential and normal components of φX , respectively. We denote by

(1.6) ‖P‖2
=

n
∑

i,j=1

g2(Pei, ej).

Suppose L is a k-plane section of TpM and X a unit vector in L. We choose an
orthonormal basis {e1, . . . , ek} of L such that e1 = X .
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Define the Ricci curvature RicL of L at X by

(1.7) RicL(X) = K12 + K13 + · · · + K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej.
We simply called such a curvature a k-Ricci curvature.

The scalar curvature τ of the k-plane section L is given by

(1.8) τ(L) =
∑

1≤i<j≤k

Kij .

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on an n-dimensional
Riemannian manifold M is defined by

(1.9) Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈ M,

where L runs over all k-plane sections in TpM and X runs over all unit vectors in
L.

Recall that for a submanifold M in a Riemannian manifold, the relative null
space of M at a point p ∈ M is defined by

(1.10) Np = {X ∈ TpM |h(X, Y ) = 0, for all Y ∈ TpM}.

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared
mean curvature for submanifolds in real space forms (see [6]).

We prove similar inequalities for slant, bi-slant and semi-slant submanifolds in a
Sasakian space form.

We consider submanifolds M tangent to the Reeb vector field ξ.

Theorem 2.1. Let M be an (n = 2k + 1)−dimensional θ− slant submanifold

tangent to ξ in a (2m + 1)-dimensional Sasakian space form M̃(c). Then:

(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

(2.1) Ric(X) ≤ 1

4
{(n − 1)(c + 3) +

1

2
(3 cos2 θ − 2)(c − 1) + n2‖H‖2}.

(ii) If H(p) = 0, then a unit tangent vector X ∈ TpM orthogonal to ξ satisfies
the equality case of (2.1) if and only if X ∈ Np.

(iii) The equality case of (2.1) holds identically for all unit tangent vectors or-
thogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let X ∈ TpM be a unit tangent vector X at p, orthogonal to ξ. We choose an
orthonormal basis e1, . . . , en = ξ, en+1, . . . , e2m+1 such that e1, . . . , en are tangent
to M at p, with e1 = X .

Then, from the equation of Gauss, we have

(2.2) n2‖H‖2 = 2τ + ‖h‖2 − n(n − 1)
c + 3

4
− [3(n − 1) cos2 θ − 2n + 2]

c − 1

4
.
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From (2.2), we get

(2.3) n2‖H‖2 = 2τ +

2m+1
∑

r=n+1

[(hr
11)

2 + (hr
22 + · · · + hr

nn)2 + 2
∑

i<j

(hr
ij)

2]

− 2

2m+1
∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj − n(n − 1)

c + 3

4
− [3(n − 1) cos2 θ − 2n + 2]

c − 1

4

= 2τ +
1

2

2m+1
∑

r=n+1

[(hr
11 + · · · + hr

nn)2 + (hr
11 − hr

22 − · · · − hr
nn)2] + 2

2m+1
∑

r=n+1

∑

i<j

(hr
ij)

2

− 2

2m+1
∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj − n(n − 1)

c + 3

4
− [3(n − 1) cos2 θ − 2n + 2]

c − 1

4
.

From the equation of Gauss, we find

Kij =

2m+1
∑

r=n+1

[hr
11h

r
22 − (hr

12)
2] + 3 cos2 θ · c − 1

4
+

c + 3

4

and consequently

(2.4)

∑

2≤i<j≤n

Kij =

2m+1
∑

r=n+1

∑

2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2] +

(n − 1)(n − 2)

2

c + 3

4
+

+[3(n − 1) cos2 θ − 3 cos2 θ − 2n + 4]
c− 1

8
.

Substituting (2.4) in (2.3), one gets

1

2
n2‖H‖2 ≥ 2 Ric(X) − 2(n − 1)

c + 3

4
− (3 cos2 θ − 2)

c − 1

4
,

which is equivalent to (2.1).
(ii) Assume H(p) = 0. Equality holds in (2.1) if and only if

(2.5)

{

hr
12 = . . . = hr

1n = 0,

hr
11 = hr

22 + · · · + hr
nn, r ∈ {n + 1, . . . , 2m}.

Then hr
1j = 0, for every j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}, that is X ∈ Np.

(iii) The equality case of (2.1) holds for all unit tangent vectors orthogonal to ξ

at p if and only if

(2.6)

{

hr
ij = 0, i 6= j, r ∈ {n + 1, . . . , 2m},

hr
11 + · · · + hr

nn − 2hr
ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}.

