RECENT RESULTS ON THE DERIVED LENGTH OF LIE SOLVABLE GROUP ALGEBRAS

TIBOR JUHÁSZ

Abstract

Let G be a group with cyclic commutator subgroup of order p^{n} and F a field of characteristic p. We obtain the description of the group algebras $F G$ of Lie derived length 3.

1. Introduction and results

Let us consider the group algebra $F G$ of a group G over a field F as a Lie algebra with the usual bracket operation and define the Lie derived series and the strong Lie derived series of $F G$ as follows: let $\delta^{[0]}(F G)=\delta^{(0)}(F G)=F G$ and

$$
\begin{aligned}
\delta^{[n+1]}(F G) & =\left[\delta^{[n]}(F G), \delta^{[n]}(F G)\right], \\
\delta^{(n+1)}(F G) & =\left[\delta^{(n)}(F G), \delta^{(n)}(F G)\right] F G,
\end{aligned}
$$

where $[X, Y]$ is the additive subgroup generated by all Lie commutators $[x, y]=$ $x y-y x$ with $x \in X$ and $y \in Y$. We say that $F G$ is Lie solvable if there exists m such that $\delta^{[m]}(F G)=0$, and similarly, if $\delta^{(n)}(F G)=0$ for some n then $F G$ is said to be strongly Lie solvable. The minimal integers m, n for which $\delta^{[m]}(F G)=0$ and $\delta^{(n)}(F G)=0$ are called the Lie derived length and the strong Lie derived length of $F G$ and they are denoted by $\mathrm{dl}_{L}(F G)$ and $\mathrm{dl}^{L}(F G)$, respectively. I. B. S. Passi, D. S. Passman and S. K. Sehgal [6] proved that a group algebra $F G$ is Lie solvable if and only if one of the following conditions holds: (i) G is abelian; (ii) $\operatorname{char}(F)=p$ and the commutator subgroup G^{\prime} of G is a finite p-group; (iii) $\operatorname{char}(F)=2$ and G has a subgroup H of index 2 whose commutator subgroup H^{\prime} is a finite 2-group. As it is well-known, a group algebra $F G$ is strongly Lie solvable if either G is abelian or $\operatorname{char}(F)=p$ and G^{\prime} is a finite p-group.

It is obvious that $\mathrm{dl}_{L}(F G)=\mathrm{dl}^{L}(F G)=1$ if and only if G is abelian. The group algebras $F G$ with $\mathrm{dl}_{L}(F G)=2$ are known as Lie metabelian group

[^0]algebras. F. Levin and G. Rosenberger described these group algebras in [4], namely, a noncommutative group algebra $F G$ of characteristic p is Lie metabelian if and only if one of the following conditions holds: (i) $p=3$ and G^{\prime} is central of order 3; (ii) $p=2$ and G^{\prime} is central and elementary abelian of order dividing 4. Moreover, they proved that $\mathrm{dl}_{L}(F G)=2$ if and only if $\mathrm{dl}^{L}(F G)=2$.
M. Sahai in [9] gave the full description of the strongly Lie solvable group algebras of strong derived length 3 for odd characteristic, and showed that the statements $\delta^{[3]}(F G)=0$ and $\delta^{(3)}(F G)=0$ are equivalent, provided $\operatorname{char}(F) \geq$ 7. In the other cases the question is still open. Further examples can be found in R. Rossmanith's papers $[7,8]$ for group algebras with Lie derived length at most 3 of characteristic 2 .

The introductory results on the Lie derived length of Lie solvable group algebras are in A. Shalev's papers [10, 11].

In this article we continue the study which we started in $[3,1]$. In $[3]$ the Lie solvable group algebras $F G$ whose Lie derived lengths are maximal are given in the case when G is a nilpotent group with cyclic commutator subgroup of order p^{n}. Later [1], we investigated the non-nilpotent case.

