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LINKAGES BETWEEN THE GAUSS MAP AND THE
STERN-BROCOT TREE

BRUCE BATES, MARTIN BUNDER, AND KEITH TOGNETTI

Abstract. We discover a bijective map between the Gauss Map and the
left-half of the Stern-Brocot Tree. The domain of the Gauss Map is then
extended to cover all reals, and the coverage of the Stern-Brocot Tree is
extended to include all positive and negative rationals in a manner that
preserves the map between the two constructions.

1. Introduction

That the Gauss Map and the Stern-Brocot Tree have corresponding fea-
tures seems, at first glance, unintuitive. The Stern-Brocot Tree is a number-
theoretic construction built on a strange algebra (child’s addition) that seems
far removed from a locally differentiable function based on the function 1

x
. Yet

nonetheless, there are interesting areas of correspondence. We begin with the
Gauss Map, which we define based on the notation in Corless [2].

Definition 1 (Gauss Map). The Gauss Map, G (x) is defined as

G (x) =

{
1
x

mod 1 = frac 1
x
, for x ∈ (0, 1]

0, for x = 0.

The Gauss Map and its iterates are made up of disjoint continuous parts.
The following definition of these parts is a variation of the notation found in
Bates et al [1].

Definition 2 (Parts in the Gauss Map). [0; j1, . . . , jk] is that part of Gk whose
domain is

[{0; j1, . . . , jk}, {0; j1, . . . , jk, 1})
if k is even, and

({0; j1, . . . , jk, 1}, {0; j1, . . . , jk}]
if k is odd.
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The points of discontinuity in the kth iterate, Gk, of the Gauss Map are
{x : Gk (x) = 0}. Accordingly, the set of points of discontinuity in the domain
of G is

(1.1)

{
1,

1

2
,
1

3
,
1

4
, . . .

}
.

In continued fraction notation, these same points of discontinuity are values of
x that increment by one in the last entry of their continued fraction expansion.
Thus within G, the set (1.1) in continued fraction notation becomes:

{{0; 1} , {0; 2}, {0; 3}, {0; 4}, . . .} .

In general, [0; j1, . . . , jk] is discontinuous with the rest of Gkat {0; j1, . . . , jk}
and {0; j1, . . . , jk, 1}. Note that there is no part defined at the origin.

From hereon, where there is no ambiguity, we refer to the Gauss Map and
its iterates as simply the Gauss Map.

2. Clusters within the Gauss Map

Definition 3 (Clusters). A cluster within Gk is an infinite set of consecutive
parts of Gk whose slopes become progressively more vertical and approach
infinity in their limit. The cluster is bounded by a line with vertical slope
called the cluster line. This bound is not part of the cluster.

Example 1. G is made up of the elements of a single cluster whose cluster line
is x = 0.

Theorem 1. The set of consecutive parts [0; j1, . . . , jk, 1] , [0; j1, . . . , jk, 2] , . . .
forms a cluster in Gk+1 with cluster line x = {0; j1, . . . , jk}.
Proof. For k odd, the union of the set of consecutive parts

[0; j1, . . . , jk, 1] , [0; j1, . . . , jk, 2] , [0; j1, . . . , jk, 3] , . . .

has least upper and greatest lower bounds {0; j1, . . . , jk} = pk

qk
and

{0; j1, . . . , jk, 1} =
pk + pk−1

qk + qk−1

respectively. For k even the bounds are reversed.
We have shown in [1] that, if x ∈ ({0; j1, . . . , jk+1}, {0; j1, . . . , jk+1 + 1}) ,

Gk+1(x) =
qk+1x− pk+1

pk − qkx

where pk

qk
= {0; j1, . . . , jk} and pk+1

qk+1
= {0; j1, . . . , jk+1}.

Since
d

dx
Gk+1 (x) =

pkqk+1 − pk+1qk

(pk − qkx)2

=
(−1)k+1

(pk − qkx)2
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→ ±∞ as x → pk

qk

it follows that each consecutive part in the set

[0; j1, . . . , jk, 1] , [0; j1, . . . , jk, 2] , . . .

becomes progressively more vertical. The vertical line x = pk

qk
= {0; j1, . . . , jk}

lies outside the set but is the limit of the set. Thus by Definition 3 the infinite
set of consecutive parts [0; j1, . . . , jk, 1], [0; j1, . . . , jk, 2] , . . . forms a cluster in
Gk+1 with cluster line x = {0; j1, . . . , jk}. ¤

We denote the cluster

[0; j1, . . . , jk, 1] , [0; j1, . . . , jk, 2] , . . .

in Gk+1 by 〈〈0, j1, . . . , jk, 〉〉. The cluster in G is 〈〈0〉〉 and represents the entire
first iterate.

Definition 4 (Domains and Open Domains of Sets). Let the domain of each
function in a set of functions be known. Then the union of the domains
of each function in the set is called the domain of the set. The domain of a
function minus its endpoints (if any) is called the open domain of the function.
Similarly, the domain of a set minus its endpoints (if any) is called the open
domain of the set.