In this case, since ξ is tangent to M , it follows that a totally umbilical point is
totally geodesic. �

Theorem 2.2. Let M be an (n = 2d1 +2d2 +1)−dimensional bi-slant submanifold
satisfying g(X, φY ) = 0, for any X ∈ D1 and any X ∈ D2, tangent to ξ in a

(2m + 1)-dimensional Sasakian space form M̃(c). Then:

(i) For each unit vector X ∈ TpM orthogonal to ξ and if
a) X is tangent to D1 we have

(2.7) Ric(X) ≤ 1

4
{(n − 1)(c + 3) +

1

2
(3 cos2 θ1 − 2)(c − 1) + n2‖H‖2}

and if
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b) X is tangent to D2 we have

(2.7
′

) Ric(X) ≤ 1

4
{(n − 1)(c + 3) +

1

2
(3 cos2 θ2 − 2)(c − 1) + n2‖H‖2}.

(ii) If H(p) = 0, then a unit tangent vector X ∈ TpM orthogonal to ξ satisfies

the equality case of (2.7) and (2.7
′

) if and only if X ∈ Np.

(iii) The equality case of (2.7) and (2.7
′

) holds identically for all unit tangent
vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let X ∈ TpM be a unit tangent vector X at p, orthogonal to ξ. We choose an
orthonormal basis e1, . . . , en = ξ, en+1, . . . , e2m+1 such that e1, . . . , en are tangent
to M at p, with e1 = X .

Then, from the equation of Gauss, we have

(2.8) n2‖H‖2 = 2τ+‖h‖2−n(n−1)
c + 3

4
−[6(d1 cos2 θ1+d2 cos2 θ2)−2n+2]

c− 1

4
.

From (2.8), we get

(2.9) n2‖H‖2 = 2τ +

2m+1
∑

r=n+1

[(hr
11)

2 + (hr
22 + · · · + hr

nn)2 + 2
∑

i<j

(hr
ij)

2]−

−2

2m+1
∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj −n(n−1)

c + 3

4
− [6(d1 cos2 θ1+d2 cos2 θ2)−2n+2]

c− 1

4
=

= 2τ +
1

2

2m+1
∑

r=n+1

[(hr
11 + · · · + hr

nn)2 + (hr
11 − hr

22 − · · · − hr
nn)2]+

+ 2

2m+1
∑

r=n+1

∑

i<j

(hr
ij)

2 − 2

2m+1
∑

r=n+1

∑

2≤i<j≤n

hr
iih

r
jj − n(n − 1)

c + 3

4
−

− [6(d1 cos2 θ1 + d2 cos2 θ2) − 2n + 2]
c − 1

4
.

From the equation of Gauss, we find:
a) if X is tangent to D1

Kij =

2m+1
∑

r=n+1

[hr
11h

r
22 − (hr

12)
2] + 3 cos2 θ1 ·

c − 1

4
+

c + 3

4

and consequently

(2.10)

∑

2≤i<j≤n

Kij =

2m+1
∑

r=n+1

∑

2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2] +

(n − 1)(n − 2)

2

c + 3

4
+

+[6(d1 cos2 θ1 + d2 cos2 θ2) − 3 cos2 θ1 − 2n + 4]
c − 1

8
.

Substituting (2.10) in (2.9), one gets

1

2
n2‖H‖2 ≥ 2 Ric(X) − 2(n − 1)

c + 3

4
− (3 cos2 θ1 − 2)

c − 1

4
,

which is equivalent to (2.7).
b) Similar if X is tangent to D2, we have

Kij =

2m+1
∑

r=n+1

[hr
11h

r
22 − (hr

12)
2] + 3 cos2 θ2 ·

c − 1

4
+

c + 3

4
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and consequently

(2.11)

∑

2≤i<j≤n

Kij =

2m+1
∑

r=n+1

∑

2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2] +

(n − 1)(n − 2)

2

c + 3

4
+

+[6(d1 cos2 θ1 + d2 cos2 θ2) − 3 cos2 θ2 − 2n + 4]
c − 1

8
.

Substituting (2.11) in (2.9), one gets

1

2
n2‖H‖2 ≥ 2 Ric(X) − 2(n − 1)

c + 3

4
− (3 cos2 θ2 − 2)

c − 1

4
,

which is equivalent to (2.7
′

).

(ii) Assume H(p) = 0. Equality holds in (2.7) and (2.7
′

) if and only if

(2.12)

{

hr
12 = . . . = hr

1n = 0,

hr
11 = hr

22 + · · · + hr
nn, r ∈ {n + 1, . . . , 2m}.