To describe the Lie solvable group algebras of derived length 3 seems a difficult problem. A partial solution can be found here; we indeed prove the following
Theorem 1. Let G be a group with cyclic commutator subgroup of order p^{n} and let F be a field of characteristic p. Then $\mathrm{dl}_{L}(F G)=3$ if and only if one of the following conditions holds:
(i) $p=7, n=1$ and G is nilpotent;
(ii) $p=5, n=1$ and either $x^{g}=x^{-1}$ for all $x \in G^{\prime}$ and $g \notin C_{G}\left(G^{\prime}\right)$ or G is nilpotent;
(iii) $p=3, n=1$ and G is not nilpotent;
(iv) $p=2$ and
a) $n=2$;
b) $n=3$ and G is of class 4 ;
c) G has an abelian subgroup of index 2 .
A. Shalev proved (see Proposition C in [11]): if G is an abelian-by-cyclic p-group of class two with $p>2$ and $\operatorname{char}(F)=p$, then $\mathrm{dl}_{L}(F G)=\left\lceil\log _{2}\left(t\left(G^{\prime}\right)+\right.\right.$ 1) \rceil, where $t\left(G^{\prime}\right)$ denotes the nilpotent index of the augmentation ideal of $F G^{\prime}$ and $\lceil r\rceil$ the upper integral part of a real number r. We generalize this result for the case when the nilpotency class of G is not necessary two.
Theorem 2. Let G be an abelian-by-cyclic p-group with $p>2$ such that $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$ and let F be a field of characteristic p. Then

$$
\mathrm{dl}_{L}(F G)=\mathrm{dl}^{L}(F G)=\left\lceil\log _{2} t\left(G^{\prime}\right)+1\right\rceil
$$

In this article $\omega(F G)$ denotes the augmentation ideal of $F G$; for a normal subgroup $H \subseteq G$ we denote by $\Im(H)$ the ideal $F G \cdot \omega(F H)$. For $x, y \in G$
let $x^{y}=y^{-1} x y,(x, y)=x^{-1} x^{y}$. By $\zeta(G)$ we mean the center of the group G, by $\gamma_{n}(G)$ the n-th term of the lower central series of G with $\gamma_{1}(G)=G$. Furthermore, we denote by C_{n} the cyclic group of order n.

2. Preliminaries and proofs

Proposition 1. Let G be a group and $\operatorname{char}(F)=2$. If H is a subgroup of index 2 of G whose commutator subgroup H^{\prime} is a finite 2-group, then

$$
\mathrm{dl}_{L}(F G) \leq\left\lceil\log _{2} t\left(H^{\prime}\right)\right\rceil+3
$$

Proof. Firstly, suppose that H is an abelian subgroup of index 2 of G. Then $G=\langle H, b\rangle$ for some b and every $x \in F G$ has a unique representation in the form $x=x_{1}+x_{2} b$, where $x_{1}, x_{2} \in F H$. It is easy to see that the map $u \mapsto \bar{u}=b^{-1} u b(u \in F H)$ is an automorphism of order 2 of $F H$ and for all $x, y \in F G$

$$
\begin{aligned}
{[x, y] } & =\left[x_{1}+x_{2} b, y_{1}+y_{2} b\right] \\
& =\left(x_{2} \overline{y_{2}}+\overline{x_{2}} y_{2}\right) b^{2}+\left(\left(x_{1}+\overline{x_{1}}\right) y_{2}+x_{2}\left(\overline{y_{1}}+y_{1}\right)\right) b \\
& \equiv w_{1} b \quad(\bmod \zeta(F G)),
\end{aligned}
$$

where $w_{1} \in F H$ and $\zeta(F G)$ denotes the center of $F G$. Similarly, for $u, v \in F G$ we have $[u, v] \equiv w_{2} b(\bmod \zeta(F G))$ for some $w_{2} \in F H$. Hence

$$
[[x, y],[u, v]]=\left[w_{1} b, w_{2} b\right]=\left(w_{1} \overline{w_{2}}+\overline{w_{1}} w_{2}\right) b^{2} \in F H
$$

Since the elements of the form $[[x, y],[u, v]]$ with $x, y, u, v \in F G$ generate $\delta^{[2]}(F G)$ and $F H$ is a commutative algebra, $\delta^{[3]}(F G)=0$, as asserted.

Let now H be nonabelian. It is clear that H^{\prime} is normal in G and H / H^{\prime} is an abelian subgroup of index 2 of G / H^{\prime}, so we can use the result proved above to get $\delta^{[3]}\left(F\left(G / H^{\prime}\right)\right)=0$. In view of $F\left(G / H^{\prime}\right) \cong F G / \Im\left(H^{\prime}\right)$ we have $\delta^{[3]}(F G) \subseteq \Im\left(H^{\prime}\right)$. Hence an easy induction on k yields $\delta^{[3+k]}(F G) \subseteq \Im\left(H^{\prime}\right)^{2^{k}}$ for all $k \geq 0$. Consequently, if $2^{k} \geq t\left(H^{\prime}\right)$, that is $k \geq\left\lceil\log _{2} t\left(H^{\prime}\right)\right\rceil$, then $\delta^{[3+k]}(F G)=0$, which implies the statement.