For simplicity, let the interval (a, b), where a < b, be equivalently represented
by (b, a). It follows from Definition 4 that:

i) The domain of a cluster is the union of the domains of each part in the
cluster.

ii) The open domain of [0; j1, . . . , jk, t] is the interval

({0; j1, . . . , jk, t} , {0; j1, . . . , jk, t + 1}) .

Theorem 2. The open domain of the part [0; j1, . . . , jk] in Gk is the open
domain of the cluster 〈〈0, j1, . . . , jk〉〉 in Gk+1.

Proof. The open domain of [0; j1, . . . , jk] in Gk is

({0; j1, . . . , jk} , {0; j1, . . . , jk, 1}) .

Consider any two consecutive parts [0; j1, . . . , jk, t] and [0; j1, . . . , jk, t + 1] in
the cluster 〈〈0, j1, . . . , jk〉〉 in Gk+1. By Definition 2, [0; j1, . . . , jk, t] has domain

[{0; j1, . . . , jk, t} , {0; j1, . . . , jk, t + 1})
for k even and

({0; j1, . . . , jk, t + 1} , {0; j1, . . . , jk, t}]
for k odd.

Similarly, [0; j1, . . . , jk, t + 1] has domain

[{0; j1, . . . , jk, t + 1} , {0; j1, . . . , jk, t + 2})
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for k even and

({0; j1, . . . , jk, t + 2} , {0; j1, . . . , jk, t + 1}]
for k odd. It follows that the domain of the set of two consecutive parts in
〈〈0, j1, . . . , jk〉〉 is continuous and non-overlapping. Therefore the domain of
the cluster 〈〈0, j1, . . . , jk〉〉 is continuous and non-overlapping. Accordingly,
the only endpoints of 〈〈0, j1, . . . , jk〉〉 are {0; j1, . . . , jk} and {0; j1, . . . , jk, 1},
and its open domain is

({0; j1, . . . , jk} , {0; j1, . . . , jk, 1}) ,

establishing our theorem. ¤

Corollary 1. The only clusters within Gk+1 are those of the form

〈〈0, j1, . . . , jk〉〉
where the open domain of 〈〈0, j1, . . . , jk〉〉 is the open domain of [0; j1, . . . , jk]
in Gk.

Proof. G (x) = 〈〈0〉〉 and represents a single cluster with open domain (0, 1).
By Theorem 2, G2 (x) consists entirely of clusters of the form 〈〈0, j1〉〉 where
the open domain of 〈〈0, j1〉〉 is the open domain of [0; j1] in G. Repeating
Theorem 2 for G3, G4, . . . establishes our corollary. ¤

Since from the proof of Theorem 1, d
dx

Gk (x) = (−1)k

(pk−1−qk−1x)2
, it follows that

within Gk, parts have negative slope for k odd and positive slope for k even.

Summary 1. The following is a summary of important characteristics of the
Gauss Map:

1. Every part of the Gauss Map belongs to a cluster.
2. Each cluster has an infinite number of parts.
3. All parts within odd iterates have negative slope; all parts within even

iterates have positive slope.
4. The slopes of successive parts within a cluster become progressively

steeper.
5. The cluster line is vertical and is not part of the cluster.
6. Clusters within Gk+1 are all of the form 〈〈0, j1, . . . , jk〉〉 where the open

domain of 〈〈0, j1, . . . , jk〉〉 is the open domain of the part [0; j1, . . . , jk] in Gk.

3. Terms in the Stern-Brocot Tree

Let the level of the Stern-Brocot Tree consisting of the terms 0
1

and 1
0

be
called Level 0. Except for terms in level 0, each term of the Stern-Brocot Tree
is the mediant of two terms, called parents, found in lower ordinal levels of the
tree. The following definitions formalise our understanding of entries in each
level of the tree
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Definition 5 (Mediant). If m, n, s, t are integers then the mediant of m
n

and
s
t
, written as m

n
+ s

t
is m+s

n+t.
The operation + is called child’s addition.

Definition 6 (Interleave Operator). We denote by #, the interleave operator
acting on two ordered sets A = 〈a1, a2, . . . , ak+1〉 and B = 〈b1, b2, . . . , bk〉 , such
that A#B = C where C = 〈a1, b1, a2, b2, . . . , bk, ak+1〉 .

Definition 7 (Stern-Brocot Sequence). Let H0 =
〈

0
1
, 1

0

〉
and for k ≥ 1,

Hk = Hk−1# med Hk−1

where med Hk−1 denotes the increasing sequence of mediants that are gener-
ated from consecutive terms in Hk−1.

That is, if
Hk−1 =

〈
hk−1,1, hk−1,2, . . . , hk−1,2k+1

〉

then

med Hk−1 =
〈
(hk−1,1 + hk−1,2) , (hk−1,2 + hk−1,3) , . . . ,

(
hk−1,2k + hk−1,2k+1

)〉
.