Then hr
1j = 0, for every j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}, that is X ∈ Np.

(iii) The equality case of (2.7) and (2.7
′

) holds for all unit tangent vectors or-
thogonal to ξ at p if and only if

(2.13)

{

hr
ij = 0, i 6= j, r ∈ {n + 1, . . . , 2m},

hr
11 + · · · + hr

nn − 2hr
ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}.

In this case, since ξ is tangent to M , it follows that a totally umbilical point is
totally geodesic. �

Corollary 2.3. Let M be an (n = 2d1 +2d2 +1)−dimensional semi-slant subman-

ifold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then:
(i) For each unit vector X ∈ TpM orthogonal to ξ and if
a X is tangent to D1 we have

(2.14) Ric(X) ≤ 1

4
{(n − 1)(c + 3) − (c − 1) + n2‖H‖2}

and if
b X is tangent to D2 we have

(2.14
′

) Ric(X) ≤ 1

4
{(n − 1)(c + 3) +

1

2
(3 cos2 θ − 2)(c − 1) + n2‖H‖2}.

(ii) If H(p) = 0, then a unit tangent vector X ∈ TpM orthogonal to ξ satisfies

the equality case of (2.14) and (2.14
′

) if and only if X ∈ Np.

(iii) The equality case of (2.14) and (2.14
′

) holds identically for all unit tangent
vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4. Let M be an (n = 2k + 1)-dimensional invariant submanifold in a

(2m + 1)-dimensional Sasakian space form M̃(c). Then:

(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

(2.15) Ric(X) ≤ 1

4
{(n − 1)(c + 3) +

1

2
(c − 1)}.

(ii) A unit tangent vector X ∈ TpM orthogonal to ξ satisfies the equality case
of (2.15) if and only if X ∈ Np.

(iii) The equality case of (2.15) holds identically for all unit tangent vectors
orthogonal to ξ at p if and only if p is a totally geodesic point.
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Corollary 2.5. Let M be an (n = 2k + 1)-dimensional anti-invariant submanifold

in a (2m + 1)-dimensional Sasakian space form M̃(c). Then:
(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

(2.16) Ric(X) ≤ 1

4
{(n − 1)(c + 3) − (c − 1) + n2‖H‖2}.

(ii) If H(p) = 0, then a unit tangent vector X ∈ TpM orthogonal to ξ satisfies
the equality case of (2.16) if and only if X ∈ Np.

(iii) The equality case of (2.16) holds identically for all unit tangent vectors
orthogonal to ξ at p if and only if p is a totally geodesic point.

3. k-Ricci curvature

In this section, we prove a relationship between the k-Ricci curvature and the
squared mean curvature for slant, bi-slant and semi-slant submanifolds in a Sasakian
space form.

We state an inequality between the scalar curvature and the squared mean cur-
vature for submanifolds tangent to ξ.

Theorem 3.1. Let M be an (n = 2k + 1)−dimensional θ−slant submanifold in a

(2m + 1)-dimensional Sasakian space form M̃(c) tangent to ξ. Then we have

(3.1) ‖H‖2 ≥ 2τ

n(n − 1)
− c + 3

4
− [3(n − 1) cos2 θ − 2n + 2](c − 1)

4n(n − 1)
.

Proof. We choose an orthonormal basis {e1, . . . , en = ξ, en+1, . . . , e2m+1} at p such
that en+1 is parallel to the mean curvature vector H(p) and e1, . . . , en diagonalize
the shape operator An+1. Then the shape operators take the forms

(3.2) An+1 =













a1 0 . . . 0
0 a2 . . . 0
. . . . . .

. . . . . .

0 0 . . . an













(3.3) Ar = (hr
ij), i, j = 1, . . . , n, r = n + 2, . . . , 2m + 1, trace Ar =

n
∑

i=1

hr
ii = 0.

From (2.2), we get

(3.4)

n2‖H‖2 = 2τ +
n

∑

i=1

a2
i +

2m+1
∑

r=n+2

n
∑

i,j=1

(hr
ij)

2 − n(n − 1)
c + 3

4
−

−[3(n − 1) cos2 θ − 2n + 2]
c − 1

4
.