Let G be a group with commutator subgroup $G^{\prime}=\left\langle x \mid x^{2^{n}}=1\right\rangle$, where $n \geq 3$. It is well known that the automorphism group aut $\left(G^{\prime}\right)$ of G^{\prime} is a direct product of the cyclic group $\langle\alpha\rangle$ of order 2 and the cyclic group $\langle\beta\rangle$ of order 2^{n-2} where the action of these automorphisms on G^{\prime} is given by $\alpha(x)=x^{-1}, \beta(x)=x^{5}$. For $g \in G$, let τ_{g} denote the restriction to G^{\prime} of the inner automorphism $h \mapsto h^{g}$ of G. The map $G \rightarrow \operatorname{aut}(G), g \mapsto \tau_{g}$ is a homomorphism whose kernel coincides with the centralizer $C=C_{G}\left(G^{\prime}\right)$. Clearly, the map $\varphi: G / C \rightarrow \operatorname{aut}\left(G^{\prime}\right)$ given by $\varphi(g C)=\tau_{g}$ is a monomorphism. In [3] we introduced the subset

$$
G_{\beta}=\{g \in G \mid \varphi(g C) \in\langle\beta\rangle\}
$$

of G. Evidently, G_{β} is a subgroup of index not greater than 2. It is shown in [3] that $G=G_{\beta}$ if and only if G has nilpotency class at most n, furthermore
under this condition $\mathrm{dl}_{L}(F G)=n+1$. Combining this fact with Proposition 1 we obtain the following statement.

Corollary 1. Let G be a group with cyclic commutator subgroup of order 2^{n} and let $\operatorname{char}(F)=2$. If G_{β}^{\prime} has order 2^{r}, then

$$
r+1 \leq \mathrm{dl}_{L}(F G) \leq r+3
$$

Proof. If $G=G_{\beta}$ then Lemma 3 and Theorem 1 in [3] say $\mathrm{dl}_{L}(F G)=r+$ 1. Otherwise, G_{β} is of index 2 in G and we can apply Proposition 1 to get $\mathrm{dl}_{L}(F G) \leq r+3$. Furthermore, Lemma 3 and Theorem 1 of [3] ensure that $\mathrm{dl}_{L}\left(F G_{\beta}\right)=r+1$. Since $\mathrm{dl}_{L}\left(F G_{\beta}\right) \leq \mathrm{dl}_{L}(F G)$, the corollary is true.
Let $\operatorname{char}(F)=2$ and $H=\left\langle x \mid x^{2^{n}}=1\right\rangle$. We claim that if $r>0$ and the k_{j} 's are odd positive integers for $1 \leq j \leq r$ then the element

$$
\varrho=\left(x^{k_{1}}+1\right)\left(x^{k_{2}}+1\right) \cdots\left(x^{k_{r}}+1\right) \in F H
$$

is equal to zero if and only if $r \geq 2^{n}$.
Indeed, $\varrho \in \omega^{r}(F H)$ and if $r \geq 2^{n}$ then $\varrho=0$, because $t(H)=2^{n}$. Assume now $r<2^{n}$. Applying the identity

$$
\left(x^{k_{j}}+1\right)=\left(x^{k_{j}-1}+1\right)(x+1)+\left(x^{\left(k_{j}-1\right) / 2}+1\right)^{2}+(x+1)
$$

for every $1 \leq j \leq r$, we can write $\varrho=(x+1)^{r}+\varrho_{1}$, where ϱ_{1} is the sum of elements of weight greater than r. Clearly, $(x+1)^{r} \in \omega^{r}(F H) \backslash \omega^{r+1}(F H)$ and $\varrho_{1} \in \omega^{r+1}(F H)$, hence $\varrho \in \omega^{r}(F H) \backslash \omega^{r+1}(F H)$ and $\varrho \neq 0$.

