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RECENT RESULTS ON THE DERIVED LENGTH OF LIE
SOLVABLE GROUP ALGEBRAS

TIBOR JUHÁSZ

Abstract. Let G be a group with cyclic commutator subgroup of order
pn and F a field of characteristic p. We obtain the description of the group
algebras FG of Lie derived length 3.

1. Introduction and results

Let us consider the group algebra FG of a group G over a field F as a Lie
algebra with the usual bracket operation and define the Lie derived series and
the strong Lie derived series of FG as follows: let δ[0](FG) = δ(0)(FG) = FG
and

δ[n+1](FG) =
[
δ[n](FG), δ[n](FG)

]
,

δ(n+1)(FG) =
[
δ(n)(FG), δ(n)(FG)

]
FG,

where [X,Y ] is the additive subgroup generated by all Lie commutators [x, y] =
xy− yx with x ∈ X and y ∈ Y . We say that FG is Lie solvable if there exists
m such that δ[m](FG) = 0, and similarly, if δ(n)(FG) = 0 for some n then
FG is said to be strongly Lie solvable. The minimal integers m, n for which
δ[m](FG) = 0 and δ(n)(FG) = 0 are called the Lie derived length and the strong
Lie derived length of FG and they are denoted by dlL(FG) and dlL(FG), re-
spectively. I. B. S. Passi, D. S. Passman and S. K. Sehgal [6] proved
that a group algebra FG is Lie solvable if and only if one of the following con-
ditions holds: (i) G is abelian; (ii) char(F ) = p and the commutator subgroup
G′ of G is a finite p-group; (iii) char(F ) = 2 and G has a subgroup H of index
2 whose commutator subgroup H ′ is a finite 2-group. As it is well-known, a
group algebra FG is strongly Lie solvable if either G is abelian or char(F ) = p
and G′ is a finite p-group.

It is obvious that dlL(FG) = dlL(FG) = 1 if and only if G is abelian. The
group algebras FG with dlL(FG) = 2 are known as Lie metabelian group
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algebras. F. Levin and G. Rosenberger described these group algebras
in [4], namely, a noncommutative group algebra FG of characteristic p is Lie
metabelian if and only if one of the following conditions holds: (i) p = 3 and
G′ is central of order 3; (ii) p = 2 and G′ is central and elementary abelian
of order dividing 4. Moreover, they proved that dlL(FG) = 2 if and only if
dlL(FG) = 2.

M. Sahai in [9] gave the full description of the strongly Lie solvable group
algebras of strong derived length 3 for odd characteristic, and showed that the
statements δ[3](FG) = 0 and δ(3)(FG) = 0 are equivalent, provided char(F ) ≥
7. In the other cases the question is still open. Further examples can be found
in R. Rossmanith’s papers [7, 8] for group algebras with Lie derived length
at most 3 of characteristic 2.

The introductory results on the Lie derived length of Lie solvable group
algebras are in A. Shalev’s papers [10, 11].

In this article we continue the study which we started in [3, 1]. In [3] the Lie
solvable group algebras FG whose Lie derived lengths are maximal are given
in the case when G is a nilpotent group with cyclic commutator subgroup of
order pn. Later [1], we investigated the non-nilpotent case.

To describe the Lie solvable group algebras of derived length 3 seems a
difficult problem. A partial solution can be found here; we indeed prove the
following

Theorem 1. Let G be a group with cyclic commutator subgroup of order pn

and let F be a field of characteristic p. Then dlL(FG) = 3 if and only if one
of the following conditions holds:

(i) p = 7, n = 1 and G is nilpotent;
(ii) p = 5, n = 1 and either xg = x−1 for all x ∈ G′ and g 6∈ CG(G′) or G

is nilpotent;
(iii) p = 3, n = 1 and G is not nilpotent;
(iv) p = 2 and

a) n = 2;
b) n = 3 and G is of class 4;
c) G has an abelian subgroup of index 2.