Hk represents the increasing sequence containing both the first k generations of
mediants based on H0, and the terms of H0 itself. It is styled the Stern-Brocot
sequence.

Definition 8 (Stern-Brocot Tree). The Stern-Brocot Tree is a series of levels
given by:

Level 0 0
1

1
0

Level 1 med H0

Level 2 med H1

Level 3 med H2
...

...

The right half of Figure 1 (with the inclusion of the term 0
1
) represents the

first five levels of the Stern-Brocot Tree.

We can uniquely locate any term in the tree by introducing Right-Left no-
tation. Consider the term 8

11
. We locate 8

11
by moving from level 0, one level

at a time, through successive mediants. Thus beginning at 0
1
, we move to the

right and down to 1
1
, to the left and down to 1

2
, to the right and down to 2

3
, to

the right and down to 3
4
, to the left and down to 5

7
and finally to the right and

down to 8
11

. It is obvious that this is the only route by which we can move

from 0
1

to 8
11

, traversing one level at a time and one successive mediant at a
time. Generalising for the tree, every term can be uniquely located in the tree
by a succession of these right or left and down moves. Thus our Right-Left
notation is a handy way of describing any term in the tree. In our example
we adopt the notation RLR2LR to represent 8

11
. This denotes that we move

from 0
1

to the right and down once, then to the left and down once, then to
the right and down twice, then to the left and down once and finally to the
right and down once to arrive at 8

11
.



222 BRUCE BATES, MARTIN BUNDER, AND KEITH TOGNETTI

Based on Graham et al [3], it can be easily shown that, for a0 ≥ 0, a1 ≥
1, a2 ≥ 1, . . . , ak ≥ 1,

(3.1) {a0; a1, a2, . . . , ak + 1} =

{
Ra0+1La1Ra2 . . . Lak for k odd
Ra0+1La1Ra2 . . . Rak for k even

where the left hand side of (3.1) is the continued fraction expansion of the
term represented by the right hand side of (3.1). Thus 8

11
= {0; 1, 2, 1, 2} =

R1LR2LR. Note that we have chosen a variation on the notation found in [3].
Graham et al do not commence the right and left movements from 0

1
because

the first movement to 1
1

is common to all entries in the tree and can be ignored

by defining that all movements commence from 1
1
. However we later extend

the Stern-Brocot Tree to include negative fractions. In order to locate entries
in this extended tree, and thereby generalise the process for all fractions, the
scheme of right and left movements needs to begin at 0

1
.

4. Branches in the Stern-Brocot Tree

We now introduce branches within the Stern-Brocot Tree as a prelude to
discovering their linkage to clusters in the Gauss Map. Firstly, we categorise
mediants according to the following definition:

Definition 9 (Left and Right Mediants). A left (right) mediant is the mediant
formed in level k + 1 that is smaller (greater) than its parent found in level k.

Definition 10 (Left and Right Branches). The set of all mediants possessing
a common parent µ and whose elements are smaller than µ is called the left
branch of µ; the set of all mediants possessing a common parent µ and whose
elements are greater than µ is called the right branch of µ.

Definition 10 can be alternatively stated as follows: Let µ be a term in the
Stern-Brocot Tree and µl its left mediant. The left branch of µ is the set
consisting of µl and all successive right mediants of µl. Similarly, let µr be
the right mediant of µ. The right branch of µ is the set consisting of µr and
all successive left mediants of µr. It follows from Definition 10 that each term
ordinally above level 0 in the tree belongs to two branches - the left branch of
one parent and the right branch of the other parent.

We can represent each rational number by a terminating continued fraction
that has a short and a long form. Thus for a0 ≥ 0, a1 ≥ 1, a2 ≥ 1, . . . , ak > 1,
we have {a0; a1, a2, . . . , ak} = {a0; a1, a2, . . . , ak − 1, 1} where the continued
fraction on the left is the short form and the continued fraction on the right is
the long form. The following theorem links branches and the short and long
form of terms in the Stern-Brocot Tree. It shows that the left and right branch
of a term is built upon the short and long form of the term.

Theorem 3. Let {a0; a1, a2, . . . , ak} be the short form of µ. Then
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i) for k odd, the right branch of µ is the set

{{a0; a1, a2, . . . , ak − 1, 1, t} | t ≥ 1}
and the left branch of µ is the set

{{a0; a1, a2, . . . , ak, t} | t ≥ 1} ;

ii) for k even, the right branch of µ is the set

{{a0; a1, a2, . . . , ak, t} | t ≥ 1}
and the left branch of µ is the set

{{a0; a1, a2, . . . , ak − 1, 1, t} | t ≥ 1} .