In the sequel we shall use freely this fact.
In the proof of the next lemmas we will use that $C^{\prime} \subseteq G^{\prime} \cap \zeta(G)$. This inclusion is indeed valid, because for $a, b, c \in G$ the well-known Hall-Witt identity states that

$$
\left(a, b^{-1}, c\right)^{b}\left(b, c^{-1}, a\right)^{c}\left(c, a^{-1}, b\right)^{a}=1
$$

Evidently, if $b, c \in C$ then this formula yields that $(b, c, a)=1$, which guarantees our statement.
Lemma 1. Let G be a group with commutator subgroup $G^{\prime}=\langle x| x^{2^{n}}=$ $1\rangle$, where $n>3$, let $\operatorname{char}(F)=2$ and assume that $\exp (G / C) \leq 2$. Then $\mathrm{dl}_{L}(F G)=3$ if and only if C is abelian and $G / C=\langle a C\rangle$, where $x^{a}=x^{-1}$.

Proof. Since $\exp (G / C) \leq 2$, only the following cases are possible:
Case 1: either G / C is trivial or $G / C=\langle b C\rangle$ where $x^{b}=x^{2^{n-1}+1}$. Clearly, G has nilpotency class at most 3 , therefore by Theorem 1 in [3] we have $\mathrm{dl}_{L}(F G)=n+1$.

Case 2: $G / C=\langle a C\rangle$, where $x^{a}=x^{-1}$. Then $C^{\prime} \subseteq G^{\prime} \cap \zeta(G)=\left\langle x^{2^{n-1}}\right\rangle$. If $C^{\prime}=\langle 1\rangle$ then C is an abelian subgroup of index 2 of G and Proposition 1 implies that $\mathrm{dl}_{L}(F G)=3$. Now, let $C^{\prime}=\left\langle x^{2^{n-1}}\right\rangle$. Then we can choose $b, c \in C$ such that

$$
(c, a)=x, \quad(c, b)=x^{2^{n-1}}, \quad(a, b) \in\left\langle x^{2}\right\rangle
$$

Indeed, let us consider the map $\varphi: C \rightarrow G^{\prime}$, where $\varphi(c)=(c, a)$, which is an epimorphism because $G^{\prime}=(a, C)$. Of course, $H=\varphi^{-1}\left(\left\langle x^{2}\right\rangle\right)$ is a proper subgroup of C. Let $u \in C \backslash \zeta(C)$ and $c \in C \backslash\left(H \cup C_{C}(u)\right)$ be such that $(c, a)=x$. Obviously, $(c, u)=x^{2^{n-1}}$. If $(a, u) \in\left\langle x^{2}\right\rangle$ then set $b=u$, otherwise $b=c u$. It is easy to see that the elements b and c satisfy the conditions stated. Then

$$
\begin{aligned}
& {\left[\left[[c, a],\left[c^{-1} a, c\right]\right],\left[[c, a],\left[c^{-1} b a, c\right]\right]\right]} \\
& \quad=\left[\left[a c(x+1), a\left(x^{-1}+1\right)\right],\left[a c(x+1), b a\left(x^{2^{n-1}-1}+1\right)\right]\right] \\
& \quad=\left[a^{2} c x^{-1}(x+1)^{3}, b a^{2} c\left((b, a) x^{-1}+1\right)\left(x^{2^{n-1}+1}+1\right)(x+1)\right] \\
& \quad=a^{4} b c^{2} x^{-1}\left((b, a) x^{-1}+1\right)\left(x^{2^{n-1}+1}+1\right)(x+1)^{2^{n-1}+4}
\end{aligned}
$$

belongs to $\delta^{[3]}(F G)$ and is not equal to zero, thus $\mathrm{dl}_{L}(F G)>3$.
Case 3: $G / C=\langle d C\rangle$, where $x^{d}=x^{2^{n-1}-1}$. Since $G^{\prime}=(d, C)$, similarly as before, we can choose $c \in C$ such that $(c, d)=x$. Then

$$
\begin{aligned}
{\left[\left[[c, d],\left[d^{-1} c, d\right]\right]\right.} & ,[[c, d],[c, d c]]] \\
& =\left[[d c(x+1), c(x+1)],\left[d c(x+1), d c^{2}(x+1)\right]\right] \\
& =\left[d c^{2}(x+1)^{2^{n-1}+1}, d^{2} c^{3} x\left(x^{2^{n-1}-1}+1\right)(x+1)^{2}\right] \\
& =d^{3} c^{5} x\left(x^{2^{n-1}-1}+1\right)\left(x^{2^{n-2}-1}+1\right)^{2}(x+1)^{2^{n-1}+2}
\end{aligned}
$$

is a nonzero element in $\delta^{[3]}(F G)$ so $\mathrm{dl}_{L}(F G)>3$.
Case 4: $G / C=\langle a C, b C\rangle$, where $x^{a}=x^{-1}$ and $x^{b}=x^{2^{n-1}+1}$. Then

$$
G^{\prime}=\langle(a b, b)\rangle(a b, C)(b, C) C^{\prime}=\langle(a, b)\rangle(a b, C)(b, C),
$$

because $C^{\prime} \subseteq\left\langle x^{2^{n-1}}\right\rangle$. Since G^{\prime} is cyclic, G^{\prime} coincides with either $\langle(a, b)\rangle$ or $(a b, C)$ or (b, C).

