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WEIGHTED (0, 1, 3)-INTERPOLATION ON AN ARBITRARY
SET OF NODES

PANKAJ MATHUR

In Memory of Prof. A. Sharma.

Abstract. J. Balázs [2] considered the problem of modified weighted (0, 2)-
interpolation on a general set of nodes by removing the weighted second
derivative at one of the end points and prescribing first derivative at that
point. In this paper (following the suggestion of Prof. A. Sharma) I have
studied the case of (0, 1, 3)-interpolation on a general set of nodes, when the
condition of weighted third derivative has been replaced at both the end
points by the second derivative at those point.

1. Introduction

Let

(1.1) −∞ < a < xn,n < xn−1,n < . . . < x1,n < b < +∞, n ∈ N

be a given set of points (nodal points) in a finite or infinite interval (a, b)
and w(x) ∈ C2(a, b) be a weight function. On the suggestion of P. Turán,
J. Balázs [1] initiated the study of weighted (0, 2)-interpolation which means
the determination of a polynomial of degree ≤ 2n−1 satisfying the conditions

(1.2) Rn(xi,n) = αi,n, (wRn)′′(xi,n) = βi,n i = 1 . . . n,

where {αi,n}n
i=1and {βi,n}n

i=1 are arbitrary real numbers, xi,n (i = 1 . . . n) are
the zeros of the nth ultraspherical polynomial P (α)(x), α > −1 and the weight

is the function w(x) = (1 − x2)
α+1

2 . He proved that there generally does not
exist any polynomial of degree ≤ 2n − 1 satisfying (1.2). However, by taking
an additional condition:

(1.3) Rn(0) =
n∑

i=1

αi,nl
2
i,n(0),
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where 0 is not a nodal point, he showed that there exists a uniquely determined
polynomial of degree ≤ 2n (n is even), and proved a convergence theorem.
If n is odd, the uniqueness is not true. L. Szili [7] investigated the above
problem of J. Balázs on an infinite interval, taking the nodes as the zeros of
nth Hermite polynomial Hn(x) and the weight function w(x) = exp(−x2/2).
His results were further sharpened by I. Joó [4]. In another paper, S. Datta and
P. Mathur [3] have further improved the results of [7] by replacing the artificial
looking condition (1.3) by an interpolatory condition Rn(0) = α0, for n even
and obtained that the necessary and sufficient condition for the existence of
weighted (0, 2)-interpolation in the case of n odd, is R′

n(0) = β0. They have
also proved a convergence theorem in both cases.

K. K. Mathur and R. B. Saxena [5] studied the case of weighted (0, 1, 3)-
interpolation on an infinite interval by taking the nodes as the zeros of nth
Hermite polynomial Hn(x) and showed that if n is even, there exists a unique
polynomial Gn(x) of degree ≤ 3n satisfying the conditions:

(1.4) Gn(xi,n) = ai,n, G′
n(xi,n) = bi,n, (wGn)′′′(xi,n) = ci,n, i = 1 . . . n

and

(1.5) Gn(0) =
n∑

i=1

{
(1 + 3x2

i,n)ai,n − bi,nxi,n

}
l2i,n(0),

where 0 is not a nodal point. They also obtained the explicit representation
of the fundamental polynomials and proved a convergence theorem.

Recently, considering the nodes as the zeros of Wn−1(x) where

(1.6) Wn−1(x) =
n−1∏
i=1

(x− xi,n)

and the weight function w(x) ∈ C2(a, b) satisfying the conditions:

(1.7) w(xi,n) 6= 0, (wWn−1)
′′(xi,n) = 0 i = 1 . . . n− 1

J. Balázs [2] studied the problem of modified weighted (0, 2)-interpolation.
He showed that, for any n (even or odd), there exists a unique polynomial
Sn(x) of degree ≤ 2n− 1 satisfying the conditions:

Sn(xi,n) = λi,n, i = 1 . . . n

S ′n(xn,n) = µn,n

(wSn)′′(xi,n) = νi,n, i = 1 . . . n− 1

where {λi,n}n
i=1, µn,n and {νi,n}n−1

i=1 are arbitrarily given real numbers.
A. Sharma suggested the study of the above problem when the condition

of weighted second derivative was replaced at both end points of (1.1) by the
first derivatives at those points. This motivated us to consider the problem of
determining the modified weighted (0, 1, 3)-interpolation. Precisely, we shall
study the following:
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Problem. Let xi,n be the zeros of

(1.8) Wn−2(x) =
n−1∏
i=2

(x− xi,n)

and suppose that the weight function w(x) ∈ C3(a, b) satisfies the conditions:

(1.9) w(xi,n) 6= 0, (w2W 2
n−2)

′′′(xi,n) = 0, i = 2 . . . n− 1

and

(1.10)

∫ xn

x1

(t− x1,n)2(t− xn,n)2Wn−2(t)dt 6= 0.