Proof. From (3.1), let µ = Ra0+1La1Ra2 . . . Lak−1 = {a0; a1, a2, . . . , ak} where
k is odd. Then

µl = Ra0+1La1Ra2 . . . Lak = {a0; a1, a2, . . . , ak + 1} = {a0; a1, a2, . . . , ak, 1}
and the left branch of µ is the set{

Ra0+1La1Ra2 . . . LakRt | t ≥ 0
}

= {{a0; a1, a2, . . . , ak, t} | t ≥ 1} .

Similarly, from (3.1),

µr = Ra0+1La1Ra2 . . . Lak−1R = {a0; a1, a2, . . . , ak − 1, 2}
= {a0; a1, a2, . . . , ak − 1, 1, 1}

and the right branch of µ is the set{
Ra0+1La1Ra2 . . . LakRLt | t ≥ 0

}
= {{a0; a1, a2, . . . , ak − 1, 1, t} | t ≥ 1} .

The case for k even, follows the same reasoning as that for k odd. ¤
Corollary 2. Left (right) mediants have an even (odd) number of terms in
their continued fraction expansions.

Proof. From Theorem 3, let {a0; a1, a2, . . . , ak} be the short form of µ. Then
i) for k odd, the right mediant of µ is

{a0; a1, a2, . . . , ak − 1, 1, 1} = {a0; a1, a2, . . . , ak − 1, 2}
and the left mediant of µ is

{a0; a1, a2, . . . , ak, 1} = {a0; a1, a2, . . . , ak + 1} ;

ii) for k even, the right mediant of µ is

{a0; a1, a2, . . . , ak, 1} = {a0; a1, a2, . . . , ak + 1}
and the left mediant of µ is

{a0; a1, a2, . . . , ak − 1, 1, 1} = {a0; a1, a2, . . . , ak − 1, 2} .

¤
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We call µ in Theorem 3 the pivot of the two branches that are described in
the theorem. Clearly every term in the tree except 0

1
and 1

0
is a pivot for a

left branch and a right branch. (0
1

is a pivot only for a right branch but no

left branch; and 1
0

is defined as the pivot for the left branch
{

1
1
, 2

1
, 3

1
, . . .

}
. 1

0

is not a pivot for any right branch). Theorem 3 shows that every branch of
the Stern-Brocot Tree possesses members whose continued fraction expansions
are identical except in their last terms. Their last terms increment as we
move down the branch. Thus if a branch has k terms in the continued fraction
expansion of its members, the first k−1 terms are common for every member of
the branch and correspond to the short or long form of the continued fraction
expansion of the pivot.

Definition 11 (Continued Fraction Notation for a Branch). The branch in
the Stern-Brocot Tree consisting of all continued fractions of the form

{0; j1, j2, . . . , jk, t}
where t = 1, 2, 3, . . . , is denoted by

−−−−−−−−−−−→{0, j1, j2, . . . , jk} and its extended branch
consists of all continued fractions of the form {0; j1, j2, . . . , jk, t} where t =

0, 1, 2, . . . , is denoted by ˜{0, j1, j2, . . . , jk}. The domain of a branch consists of
all reals that lie between the first term of the branch and its pivot.

We note that an extended branch is formed when the parent of the first term
of a branch that is not the pivot of the branch, is added to the branch.

Example 2. The right branch
−→{0} = {1

1
, 1

2
, 1

3
, 1

4
, 1

5
, . . .} has pivot 0

1
. Its members

are of the form {0; t} for t = 1, 2, 3, . . . , whilst the pivot is {0}. Its extended

branch is {̃0} = {1
0
, 1

1
, 1

2
, 1

3
, 1

4
, 1

5
, . . .}. The domain of

−→{0} consists of all reals
between 0 and 1.

Summary 2. The following is a summary of important characteristics of the
Stern-Brocot Tree:

1. Every term found ordinally above level 0 of the Stern-Brocot Tree belongs
to both a left and a right branch.

2. Each branch contains an infinite number of terms.
3. The domain of a branch consists of all reals that lie between the first

term of the branch and its pivot.

5. Mapping the Gauss Map to the Stern-Brocot Tree

We are now able to formally state the linkage that exists between the Gauss
Map and the Stern-Brocot Tree.

Definition 12 (Map between Gauss Map and Left-Half of the Stern-Brocot
Tree). Let P be the class of all parts of all iterates of the Gauss Map. Let
K : P → Q denote the map between the Gauss Map and the left-half of the
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Stern-Brocot Tree given by:

[0; j1, . . . , jk]
K→ {0; j1, j2, . . . , jk} .

That is, under K, the part [0; j1, . . . , jk] in Gk is transformed into the term
{0; j1, j2, . . . , jk} in the Stern-Brocot Tree.

We note that K is one-to-one and onto between the Gauss Map and the
left-half of the Stern-Brocot Tree.

Under K :
1. Clusters in the Gauss Map become branches in the left-half of the

Stern-Brocot Tree. That is, sequential parts within a given cluster in the Gauss
Map are mapped to sequential members of the corresponding branch in the
left-half of the Stern-Brocot Tree.