Assume that $G^{\prime}=(a b, C)$ and set $H=\langle a b, C\rangle$. Then H satisfies the hypothesis of Case 3 of this lemma, so $\mathrm{dl}_{L}(F G) \geq \mathrm{dl}_{L}(F H)>3$. We get the same result in the case $G^{\prime}=(b, C)$.

There remains the possibility that $(a, b)=y$ is of order 2^{n}. Then

$$
\begin{aligned}
& {\left[\left[[a, b],\left[b^{-1} a, b\right]\right],[[a, b],[b, a b]]\right]} \\
& \quad=\left[[b a(y+1), a(y+1)],\left[b a(y+1), a b^{2}\left(y^{2^{n-1}-1}+1\right)\right]\right] \\
& \quad=\left[b a^{2}\left(y^{2^{n-1}-2}+1\right)(y+1), b^{3} a^{2} y^{-1}\left(y^{2^{n-1}-2}+1\right)(y+1)\right] \\
& \quad=b^{4} a^{4} y^{-1}\left(y^{-1}+1\right)^{4}\left(y^{2^{n-1}+1}+1\right)(y+1)^{2^{n-1}+1} \neq 0,
\end{aligned}
$$

and the statement is valid.

Lemma 2. Let G be a group with commutator subgroup $G^{\prime}=\left\langle x \mid x^{16}=1\right\rangle$ and let $\operatorname{char}(F)=2$. Then $\mathrm{dl}_{L}(F G)=3$ if and only if G has an abelian subgroup of index 2.

Proof. By the previous lemma, the statement is true if $\exp (G / C) \leq 2$. The other possible cases are:

Case 1: $G / C=\langle b C\rangle$, where $x^{b}=x^{5}$. Since then $G=G_{\beta}$, Lemma 3 and Theorem 1 in [3] state that $\mathrm{dl}_{L}(F G)=5$.

Case 2: $G / C=\langle d C\rangle$, where $x^{d}=x^{-5}$. Then $G^{\prime}=(d, C)$ and, as before, we can choose $c \in C$ such that $(c, d)=x$ and

$$
\begin{aligned}
{\left[\left[[c, d],\left[d^{-1} c, d\right]\right]\right.} & ,[[c, d],[c, d c]]] \\
& =\left[[d c(x+1), c(x+1)],\left[d c(x+1), d c^{2}\left(x^{-5}+1\right)\right]\right] \\
& =\left[d c^{2}\left(x^{-4}+1\right)(x+1), d^{2} c^{3}\left(x^{-5}+1\right)(x+1)^{2}\right] \\
& =b^{3} c^{5} x^{6}\left(x^{-5}+1\right)\left(x^{9}+1\right)(x+1)^{9}
\end{aligned}
$$

belongs to $\delta^{[3]}(F G)$ and is not zero.
Case 3: $G / C=\langle a C, b C\rangle$, where $x^{a}=x^{-1}$ and $x^{b}=x^{5}$. Then by similar arguments as in the last case of the previous lemma we can restrict ourselves to the case when $(a, b)=x$. Then

$$
\begin{aligned}
{\left[\left[[a, b],\left[b^{-1} a, b\right]\right]\right.} & ,[[a, b],[b, a b]]] \\
& =\left[[b a(x+1), a(x+1)],\left[b a(x+1), a b^{2}\left(x^{-5}+1\right)\right]\right] \\
& =\left[b a^{2}\left(x^{10}+1\right)(x+1), b^{3} a^{2}\left(x^{10}+1\right)\left(x^{7}+1\right)\right] \\
& =b^{4} a^{4} x^{3}\left(x^{5}+1\right)^{4}(x+1)^{6} \neq 0,
\end{aligned}
$$

which was to be proved.
Now we are ready to prove our main theorem.
Proof of Theorem 1. Suppose first that $p>7$. Then Theorem A in [10] states that $\mathrm{dl}_{L}(F G) \geq\left\lceil\log _{2}(p+1)\right\rceil \geq 4$. For odd $p \leq 7$ the statement follows directly from Theorem 1 in [3], Theorem 1 in [1].