Does there exist a unique polynomial Tn(x) of degree ≤ 3n− 1 satisfying the
conditions:

Tn(xi,n) = yi,n, T ′
n(xi,n) = y′i,n, i = 1 . . . n;

T ′′
n (x1,n) = y′′1,n, T ′′

n (xn,n) = y′′n,n; (w2Tn)′′′(xi,n) = y′′′i,n, i = 2 . . . n− 1;
(1.11)

where {yi,n}n
i=1, {y′i,n}n

i=1, {y′′′i,n}n−1
i=2 , y′′1,n, y′′n,n are given arbitrarily real num-

bers?

In this paper we answer this problem in affirmative. For the sake of conve-
nience we shall use i in the place of i, n in the subscript from now on.

2. New results

Theorem 1. If the nodes are the zeros of the polynomial Wn−2(x) and w(x) ∈
C3(a, b) is a weight function satisfying the conditions (1.9) and (1.10), then
there exists a unique polynomial Tn(x) of degree ≤ 3n − 1 satisfying the con-
ditions (1.11), which can be explicitly represented as:

(2.1) Tn(x) =
n∑

i=1

yiAi(x) +
n∑

i=1

y′iBi(x) +
n−1∑
i=2

y′′′i Ci(x) + y′′1D1(x) + y′′nDn(x)

where the fundamental polynomials Ai(x), Bi(x), Ci(x) and Di(x) are given in
the theorems below.

Theorem 2. Let Wn−2(x) be given by (1.8) and let the weight function w(x) ∈
C3(a, b) satisfy the conditions (1.9) and (1.10), then the polynomial Ak(x), for
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k = 2 . . . n− 1, has the form

Ak(x) =
1

(xk − x1)3(xk − xn)3

[
(x− x1)

3(x− xn)3l3k(x) + W 2
n−2(x)

×
{∫ x

x1

(t− x1)
3(t− xn)3{l′k(xk)− (l′k(xk)

2 − l′′k(xk)) (t− xk)} lk(t)− l′k(t)
(t− xk)2W ′

n−2(xk)2
dt

+ ak

∫ x

x1

lk(t)dt+

∫ x

x1

[
bk + ck(t− xn) + dk(t− x1)

2(t− xn) + ek(t− x1)(t− xn)2

+ gk(t− x1)
2(t− xn)2

]
Wn−2(t)dt

}
] + hkBk(x)

where, lk(x) are the fundamental polynomials of Lagrange interpolation based
on the zeros of Wn−2(x) and

ak = − 1

6w2(xk)W ′
n−2(xk)2

[
2
{
w2(x)(x− x1)

3(x− xn)3l3k(x)
}′′′

(xk)

− 3w2(xk)(xk − x1)
3(xk − xn)3

{
2l′k(xk)

3 − 3l′k(xk)l
′′
k(xk) + l′′′k (xk)

}]
,

bk = − aklk(xn)

Wn−2(xn)
,

ck =
ak

x1 − xn

[
lk(xn)

Wn−2(xn)
− lk(x1)

Wn−2(x1)

]
,

dk = − ak

(x1 − xn)2

[
l′k(xn)

Wn−2(xn)
− lk(xn)W ′

n−2(xn)

W 2
n−2(xn)

+
ck

ak

]
,

ek = − ak

(x1 − xn)2

[
l′k(x1)

Wn−2(x1)
− lk(x1)W

′
n−2(x1)

W 2
n−2(x1)

+
ck

ak

]
,

hk = −3

[
2xk − (x1 + xn)

(xk − x1)(xk − xn)
+ l′k(xk)

]

and

gk = −
[{∫ xn

x1

(t− x1)
3(t− xn)3{l′k(xk)− (l′k(xk)

2 − l′′k(xk)) (t− xk)} lk(t)

(t− xk)2W ′
n−2(xk)2

dt

+ ak

∫ xn

x1

lk(t)dt +

∫ xn

x1

[
bk + ck(t− xn) + dk(t− x1)

2(t− xn)

+ ek(t− x1)(t− xn)2
]
Wn−2(t)dt

}]

×
[∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

.