2. Right branches are mapped to clusters found within even iterates;
left branches are mapped to clusters found within odd iterates.

3. The domain of a cluster in the Gauss Map and the domain of its
corresponding branch in the Stern-Brocot Tree are identical.

4. The cluster line x = {0; j1, j2, . . . , jk} is associated with a cluster
which is mapped to a branch possessing the pivot {0; j1, j2, . . . , jk}.

An interesting consequence of the mapping defined in Definition 12 is that
every positive rational number less than 1 has a corresponding part in the
Gauss Map. This follows from the fact that all positive rationals less than 1
are represented in the left-half of the Stern-Brocot Tree and K is bijective.

We now show further correspondences between the Gauss Map and the
Stern-Brocot Tree based on K.

6. Symmetry Clusters and Symmetry Branches

We have shown in [1] that [0; j1, . . . , jk] in Gk is symmetric with

[0; 1, j1 − 1, j2, . . . , jk]

in Gk+1 where symmetry implies that one part is the mirror reverse of the
other around x = 1

2
. Note that a reverse symmetry around x = 1

2
occurs for

j1 = 1. That is, for j1 = 1,

{0; 1, j1 − 1, j2, . . . , jk} = {0; 1 + j2, j3, . . . , jk}
which is of the form {0; h1, h2, . . . , hk−1} where h1 > 1, hi ∈ Z+

, i > 1. There-

fore for j1 = 1, [0; 1, j1 − 1, j2, . . . , jk] is found in the left-half of Gk−1. Its
symmetry partner is [0; j1, j2, j3, . . . , jk] found in the right-half of Gk. Accord-
ingly,

i) For j1 = 1, [0; j1, j2, . . . , jk], located in the right-half of Gk, is symmetric
around x = 1

2
with [0; 1 + j2, j3, . . . , jk] , located in the left-half of Gk−1.

ii) For j1 > 1, [0; j1, j2, . . . , jk] , located in the left-half of Gk, is symmetric
around x = 1

2
with [0; 1, j1 − 1, j2, . . . , jk] , located in the right-half of Gk+1.
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In either case it follows for k > 0, that the cluster 〈〈0, j1, j2, . . . , jk〉〉 is
symmetric with the cluster 〈〈0, 1, j1 − 1, j2, . . . , jk〉〉 around x = 1

2
(in G the

first part of the cluster has no symmetry with any other part in the map).
We call 〈〈0, j1, j2, . . . , jk〉〉 and 〈〈0, 1, j1 − 1, j2, . . . , jk〉〉 symmetry clusters. We
now define symmetry branches in the Stern-Brocot Tree.

Definition 13 (Symmetry Branches). Two branches in the Stern-Brocot Tree
are called symmetry branches if terms found on the same level from each branch
sum to 1 and the width of the domain of each branch is identical.

Theorem 4. The only symmetry branches are those of the form
−−−−−−−−−−−→{0, j1, j2, . . . , jk} and

−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}.

Proof. From (3.1), we have

{0; j1, j2, . . . , jk, t} =

{
R1Lj1Rj2 . . . Lt−1 for k even
R1Lj1Rj2 . . . Rt−1 for k odd.

It must therefore be found in level (j1 + j2 + . . . + jk + t− 1) of the tree cor-
responding to the sum of the right and left movements used to place it in the
tree. Similarly, the term

{0; 1, j1 − 1, j2, . . . , jk, t} =

{
R1L1Rj1−1 . . . Lt−1 for k odd
R1L1Rj1−1 . . . Rt−1 for k even

exists (since it is the continued fraction of a rational number between 0 and
1); and is found in level

(1 + j1 − 1 + j2 + . . . + jk + t− 1) = (j1 + j2 + . . . + jk + t− 1)

of the tree. Thus the terms {0; j1, j2, . . . , jk, t} and {0; 1, j1 − 1, j2, . . . , jk, t}
both exist and are found on the same level of the tree.

We have shown in [1] that if x = {0; a1, a2, . . .}, then

(6.1) 1− x = {0; 1, a1 − 1, a2, . . .}
Therefore {0; j1, j2, . . . , jk, t} and {0; 1, j1 − 1, j2, . . . , jk, t} sum to 1.

Now
−−−−−−−−−−−→{0, j1, j2, . . . , jk} has pivot pk

qk
= {0; j1, j2, . . . , jk} and is bounded by

pk

qk

= {0; j1, j2, . . . , jk}

and pk+pk−1

qk+qk−1
= {0; j1, j2, . . . , jk, 1}. Similarly

−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}
has pivot {0; 1, j1 − 1, j2, . . . , jk} and is bounded by

1− pk

qk

= {0; 1, j1 − 1, j2, . . . , jk}
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and 1 − pk+pk−1

qk+qk−1
= {0; 1, j1 − 1, j2, . . . , jk, 1}. It follows that the widths of the

domains of the two branches are identical.
This is also true in the particular case, j1 = 1, since