Let $G^{\prime}=\left\langle x \mid x^{2^{n}}=1\right\rangle$. The result follows from Theorem 1 in [3] for $n=2$ and $n=3$. For $n>3$, using induction on n, we shall show that if $\mathrm{dl}_{L}(F G)=3$ then C is abelian and $G / C=\langle a C\rangle$, where $x^{a}=x^{-1}$ (i.e. G has an abelian subgroup of index 2). Indeed, by Lemma 2, this is true for $n=4$. Let now $n>4$ and $\mathrm{dl}_{L}(F G)=3$ and assume that the statement is true for every group with commutator subgroup of order less than 2^{n}. Set $H=\left\langle x^{2^{n-1}}\right\rangle \subset G^{\prime}$. Then $\mathrm{dl}_{L}(F(G / H))=3$ and $(G / H)^{\prime}=G^{\prime} / H=\langle x H\rangle$, and by inductive hypothesis we get

$$
(x H)^{g H}=x^{g} H=x^{(-1)^{k}} H
$$

for all $g \in G$. It follows that $x^{g}=x^{i}$ with $i \in\left\{-1,1,2^{n-1}-1,2^{n-1}+1\right\}$, i.e. $\exp (G / C) \leq 2$ and the statement follows from Lemma 1.
Example. Let G_{i} be a finite nonabelian 2-group of order 2^{m} and exponent 2^{m-2} from the list in [5]. The group algebras of G_{i} have been examined by several authors, for example V. Bovdi [2]. Our results enable us to determine the derived length of $F G_{i}$ over a field F of characteristic 2. Using Proposition 1 and Theorem 1 we get

$$
\mathrm{dl}_{L}\left(F G_{i}\right)= \begin{cases}2, & \text { if either } i \in\{2,3\} \text { and } m=4 \text { or } i \in\{1,4,5,9,10\} \\ 4, & \text { if } i \in\{15,16,18,20,24,25\} \text { and } m>5 \\ 3, & \text { otherwise. }\end{cases}
$$

Note that $G_{17}^{\prime} \cong G_{26}^{\prime} \cong C_{2} \times C_{2}$. Then we applied Theorem 3 in [4] to compute the derived length.

Now let us turn to Theorem 2.
Lemma 3. Let G be a group with commutator subgroup of order p^{n} and $\operatorname{char}(F)=p$. If $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$ then for all $m \geq 1$

$$
\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \subseteq \Im\left(G^{\prime}\right)^{m+p-1}
$$

Moreover, if G^{\prime} is abelian, then for all $m, k \geq 1$

$$
\left[\mathfrak{I}\left(G^{\prime}\right)^{m}, \mathfrak{I}\left(G^{\prime}\right)^{k}\right] \subseteq \Im\left(G^{\prime}\right)^{m+k+1}
$$

Proof. We use induction on m. For every $y \in G^{\prime}$ and $g \in G$ we have

$$
[y-1, g-1]=[y, g]=g y((y, g)-1) \in \mathfrak{I}\left(\gamma_{3}(G)\right) \subseteq \Im\left(G^{\prime}\right)^{p}
$$

This shows that the statement holds for $m=1$, because all elements of the form $g-1$ with $g \in G$ constitute an F-basis of $\omega(F G)$.

Now, assume that $\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \subseteq \Im\left(G^{\prime}\right)^{m+p-1}$ for some m. Then

$$
\begin{aligned}
& {\left[\omega^{m+1}\left(F G^{\prime}\right), \omega(F G)\right]} \\
& \quad \subseteq \omega^{m}\left(F G^{\prime}\right)\left[\omega\left(F G^{\prime}\right), \omega(F G)\right]+\left[\omega^{m}\left(F G^{\prime}\right), \omega(F G)\right] \omega\left(F G^{\prime}\right) \\
& \quad \subseteq \omega^{m}\left(F G^{\prime}\right) \mathfrak{I}\left(G^{\prime}\right)^{p}+\Im\left(G^{\prime}\right)^{m+p-1} \omega\left(F G^{\prime}\right) \subseteq \Im\left(G^{\prime}\right)^{m+p}
\end{aligned}
$$

and the proof of the first assertion is complete. The second one is a consequence of the first one, because

$$
\mathfrak{I}\left(G^{\prime}\right)=\omega(F G) \omega\left(F G^{\prime}\right)+\omega\left(F G^{\prime}\right) .
$$