WEIGHTED (0, 1, 3)-INTERPOLATION . . . 269

Also

A1(x) =
W 2

n−2(x)

W 2
n−2(x1)

[
1 +

∫ x

x1

{
c1(t− xn) + d1(t− x1)

2(t− xn)

+ e1(t− x1)(t− xn)2 + g1(t− x1)
2(t− xn)2

}
Wn−2(t)dt

]

where

c1 = − 2W ′
n−2(x1)

(x1 − xn)W 2
n−2(x1)

,

d1 = − c1

(x1 − xn)2
,

e1 =
2W ′

n−2(x1)

(x1 − xn)2W 2
n−2(x1)

[
4W ′

n−2(x1)

Wn−2(x1)
+

1

x1 − xn

− W ′′
n−2(x1)

W ′
n−2(x1)

]

and

g1 = −
[
1 +

∫ xn

x1

{
c1(t− xn) + d1(t− x1)

2(t− xn)

+e1(t− x1)(t− xn)2
}

Wn−2(x)dt

]

×
[∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

.

The expression for An(x) can be given by interchanging x1 and xn in A1(x).

Theorem 3. The fundamental polynomials Bk(x), for k=2. . . n-1 has the form:

Bk(x) =
1

(xk − x1)3(xk − xn)3

[
(x− x1)

3(x− xn)3(x− xk)l
3
k(x)

+ W 2
n−2(x)

{
pk

∫ x

x1

lk(t)dt +

∫ x

x1

(t− x1)
3(t− xn)3 l′k(xk)lk(t)− l′k(t)

(t− xk)W ′
n−2(xk)2

dt

+

∫ x

x1

[
qk + rk(t− xn) + sk(t− x1)

2(t− xn) + uk(t− x1)(t− xn)2

+ vk(t− x1)
2(t− xn)2

]
Wn−2(t)dt

}]
,
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where

pk = − 1

6w2(xk)W ′
n−2(xk)2

[{
w2(x− xk)(x− x1)

3(x− xn)3l3k(x)
}′′′

(xk)

+ 6w2(xk)(xk − x1)
3(xk − xn)3

{
l′k(xk)

2 − l′′k(xk)
}]

,

qk = − pklk(xn)

Wn−2(xn)
,

rk =
pk

x1 − xn

[
lk(xn)

Wn−2(xn)
− lk(x1)

Wn−2(x1)

]
,

sk = − pk

(x1 − xn)2

[
l′k(xn)

Wn−2(xn)
− lk(xn)W ′

n−2(xn)

W 2
n−2(xn)

+
rk

pk

]
,

uk = − pk

(x1 − xn)2

[
l′k(x1)

Wn−2(x1)
− lk(x1)W

′
n−2(x1)

W 2
n−2(x1)

+
rk

pk

]

and

vk = −
[{∫ xn

x1

(t− x1)
3(t− xn)3 l′k(xk)lk(t)− l′k(t)

(t− xk)W ′
n−2(xk)2

dt

+ pk

∫ xn

x1

lk(t)dt +

∫ xn

x1

[
qk + rk(t− xn) + sk(t− x1)

2(t− xn)

+ uk(t− x1)(t− xn)2
]
Wn−2(t)dt

}][∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

.

Also

B1(x) = W 2
n−2(x)

[∫ x

x1

{
r1(t− xn) + s1(t− x1)

2(t− xn) + u1(t− x1)(t− xn)2

+ v1(t− x1)
2(t− xn)2

}
Wn−2(t)dt

]

where

r1 =
1

(x1 − xn)W 3
n−2(x1)

,

s1 = − r1

(x1 − xn)2
,

u1 = − r1

(x1 − xn)

[
5W ′

n−2(x1)

Wn−2(x1)
+

1

x1 − xn

]

and

v1 = −
[∫ xn

x1

{
r1(t− xn) + s1(t− x1)

2(t− xn)

+u1(t− x1)(t− xn)2
}

Wn−2(x)dt
] [∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

.