−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk} =
−−−−−−−−−−−−→{0, 1 + j2, . . . , jk} =

−−−−−−−−−−−−−−→{0, h1, h2, . . . , hk−1}
where we have h1 = 1 + j1, hi = ji+1, i = 2, . . . , k − 1, and

−−−−−−−−−−−−−−−−−−−→{0, 1, 1− h1, h2, . . . , hk−1} =
−−−−−−−−−−−→{0, 1, j2, . . . , jk} =

−−−−−−−−−−−→{0, j1, j2, . . . , jk}.
Since every branch is of the form

−−−−−−−−−−−→{0, j1, j2, . . . , jk}, every symmetry branch

must therefore be of the form
−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}. ¤

Corollary 3. For every pair of symmetry clusters

〈〈0, j1, j2, . . . , jk〉〉 and 〈〈0, 1, j1 − 1, j2, . . . , jk〉〉
in the Gauss Map there exists a corresponding pair of symmetry branches

−−−−−−−−−−−→{0, j1, j2, . . . , jk} and
−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}

in the Stern-Brocot Tree.

Proof. This follows from Definition 12 ¤

For m ∈ −−−−−−−−−−−→{0, j1, j2, . . . , jk}, we have 1−m ∈ −−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}, that is,

each member of
−−−−−−−−−−−→{0, j1, j2, . . . , jk} has a corresponding member in

−−−−−−−−−−−−−−−−→{0, 1, j1 − 1, j2, . . . , jk}
that is equidistant from 1

2
. Accordingly, we say that both symmetry branches

and symmetry clusters are symmetric around x = 1
2
, as are their respective

pivots and cluster lines.

7. The Enlarged Gauss Map

Consider the following extended definition of the Gauss Map, styled the
Enlarged Gauss Map, G (x).

Definition 14 (Enlarged Gauss Map). The Enlarged Gauss Map, G (x), is
defined as

G (x) =

{
1
x

mod 1 = frac 1
x
, for x > 0.

0, for x = 0.

Note that the Enlarged Gauss Map is identical to the Gauss Map for the
domain 0 < x ≤ 1.

Theorem 5. Let x = {a0; a1, a2, . . .} be any non-negative real number. Then

Gk (x) =

{ {0; ak+1, ak+2, . . .} if a0 = 0
{0; ak−1, ak, . . .} if a0 ≥ 1.
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Proof. i) If a0 = 0,G (x) = G (x). So the result is that of Theorem 3 of [1].
ii) If a0 > 0,G (x) = {0; a0, a1, . . .}. So

Gk (x) = Gk−1 ({0; a0, a1, . . .}) = {0; ak−1, ak, . . .}
by i). ¤

Theorem 5 can be restated in terms of G (x).
i) For k = 1,

G (x) =

{
G (x) for 0 < x ≤ 1

1
x

for x > 1.

ii) For k > 1,

Gk (x) =

{
Gk (x) for 0 < x ≤ 1

Gk−2 (frac x) for x > 1.

That is, the graph of the kth iterate in the domain 0 < x ≤ 1 is identical
in appearance to the graph of the (k + 2)th iterate in each of the domains
a < x ≤ a + 1 where a = 1, 2, 3, . . .. Figure 2 shows a portion of the third
iterate of the Enlarged Gauss Map.

We now extend the definition of parts in the Gauss Map so that it covers
all parts of the Enlarged Gauss Map.

Definition 15 (Parts of the Enlarged Gauss Map). [j0; j1, . . . , jk] is that part
of Gk whose domain is [{j0; j1, . . . , jk, 1} , {j0; j1, . . . , jk}).
8. Mapping the Enlarged Gauss Map to the Stern-Brocot Tree

In earlier sections we explored the mapping between the Gauss Map and the
left-half of the Stern-Brocot Tree. Through the Enlarged Gauss Map we are
now able to extend this mapping to include the entire Stern-Brocot Tree. To
do this we need to extend Definition 12.

Definition 16 (Map between the Enlarged Gauss Map and the Stern-Brocot
Tree). Let P be the class of all parts of all iterates of the Enlarged Gauss Map.
Let K : P → Q denote the map between the Enlarged Gauss Map and the
Stern-Brocot Tree given by:

[j0; j1, . . . , jk]
K→ {j0; j1, . . . , jk} .

That is, under K, the (j0, j1, . . . , jk)
th part in Gk is transformed into the term

{j0; j1, . . . , jk} in the Stern-Brocot Tree.

Theorem 5 informs us that if t is any positive integer and k > 1, the graph
of Gk over (0, 1] is the same as that of Gk+2 over (t, t + 1]. Hence Gk+2, for
k > 1, has axes of symmetry at the points x = 2m+1

2
for m = 0, 1, 2, . . ..