A. Shalev proved (see Proposition C in [11]): if G is an abelian-by-cyclic
p-group of class two with p > 2 and char(F ) = p, then dlL(FG) = dlog2(t(G

′)+
1)e, where t(G′) denotes the nilpotent index of the augmentation ideal of FG′

and dre the upper integral part of a real number r. We generalize this result
for the case when the nilpotency class of G is not necessary two.

Theorem 2. Let G be an abelian-by-cyclic p-group with p > 2 such that
γ3(G) ⊆ (G′)p and let F be a field of characteristic p. Then

dlL(FG) = dlL(FG) = dlog2 t(G′) + 1e.
In this article ω(FG) denotes the augmentation ideal of FG; for a normal

subgroup H ⊆ G we denote by I(H) the ideal FG · ω(FH). For x, y ∈ G
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let xy = y−1xy, (x, y) = x−1xy. By ζ(G) we mean the center of the group
G, by γn(G) the n-th term of the lower central series of G with γ1(G) = G.
Furthermore, we denote by Cn the cyclic group of order n.

2. Preliminaries and proofs

Proposition 1. Let G be a group and char(F ) = 2. If H is a subgroup of
index 2 of G whose commutator subgroup H ′ is a finite 2-group, then

dlL(FG) ≤ dlog2 t(H ′)e+ 3.

Proof. Firstly, suppose that H is an abelian subgroup of index 2 of G. Then
G = 〈H, b〉 for some b and every x ∈ FG has a unique representation in
the form x = x1 + x2b, where x1, x2 ∈ FH. It is easy to see that the map
u 7→ u = b−1ub (u ∈ FH) is an automorphism of order 2 of FH and for all
x, y ∈ FG

[x, y] = [x1 + x2b, y1 + y2b]

= (x2y2 + x2y2)b
2 +

(
(x1 + x1)y2 + x2(y1 + y1)

)
b

≡ w1b (mod ζ(FG)),

where w1 ∈ FH and ζ(FG) denotes the center of FG. Similarly, for u, v ∈ FG
we have [u, v] ≡ w2b (mod ζ(FG)) for some w2 ∈ FH. Hence[

[x, y], [u, v]
]

= [w1b, w2b] = (w1w2 + w1w2)b
2 ∈ FH.

Since the elements of the form
[
[x, y], [u, v]

]
with x, y, u, v ∈ FG generate

δ[2](FG) and FH is a commutative algebra, δ[3](FG) = 0, as asserted.
Let now H be nonabelian. It is clear that H ′ is normal in G and H/H ′

is an abelian subgroup of index 2 of G/H ′, so we can use the result proved
above to get δ[3]

(
F (G/H ′)

)
= 0. In view of F (G/H ′) ∼= FG/I(H ′) we have

δ[3](FG) ⊆ I(H ′). Hence an easy induction on k yields δ[3+k](FG) ⊆ I(H ′)2k

for all k ≥ 0. Consequently, if 2k ≥ t(H ′), that is k ≥ dlog2 t(H ′)e, then
δ[3+k](FG) = 0, which implies the statement. ¤

Let G be a group with commutator subgroup G′ = 〈x | x2n
= 1〉, where

n ≥ 3. It is well known that the automorphism group aut(G′) of G′ is a
direct product of the cyclic group 〈α〉 of order 2 and the cyclic group 〈β〉
of order 2n−2 where the action of these automorphisms on G′ is given by
α(x) = x−1, β(x) = x5. For g ∈ G, let τg denote the restriction to G′

of the inner automorphism h 7→ hg of G. The map G → aut(G), g 7→ τg

is a homomorphism whose kernel coincides with the centralizer C = CG(G′).
Clearly, the map ϕ : G/C → aut(G′) given by ϕ(gC) = τg is a monomorphism.
In [3] we introduced the subset

Gβ =
{
g ∈ G | ϕ(gC) ∈ 〈β〉}

of G. Evidently, Gβ is a subgroup of index not greater than 2. It is shown in
[3] that G = Gβ if and only if G has nilpotency class at most n, furthermore
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under this condition dlL(FG) = n+1. Combining this fact with Proposition 1
we obtain the following statement.