On the other hand, since

0 ≤
∑

i<j

(ai − aj)
2 = (n − 1)

∑

i

a2
i − 2

∑

i<j

aiaj ,

we obtain

n2 ‖H‖2
= (

n
∑

i=1

ai)
2 =

n
∑

i=1

a2
i + 2

∑

i<j

aiaj ≤ n

n
∑

i=1

a2
i ,

which implies
n

∑

i=1

a2
i ≥ n ‖H‖2

.
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Since we have that

(3.5) n2‖H‖2 ≥ 2τ + n‖H‖2 − n(n − 1)
c + 3

4
− [3(n − 1) cos2 θ − 2n + 2]

c − 1

4
,

which is equivalent to (3.1).
Let {e1, . . . en} be an orthonormal basis of TpM . Denote by Li1...ik

the k-plane
section spanned by ei1 , . . . , eik

. It follows from (1.7) and (1.8) that

τ(Li1...ik
) =

1

2

∑

i∈{i1,...,ik}

RicLi1...i
k
(ei),(3.6)

τ(p) =
1

Ck−2
n−2

∑

1≤i1<...<ik≤n

τ(Li1...ik
).(3.7)

Combining (1.9), (3.6) and (3.7), we find

(3.8) τ(p) ≥ n(n − 1)

2
Θk(p).

�

From (3.6), (3.7) and (3.1), we get the following.

Theorem 3.2. Let M be an (n = 2d1 + 2d2 + 1)−dimensional bi-slant subman-
ifold satisfying g(X, φY ) = 0, for any X ∈ D1 and any X ∈ D2, in a (2m + 1)-

dimensional Sasakian space form M̃(c) tangent to ξ. Then we have

(3.9) ‖H‖2 ≥ 2τ

n(n − 1)
− c + 3

4
− [3(d1 cos2 θ1 + d2 cos2 θ2) − n + 1](c − 1)

2n(n− 1)
.

Proof. The proof is similar with their corresponding statements of Theorem 3.1. �

Theorem 3.3. Let M be an (n = 2d1 + 2d2 + 1)−dimensional semi-slant subman-

ifold in a (2m + 1)-dimensional Sasakian space form M̃(c) tangent to ξ. Then we
have

(3.10) ‖H‖2 ≥ 2τ

n(n − 1)
− c + 3

4
− [3(d1 + d2 cos2 θ) − n + 1](c − 1)

2n(n − 1)
.

Proof. The proof is similar with their corresponding statements of Theorem 3.1. �

Theorem 3.4. Let M be an (n = 2k + 1)−dimensional θ− slant submanifold in

a (2m + 1)-dimensional Sasakian space form M̃(c) tangent to ξ. Then, for any
integer k, 2 ≤ k ≤ n, and any point p ∈ M , we have

(3.11) ‖H‖2(p) ≥ Θk(p) − c + 3

4
− [3(n − 1) cos2 θ − 2n + 2](c − 1)

4n(n − 1)
.

Theorem 3.5. Let M be an (n = 2d1 +2d2 +1)−dimensional bi-slant submanifold

in a (2m + 1)-dimensional Sasakian space form M̃(c) tangent to ξ. Then, for any
integer k, 2 ≤ k ≤ n, and any point p ∈ M , we have

(3.12) ‖H‖2(p) ≥ Θk(p) − c + 3

4
− [3(d1 cos2 θ1 + d2 cos2 θ2) − n + 1](c − 1)

2n(n − 1)
.

Theorem 3.6. Let M be an (n = 2d1 + 2d2 + 1)−dimensional semi-slant subman-

ifold in a (2m + 1)-dimensional Sasakian space form M̃(c) tangent to ξ. Then, for
any integer k, 2 ≤ k ≤ n, and any point p ∈ M , we have

(3.13) ‖H‖2(p) ≥ Θk(p) − c + 3

4
− [3(d1 + d2 cos2 θ) − n + 1](c − 1)

2n(n − 1)
.
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Corollary 3.7. Let M be an n-dimensional invariant submanifold of a Sasakian
space form M̃(c). Then, for any integer k, 2 ≤ k ≤ n, and any point p ∈ M , we
have

(3.14) Θk(p) ≤ c + 3

4
+

c − 1

4n
.

Corollary 3.8. Let M be an n-dimensional anti-invariant submanifold of a Sasakian
space form M̃(c). Then, for any integer k, 2 ≤ k ≤ n, and any point p ∈ M , we
have

(3.15) ‖H‖2(p) ≥ Θk(p) − c + 3

4
+

c − 1

2n
.

Corollary 3.9. Let M be an n-dimensional contact CR submanifold (θ1 = 0,

θ2 =
π

2
) of a Sasakian space form M̃(c). Then, for any integer k, 2 ≤ k ≤ n, and

any point p ∈ M , we have

(3.16) ‖H‖2(p) ≥ Θk(p) − c + 3

4
− (3d1 − n + 1)(c − 1)

2n(n − 1)
.

where 2d1 = dimD1.
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