Example 3. Within the Enlarged Gauss Map, [0; j1], where j1 > 1, has a
symmetry partner in the second iterate. It is also repeated infinitely in the
third iterate as the parts [t; j1] where t = 1, 2, 3, . . . and its symmetry partner
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is repeated infinitely in the fourth iterate around each of the axes x = 2m+1
2

.
Similar comments hold for every other part of the cluster in which [0; j1] is
found.

Under K, the cluster 〈〈j0, j1, . . . , jk〉〉 with cluster line x = {j0; j1, . . . , jk} is

mapped to the branch
−−−−−−−−−−→{j0; j1, . . . , jk} that has pivot {j0; j1, . . . , jk} , and vice

versa. Moreover, {j0; j1, . . . , jk, 1} and {j0; j1, . . . , jk} represent the endpoints
of the interval that is the domain of the cluster 〈〈j0, j1, . . . , jk〉〉. The end-

points of the interval that is the domain of the branch
−−−−−−−−−−→{j0; j1, . . . , jk} are also

{j0; j1, . . . , jk, 1} and {j0; j1, . . . , jk}.
Example 4. Consider the following clusters within G :

〈〈1〉〉 = 〈〈[1; 1] , [1; 2] , [1; 3] , . . .〉〉
〈〈2〉〉 = 〈〈[2; 1] , [2; 2] , [2; 3] , . . .〉〉
〈〈3〉〉 = 〈〈[3; 1] , [3; 2] , [3; 3] , . . .〉〉

...

The width of the domain of each of these clusters is equal to 1.
Under K these clusters map respectively to the following branches in the

Stern-Brocot Tree:
−→{1} =

{
2

1
,
3

2
,
4

3
, . . .

}

−→{2} =

{
3

1
,
5

2
,
7

3
, . . .

}

−→{3} =

{
4

1
,
7

2
,
10

3

}

...

The width of the domain of each of these branches is equal to 1.

We conclude this section with some comments on G and G2.
We have already seen that every part in G is mapped under K to form the

branch
{

1
1
, 1

2
, 1

3
, . . .

}
in the left-half of the Stern-Brocot Tree. For x ≤ 1, G con-

sists of the parts [0; 1] , [0; 2] , [0; 3] , . . . which meet the x−axis at x = 1, 1
2
, 1

3
, . . .

respectively. For x > 1, G consists of only one part which is asymptotic to
the x−axis. We designate this part as [∞], the infinitieth part, because for x
sufficiently large, G (x) can be made arbitrarily close to zero. Under K, [∞]
maps to {∞} which is the term 1

0
.

Consider G2. By Theorem 5, for x > 1, G2 (x) = frac x. Hence for x > 1, G2

is made up of disjoint truncated parts of the line y = x+1 displaced vertically
downwards by its integer parts. Though for x > 1, parts of G2 do not form a
cluster (parts do not become progressively more vertical), it is mapped under
K to the branch

{
1
1
, 2

1
, 3

1
, . . .

}
.
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We summarise the correspondences between the Enlarged Gauss Map and
the Stern-Brocot Tree:

Summary 3. For the Enlarged Gauss Map and the Stern-Brocot Tree, under
K :

1. Clusters in the Enlarged Gauss Map become branches in the Stern-Brocot
Tree. That is, sequential parts within a given cluster in the Enlarged Gauss
Map are mapped to sequential members of the corresponding branch in the
Stern-Brocot Tree.

2. Right branches are mapped to clusters found within even iterates; left
branches are mapped to clusters found within odd iterates.

3. The domain of a cluster in the Enlarged Gauss Map and the domain of
its corresponding branch in the Stern-Brocot Tree are identical.

4. The cluster line x = {j0; j1, j2, . . . , jk} is associated with a cluster which
is mapped to a branch possessing the pivot {j0; j1, j2, . . . , jk}.

9. The Generalised Gauss Map

In this section we extend the domain of the Gauss Map to encompass the
entire number line. We call this map the Generalised Gauss Map,G (x).

Definition 17 (Generalised Gauss Map). The Generalised Gauss Map, G (x),
is defined as

G (x) =

{
1
x

mod 1 = frac 1
x
, for x 6= 0

0, for x = 0.

This definition implies that, for x 6= 0,

(9.1) G (−x) = 1−G (x) .

This is due to the fact that for negative arguments of any modulus n, we find
the difference between the next lower multiple of n and the argument itself.
Since the Enlarged Gauss Map, G (x) , is the right-half of G (x) we can restate
G (x) in terms of G (x). That is,

G (x) =

{ G (x) for x > 0
1− G (−x) for x < 0

.

A portion of the first iterate of G (x) is shown at Figure 3.
But what transformation of G yields G? That is, for x > 0, 0 ≤ y ≤ 1, what

transformation converts (x, y) into (−x, 1− y) in order to create the left-half
of G? This can be achieved through two reflections: Reflect G around the
y− axis and then again around y = 1

2
. We show that these reflections are

equivalent to (9.1).
Let (x, y) be a point in R2. The transformation that reflects (x, y) around

the y−axis to give the point (−x, y) is[ −x
y

]
=

[ −1 0
0 1

] [
x
y

]
.