Corollary 1. Let G be a group with cyclic commutator subgroup of order 2n

and let char(F ) = 2. If G′
β has order 2r, then

r + 1 ≤ dlL(FG) ≤ r + 3.

Proof. If G = Gβ then Lemma 3 and Theorem 1 in [3] say dlL(FG) = r +
1. Otherwise, Gβ is of index 2 in G and we can apply Proposition 1 to get
dlL(FG) ≤ r + 3. Furthermore, Lemma 3 and Theorem 1 of [3] ensure that
dlL(FGβ) = r + 1. Since dlL(FGβ) ≤ dlL(FG), the corollary is true. ¤

Let char(F ) = 2 and H = 〈x | x2n
= 1〉. We claim that if r > 0 and the kj’s

are odd positive integers for 1 ≤ j ≤ r then the element

% = (xk1 + 1)(xk2 + 1) · · · (xkr + 1) ∈ FH

is equal to zero if and only if r ≥ 2n.
Indeed, % ∈ ωr(FH) and if r ≥ 2n then % = 0, because t(H) = 2n. Assume

now r < 2n. Applying the identity

(xkj + 1) = (xkj−1 + 1)(x + 1) + (x(kj−1)/2 + 1)2 + (x + 1)

for every 1 ≤ j ≤ r, we can write % = (x + 1)r + %1, where %1 is the sum of
elements of weight greater than r. Clearly, (x+1)r ∈ ωr(FH)\ωr+1(FH) and
%1 ∈ ωr+1(FH), hence % ∈ ωr(FH) \ ωr+1(FH) and % 6= 0.

In the sequel we shall use freely this fact.

In the proof of the next lemmas we will use that C ′ ⊆ G′ ∩ ζ(G). This
inclusion is indeed valid, because for a, b, c ∈ G the well-known Hall-Witt
identity states that

(a, b−1, c)b(b, c−1, a)c(c, a−1, b)a = 1.

Evidently, if b, c ∈ C then this formula yields that (b, c, a) = 1, which guaran-
tees our statement.

Lemma 1. Let G be a group with commutator subgroup G′ = 〈x | x2n
=

1〉, where n > 3, let char(F ) = 2 and assume that exp(G/C) ≤ 2. Then
dlL(FG) = 3 if and only if C is abelian and G/C = 〈aC〉, where xa = x−1.

Proof. Since exp(G/C) ≤ 2, only the following cases are possible:

Case 1 : either G/C is trivial or G/C = 〈bC〉 where xb = x2n−1+1. Clearly,
G has nilpotency class at most 3, therefore by Theorem 1 in [3] we have
dlL(FG) = n + 1.

Case 2 : G/C = 〈aC〉, where xa = x−1. Then C ′ ⊆ G′ ∩ ζ(G) = 〈x2n−1〉.
If C ′ = 〈1〉 then C is an abelian subgroup of index 2 of G and Proposition 1

implies that dlL(FG) = 3. Now, let C ′ = 〈x2n−1〉. Then we can choose b, c ∈ C
such that

(c, a) = x, (c, b) = x2n−1

, (a, b) ∈ 〈x2〉.