Proof of Theorem 2. Write $G=\langle A, x\rangle$, where A is abelian and normal in G. Clearly, $G^{\prime}=(A, x)$ is abelian. We shall show that for all $c \in A$ and $z_{1}, z_{2}, \ldots, z_{2^{n}-1} \in G^{\prime}$ and j not divisible by p there exists $\varrho \in \Im\left(G^{\prime}\right)^{2^{n}}$ such that

$$
x^{j} c\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{2^{n}-1}\right)+\varrho \in \delta^{[n]}(F G) .
$$

We use induction on n. Let first $n=1$ and $2 k \equiv j$ modulo the order of x. Then $G^{\prime}=\left(A, x^{k}\right)$ and $z_{1}=\left(a_{1}, x^{k}\right) \cdots\left(a_{s}, x^{k}\right)$ for some $a_{1}, \ldots, a_{s} \in A$, thus

$$
\begin{equation*}
x^{j} c\left(1-z_{1}\right) \equiv \sum_{i=1}^{s} x^{j} c\left(1-\left(a_{i}, x^{k}\right)\right) \quad\left(\bmod \Im\left(G^{\prime}\right)^{2}\right) \tag{1}
\end{equation*}
$$

Since p is an odd prime, we can choose the elements u_{i}, v_{i} such that $u_{i}^{2}=c a_{i}^{-1}$ and $v_{i}^{2}=c a_{i}$. Then $u_{i}, v_{i} \in A,\left(u_{i} v_{i}\right)^{2}=c^{2}$ and $\left(u_{i}^{-1} v_{i}\right)^{2}=a_{i}^{2}$ which implies $u_{i} v_{i}=c$ and $u_{i}^{-1} v_{i}=a_{i}$. Setting $w_{i}=x^{k} u_{i}\left(x^{k}\right)^{-1}$ we have

$$
\begin{aligned}
{\left[x^{k} w_{i}, x^{k} v_{i}\right] } & =x^{j}\left(w_{i}^{x^{k}} v_{i}-w_{i} v_{i}^{x^{k}}\right) \\
& =x^{j} w_{i}^{x^{k}} v_{i}\left(1-\left(w_{i}^{-1} v_{i}, x^{k}\right)\right)=x^{j} c\left(1-\left(a_{i}, x^{k}\right)\right)
\end{aligned}
$$

because $\left(w_{i}^{-1} v_{i}, x^{k}\right)=\left(u_{i}^{-1} v_{i}, x^{k}\right)=\left(a_{i}, x^{k}\right)$. Now by (1) it follows that

$$
\begin{equation*}
x^{j} c\left(1-z_{1}\right) \equiv \sum_{i=1}^{s}\left[x^{k} w_{i}, x^{k} v_{i}\right] \quad\left(\bmod \Im\left(G^{\prime}\right)^{2}\right), \tag{2}
\end{equation*}
$$

which proves our statement for $n=1$.
Now, assume that $j, c, z_{1}, z_{2}, \ldots, z_{2^{n}-1}$ have already been given, and let $2 k \equiv$ j modulo the order of x. We can apply the method above to find elements $w_{i}, v_{i} \in A$ such that the congruence (2) holds. Set

$$
f_{i}=x^{k} w_{i}\left(1-z_{2}\right) \cdots\left(1-z_{2^{n-1}}\right)
$$

and

$$
g_{i}=x^{k} v_{i}\left(1-z_{2^{n-1}+1}\right) \cdots\left(1-z_{2^{n}-1}\right) .
$$

for $1 \leq i \leq s$. By the induction hypothesis there exist $\varrho_{1}^{(i)}, \varrho_{2}^{(i)} \in \Im\left(G^{\prime}\right)^{2^{n-1}}$ such that $f_{i}+\varrho_{1}^{(i)}, g_{i}+\varrho_{2}^{(i)} \in \delta^{[n-1]}(F G)$. Evidently,

$$
\left[f_{i}+\varrho_{1}^{(i)}, g_{i}+\varrho_{2}^{(i)}\right]=\left[f_{i}, g_{i}\right]+\left[f_{i}, \varrho_{2}^{(i)}\right]+\left[\varrho_{1}^{(i)}, g_{i}\right]+\left[\varrho_{1}^{(i)}, \varrho_{2}^{(i)}\right] \in \delta^{[n]}(F G)
$$