LINKAGES BETWEEN THE GAUSS MAP AND THE STERN-BROCOT TREE 231

The transformation that reflects (x, y) around the line y = 1
2

to give the point
(x, 1− y) is [

x
1− y

]
=

[
0
1

]
+

[
1 0
0 −1

] [
x
y

]
.

We now combine these two transformations. Let (x, y) be a point in the
Enlarged Gauss Map. It is transformed into the point (−x, 1− y) in the left-
half of the Generalised Gauss Map according to the following transformation:[ −x

1− y

]
=

[
0
1

]
+

[
1 0
0 −1

] [ −1 0
0 1

] [
x
y

]

=

[
0
1

]
−

[
x
y

]
.

We now show that an extension of the Stern-Brocot Tree, styled the Gener-
alised Stern-Brocot Tree, can be made so that it covers all rational numbers,
not just the non-negative rational numbers, and that the Generalised Gauss
Map possesses a correspondence with the Generalised Stern-Brocot Tree.

10. The Generalised Stern-Brocot Tree

The Generalised Stern-Brocot Tree is formed from the Stern-Brocot Tree by
altering Level 0 so that it becomes:

Level 0 −1
0

0
1

1
0

That is, we define the Generalised Stern-Brocot Sequence by redefining H0 as
H0 =

〈−1
0

, 0
1
, 1

0

〉
in Definition 7; and we define the Generalised Stern-Brocot

Tree by using H0 =
〈−1

0
, 0

1
, 1

0

〉
in Definition 8. Figure 1 gives the first five levels

of the Generalised Stern-Brocot Tree.
Recall from (3.1) that for the Stern-Brocot Tree:

{a0; a1, a2, . . . , ak + 1} =

{
Ra0+1La1Ra2 . . . Lak for k odd
Ra0+1La1Ra2 . . . Rak for k even.

Since the left-half of the Generalised Stern-Brocot Tree is a reflection of the
Stern Brocot Tree around 0

1
, we have reverse movements occurring from 0

1
when locating negative entries. Thus, for a0 ≥ 0, a1 ≥ 1, a2 ≥ 1, . . . , ak ≥ 1,

−{a0; a1, a2, . . . , ak + 1} =

{
La0+1Ra1La2 . . . Rak for k odd
La0+1Ra1La2 . . . Lak for k even.

11. Mapping the Generalised Gauss Map to the Generalised
Stern-Brocot Tree

Since the right halves of both generalised systems are simply the Enlarged
Gauss Map and the Stern-Brocot Tree, for which we have previously identified
linkages these linkages are retained in the Generalised Gauss Map and the
Generalised Stern-Brocot Tree. However to perform mappings between the
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left halves of each construction we need an expression for negative continued
fractions.

Theorem 6. For a0 ≥ 0, a1 ≥ 1, . . . , ak ≥ 1,

−{a0; a1, a2, . . . , ak} = {−a0 − 1; 1, a1 − 1, a2, . . . , ak} .

Proof.

−{a0; a1, a2, . . . , ak} = (−a0 − 1) + (1− {0; a1, a2, . . . , ak})
= (−a0 − 1) + ({0; 1, a1 − 1, a2, . . . , ak}) by (6.1)

= {−a0 − 1; 1, a1 − 1, a2, . . . , ak}
¤

Note that where a1 = 1, we have

{a0; a1, a2, . . . , ak} = {−a0 − 1; 1 + a2, a3, . . . , ak} .

We can now extend Definition 16 to encompass the Generalised Gauss Map
and the Generalised Stern-Brocot Tree. But firstly we define parts in Gk.

Definition 18 (Parts in the Generalised Gauss Map). [j0; j1, . . . , jk] is that
part of Gk whose domain is [{j0; j1, . . . , jk, 1} , {j0; j1, . . . , jk}) where j0 ∈ Z,
ji ∈ Z+, i > 0.

Definition 19 (Map between the Generalised Gauss Map and the Generalised
Stern-Brocot Tree). Let P be the class of all parts of all iterates of the Gen-
eralised Gauss Map. Let K : P→ Q denote the map between the Generalised
Gauss Map and the Generalised Stern-Brocot Tree given by:

[j0; j1, . . . , jk]
K→ {j0; j1, . . . , jk} .

That is, under K, the (j0, j1, . . . , jk)
th part in Gk is transformed into the term

{j0; j1, . . . , jk} in the Generalised Stern-Brocot Tree.

Under K:
1. Clusters in the Generalised Gauss Map become branches in the Gener-

alised Stern-Brocot Tree. That is, sequential parts within a given cluster are
mapped to sequential members of the corresponding branch.

2. The domain of a cluster and the domain of its corresponding branch are
identical.

3. The cluster line x = {j0; j1, j2, . . . , jk} is associated with a cluster which
is mapped to a branch possessing the pivot {j0; j1, j2, . . . , jk}.
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