ON THE DERIVED LENGTH OF LIE SOLVABLE GROUP ALGEBRAS 241

Indeed, let us consider the map ϕ : C → G′, where ϕ(c) = (c, a), which is
an epimorphism because G′ = (a, C). Of course, H = ϕ−1

(〈x2〉) is a proper

subgroup of C. Let u ∈ C \ ζ(C) and c ∈ C \ (
H ∪ CC(u)

)
be such that

(c, a) = x. Obviously, (c, u) = x2n−1
. If (a, u) ∈ 〈x2〉 then set b = u, otherwise

b = cu. It is easy to see that the elements b and c satisfy the conditions stated.
Then

[[
[c, a],[c−1a, c]

]
,

[
[c, a], [c−1ba, c]

]]

=
[
[ac(x + 1), a(x−1 + 1)], [ac(x + 1), ba(x2n−1−1 + 1)]

]

=
[
a2cx−1(x + 1)3, ba2c

(
(b, a)x−1 + 1

)
(x2n−1+1 + 1)(x + 1)

]

= a4bc2x−1
(
(b, a)x−1 + 1

)
(x2n−1+1 + 1)(x + 1)2n−1+4

belongs to δ[3](FG) and is not equal to zero, thus dlL(FG) > 3.

Case 3 : G/C = 〈dC〉, where xd = x2n−1−1. Since G′ = (d, C), similarly as
before, we can choose c ∈ C such that (c, d) = x. Then

[[
[c, d], [d−1c, d]

]
,
[
[c, d], [c, dc]

]]

=
[[

dc(x + 1), c(x + 1)
]
,

[
dc(x + 1), dc2(x + 1)

]]

=
[
dc2(x + 1)2n−1+1, d2c3x(x2n−1−1 + 1)(x + 1)2

]

= d3c5x(x2n−1−1 + 1)(x2n−2−1 + 1)2(x + 1)2n−1+2

is a nonzero element in δ[3](FG) so dlL(FG) > 3.

Case 4 : G/C = 〈aC, bC〉, where xa = x−1 and xb = x2n−1+1. Then

G′ = 〈(ab, b)〉(ab, C)(b, C)C ′ = 〈(a, b)〉(ab, C)(b, C),

because C ′ ⊆ 〈x2n−1〉. Since G′ is cyclic, G′ coincides with either 〈(a, b)〉 or
(ab, C) or (b, C).

Assume that G′ = (ab, C) and set H = 〈ab, C〉. Then H satisfies the
hypothesis of Case 3 of this lemma, so dlL(FG) ≥ dlL(FH) > 3. We get the
same result in the case G′ = (b, C).

There remains the possibility that (a, b) = y is of order 2n. Then
[[

[a, b],[b−1a, b]
]
,

[
[a, b], [b, ab]

]]

=
[[

ba(y + 1), a(y + 1)
]
,

[
ba(y + 1), ab2(y2n−1−1 + 1)

]]

=
[
ba2(y2n−1−2 + 1)(y + 1), b3a2y−1(y2n−1−2 + 1)(y + 1)

]

= b4a4y−1(y−1 + 1)4(y2n−1+1 + 1)(y + 1)2n−1+1 6= 0,

and the statement is valid. ¤
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Lemma 2. Let G be a group with commutator subgroup G′ = 〈x | x16 = 1〉 and
let char(F ) = 2. Then dlL(FG) = 3 if and only if G has an abelian subgroup
of index 2.

Proof. By the previous lemma, the statement is true if exp(G/C) ≤ 2. The
other possible cases are:

Case 1 : G/C = 〈bC〉, where xb = x5. Since then G = Gβ, Lemma 3 and
Theorem 1 in [3] state that dlL(FG) = 5.

Case 2 : G/C = 〈dC〉, where xd = x−5. Then G′ = (d, C) and, as before, we
can choose c ∈ C such that (c, d) = x and

[[
[c, d], [d−1c, d]

]
,
[
[c, d], [c, dc]

]]

=
[[

dc(x + 1), c(x + 1)
]
,

[
dc(x + 1), dc2(x−5 + 1)

]]

=
[
dc2(x−4 + 1)(x + 1), d2c3(x−5 + 1)(x + 1)2

]