According to Lemma 3 the last three summands are in $\mathfrak{I}\left(G^{\prime}\right)^{2^{n}}$. Furthermore,

$$
\begin{aligned}
{\left[f_{i}, g_{i}\right] } & =x^{k} w_{i}\left[\left(1-z_{2}\right) \cdots\left(1-z_{2^{n-1}}\right), x^{k} v_{i}\right]\left(1-z_{2^{n-1}+1}\right) \cdots\left(1-z_{2^{n}-1}\right) \\
& +x^{k} v_{i}\left[x^{k} w_{i},\left(1-z_{2^{n-1}+1}\right) \cdots\left(1-z_{2^{n}-1}\right)\right]\left(1-z_{2}\right) \cdots\left(1-z_{2^{n-1}}\right) \\
& +\left[x^{k} w_{i}, x^{k} v_{i}\right]\left(1-z_{2}\right) \cdots\left(1-z_{2^{n}-1}\right)
\end{aligned}
$$

and the first two summands on the right-hand side belong to $\Im\left(G^{\prime}\right)^{2^{n}}$ by Lemma 3. So,

$$
\left[f_{i}+\varrho_{1}^{(i)}, g_{i}+\varrho_{2}^{(i)}\right] \equiv\left[x^{k} w_{i}, x^{k} v_{i}\right]\left(1-z_{2}\right) \cdots\left(1-z_{2^{n}-1}\right) \quad\left(\bmod \Im\left(G^{\prime}\right)^{2^{n}}\right)
$$

for all $1 \leq i \leq s$. Summing this over all possible i, we get

$$
x^{j} c\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{2^{n}-1}\right)+\varrho \in \delta^{[n]}(F G),
$$

for some $\varrho \in \mathfrak{I}\left(G^{\prime}\right)^{2^{n}}$, as we claimed.
It follows that $\delta^{[n]}(F G)$ has nonzero elements while $2^{n}-1<t\left(G^{\prime}\right)$. Hence

$$
\mathrm{dl}_{L}(F G) \geq\left\lceil\log _{2} t\left(G^{\prime}\right)+1\right\rceil
$$

and the result follows immediately from Proposition 1 in [3].

References

[1] Z. Balogh and T. Juhász. Lie derived lengths of group algebras of groups with cyclic derived subgroup. To appear in Commun. Algebra.
[2] V. Bovdi. On a filtered multiplicative basis of group algebras. II. Algebr. Represent. Theory, 6(3):353-368, 2003.
[3] T. Juhász. On the derived length of Lie solvable group algebras. Publ. Math., 68(1-2):243-256, 2006.
[4] F. Levin and G. Rosenberger. Lie metabelian group rings. Group and semigroup rings, Proc. Int. Conf., Johannesburg/South Afr. 1985, North-Holland Math. Stud. 126, 153161 (1986)., 1986.
[5] Y. Ninomiya. Finite p-groups with cyclic subgroups of index p^{2}. Math. J. Okayama Univ., 36:1-21, 1994.
[6] I. Passi, D. Passman, and S. Sehgal. Lie solvable group rings. Can. J. Math., 25:748-757, 1973.
[7] R. Rossmanith. Lie centre-by-metabelian group algebras in even characteristic. I. Isr. J. Math., 115:51-75, 2000.
[8] R. Rossmanith. Lie centre-by-metabelian group algebras in even characteristic. II. Isr. J. Math., 115:77-99, 2000.
[9] M. Sahai. Lie solvable group algebras of derived length three. Publ. Mat., Barc., 39(2):233-240, 1995.
[10] A. Shalev. The derived length of Lie soluble group rings. I. J. Pure Appl. Algebra, 78(3):291-300, 1992.
[11] A. Shalev. The derived length of Lie soluble group rings. II. J. Lond. Math. Soc., II. Ser., 49(1):93-99, 1994.

Received Apryl 10, 2006.

Institute of Mathematics and Computer Science,
Eszterházy Károly College,
H-3300 Eger, P.O. Box 43,
Hungary
E-mail address: juhaszti@ektf.hu

[^0]: 2000 Mathematics Subject Classification. 16S34, 17B30.
 Key words and phrases. Group algebras, Lie derived length.