= b3c5x6(x−5 + 1)(x9 + 1)(x + 1)9

belongs to δ[3](FG) and is not zero.
Case 3 : G/C = 〈aC, bC〉, where xa = x−1 and xb = x5. Then by similar

arguments as in the last case of the previous lemma we can restrict ourselves
to the case when (a, b) = x. Then

[[
[a, b], [b−1a, b]

]
,
[
[a, b], [b, ab]

]]

=
[[

ba(x + 1), a(x + 1)
]
,

[
ba(x + 1), ab2(x−5 + 1)

]]

=
[
ba2(x10 + 1)(x + 1), b3a2(x10 + 1)(x7 + 1)

]

= b4a4x3(x5 + 1)4(x + 1)6 6= 0,

which was to be proved. ¤
Now we are ready to prove our main theorem.

Proof of Theorem 1. Suppose first that p > 7. Then Theorem A in [10] states
that dlL(FG) ≥ dlog2(p+1)e ≥ 4. For odd p ≤ 7 the statement follows directly
from Theorem 1 in [3], Theorem 1 in [1].

Let G′ = 〈x | x2n
= 1〉. The result follows from Theorem 1 in [3] for n = 2

and n = 3. For n > 3, using induction on n, we shall show that if dlL(FG) = 3
then C is abelian and G/C = 〈aC〉, where xa = x−1 (i.e. G has an abelian
subgroup of index 2). Indeed, by Lemma 2, this is true for n = 4. Let now
n > 4 and dlL(FG) = 3 and assume that the statement is true for every group

with commutator subgroup of order less than 2n. Set H = 〈x2n−1〉 ⊂ G′. Then
dlL

(
F (G/H)

)
= 3 and (G/H)′ = G′/H = 〈xH〉, and by inductive hypothesis

we get

(xH)gH = xgH = x(−1)k

H
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for all g ∈ G. It follows that xg = xi with i ∈ {−1, 1, 2n−1 − 1, 2n−1 + 1}, i.e.
exp(G/C) ≤ 2 and the statement follows from Lemma 1. ¤
Example. Let Gi be a finite nonabelian 2-group of order 2m and exponent
2m−2 from the list in [5]. The group algebras of Gi have been examined by
several authors, for example V. Bovdi [2]. Our results enable us to determine
the derived length of FGi over a field F of characteristic 2. Using Proposition 1
and Theorem 1 we get

dlL(FGi) =





2, if either i ∈ {2, 3} and m = 4 or i ∈ {1, 4, 5, 9, 10};
4, if i ∈ {15, 16, 18, 20, 24, 25} and m > 5;

3, otherwise.

Note that G′
17
∼= G′

26
∼= C2×C2. Then we applied Theorem 3 in [4] to compute

the derived length.

Now let us turn to Theorem 2.

Lemma 3. Let G be a group with commutator subgroup of order pn and
char(F ) = p. If γ3(G) ⊆ (G′)p then for all m ≥ 1

[
ωm(FG′), ω(FG)

] ⊆ I(G′)m+p−1.

Moreover, if G′ is abelian, then for all m, k ≥ 1[
I(G′)m, I(G′)k

] ⊆ I(G′)m+k+1.

Proof. We use induction on m. For every y ∈ G′ and g ∈ G we have

[y − 1, g − 1] = [y, g] = gy
(
(y, g)− 1

) ∈ I
(
γ3(G)

) ⊆ I(G′)p.

This shows that the statement holds for m = 1, because all elements of the
form g − 1 with g ∈ G constitute an F -basis of ω(FG).

Now, assume that
[
ωm(FG′), ω(FG)

] ⊆ I(G′)m+p−1 for some m. Then
[
ωm+1(FG′), ω(FG)

]

⊆ ωm(FG′)
[
ω(FG′), ω(FG)

]
+

[
ωm(FG′), ω(FG)

]
ω(FG′)

⊆ ωm(FG′)I(G′)p + I(G′)m+p−1ω(FG′) ⊆ I(G′)m+p,

and the proof of the first assertion is complete. The second one is a consequence
of the first one, because

I(G′) = ω(FG)ω(FG′) + ω(FG′).

¤
Proof of Theorem 2. Write G = 〈A, x〉, where A is abelian and normal in
G. Clearly, G′ = (A, x) is abelian. We shall show that for all c ∈ A and
z1, z2, . . . , z2n−1 ∈ G′ and j not divisible by p there exists % ∈ I(G′)2n

such
that

xjc(1− z1)(1− z2) · · · (1− z2n−1) + % ∈ δ[n](FG).
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We use induction on n. Let first n = 1 and 2k ≡ j modulo the order of x.
Then G′ = (A, xk) and z1 = (a1, x

k) · · · (as, x
k) for some a1, . . . , as ∈ A, thus

(1) xjc(1− z1) ≡
s∑

i=1

xjc
(
1− (ai, x

k)
)

(mod I(G′)2).

Since p is an odd prime, we can choose the elements ui, vi such that u2
i = ca−1

i

and v2
i = cai. Then ui, vi ∈ A, (uivi)

2 = c2 and (u−1
i vi)

2 = a2
i which implies

uivi = c and u−1
i vi = ai. Setting wi = xkui(x

k)
−1

we have

[xkwi, x
kvi] = xj(wxk

i vi − wiv
xk

i )

= xjwxk

i vi

(
1− (w−1

i vi, x
k)

)
= xjc

(
1− (ai, x

k)
)
,

because (w−1
i vi, x

k) = (u−1
i vi, x

k) = (ai, x
k). Now by (1) it follows that

(2) xjc(1− z1) ≡
s∑

i=1

[xkwi, x
kvi] (mod I(G′)2),

which proves our statement for n = 1.
Now, assume that j, c, z1, z2, . . . , z2n−1 have already been given, and let 2k ≡

j modulo the order of x. We can apply the method above to find elements
wi, vi ∈ A such that the congruence (2) holds. Set

fi = xkwi(1− z2) · · · (1− z2n−1)

and
gi = xkvi(1− z2n−1+1) · · · (1− z2n−1).

for 1 ≤ i ≤ s. By the induction hypothesis there exist %
(i)
1 , %

(i)
2 ∈ I(G′)2n−1

such that fi + %
(i)
1 , gi + %

(i)
2 ∈ δ[n−1](FG). Evidently,

[
fi + %

(i)
1 , gi + %

(i)
2

]
= [fi, gi] + [fi, %

(i)
2 ] + [%

(i)
1 , gi] + [%

(i)
1 , %

(i)
2 ] ∈ δ[n](FG).

According to Lemma 3 the last three summands are in I(G′)2n
. Furthermore,[

fi, gi

]
= xkwi

[
(1− z2) · · · (1− z2n−1), xkvi

]
(1− z2n−1+1) · · · (1− z2n−1)

+ xkvi

[
xkwi, (1− z2n−1+1) · · · (1− z2n−1)

]
(1− z2) · · · (1− z2n−1)

+
[
xkwi, x

kvi

]
(1− z2) · · · (1− z2n−1)

and the first two summands on the right-hand side belong to I(G′)2n
by

Lemma 3. So,
[
fi + %

(i)
1 , gi + %

(i)
2

] ≡ [
xkwi, x

kvi

]
(1− z2) · · · (1− z2n−1) (mod I(G′)2n

),

for all 1 ≤ i ≤ s. Summing this over all possible i, we get

xjc(1− z1)(1− z2) · · · (1− z2n−1) + % ∈ δ[n](FG),

for some % ∈ I(G′)2n
, as we claimed.

It follows that δ[n](FG) has nonzero elements while 2n − 1 < t(G′). Hence

dlL(FG) ≥ dlog2 t(G′) + 1e
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and the result follows immediately from Proposition 1 in [3]. ¤
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