The expression for Bn(x) can be given by interchanging x1 and xn in B1(x).
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Theorem 4. The polynomials Ck(x) for k = 2 . . . n− 1, has the form

Ck(x) = W 2
n−2(x)

[
αk

∫ x

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

+ βk

∫ x

x1

(t− x1)
2(t− xn)2lk(t)dt

]
,

where

αk = −
[
βk

∫ xn

x1

(t− x1)
2(t− xn)2lk(t)dt

]

×
[∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

and

βk =
1

6w2(xk)(xk − x1)2(xk − xn)2W ′
n−2(xk)2

.

Theorem 5. The polynomials D1(x) and Dn(x) can be represented as:

D1(x) =
W 2

n−2(x)

2(x1 − xn)W 3
n−2(x1)

×
∫ x

x1

[
(t− x1)(t− xn)2 + α1(t− x1)

2(t− xn)2
]
Wn−2(t)dt,

where

α1 = −
[∫ xn

x1

(t− x1)(t− xn)2Wn−2(t)dt

]

×
[∫ xn

x1

(t− x1)
2(t− xn)2Wn−2(t)dt

]−1

and

Dn(x) =
W 2

n−2(x)

2(x1 − xn)W 3
n−2(xn)

×
∫ x

x1

[
(t− x1)

2(t− xn) + αn(t− x1)
2(t− xn)2

]
Wn−2(t)dt,

where αn can be obtained by interchanging x1 and xn in αn.

The proof of Theorems 1, 2, 3 are similar to that of Theorems in [1]. We
omit details.
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3. Particular cases

Now, we show that if the zeros of the polynomial Wn−2(x) are the zeros of
any of the classical orthogonal polynomials of degree ≤ n−2, then there exists
a weight function w(x) ∈ C3(a, b) satisfying the conditions (1.9) and (1.10).
It is known that the zeros of the classical orthogonal polynomials are real and
simple.

Case 1. Let Wn−2(x) = P
(α,β)
n−2 (x) (α, β > −1, n = 3, 4, . . .) the (n − 2)th

Jacobi polynomial and the nodal points in (1.1) are

−1 = xn < xn−1 < . . . < x1 = 1, n ∈ N,

where P
(α,β)
n−2 (xk) = 0, k = 2 . . . n − 2. Then a weight function satisfying the

conditions (1.9) and (1.10) has the form w(x) = (1− x)
1+α

2 (1 + x)
1+β

2 . Indeed,
by Szegö [[6], 4.24.1], the function y = w(x)Wn−2(x) satisfies the differential
equation

[w(x)Wn−2(x)]′′ +
[

(1− α2)

4(1− x)2
+

(1− β2)

4(1 + x)2

+
(n− 2)(n + α + β − 1) + 1

2
(1 + α)(1 + β)

(1− x2)

]
w(x)Wn−2(x) = 0

which implies that
[{w(x)Wn−2(x)}2]′′′ (xk) = 0, k = 2 . . . n− 1.

Also w(xk) 6= 0, k = 2 . . . n− 1.

Case 2. Let Wn−2(x) = L
(α)
n−2(x) (α > −1, n = 3, 4, . . .) be the (n − 2)th

Laguerre polynomial and the nodal points in (1.1) are

0 = xn < xn−1 < . . . < x1 < ∞, n ∈ N,

where L
(α)
n−2(xk) = 0, k = 2 . . . n − 2. Then a weight function satisfying the

conditions (1.9) and (1.10) has the form w(x) = e−
x
2 x

1+α
2 . Indeed, by Szegö

[[6],5.1.2], the function y = w(x)Wn−2(x) satisfies the differential equation

[w(x)Wn−2(x)]′′ +
[
(1− α2)

4x2
+

n + 1
2
(α− 3)

x
− 1

4

]
w(x)Wn−2(x) = 0,

which implies that
[{w(x)Wn−2(x)}2]′′′ (xk) = 0, k = 2 . . . n− 1.

Also w(xk) 6= 0, k = 2 . . . n− 1.
Case 3. Let Wn−2(x) = Hn−2(x) (n = 3, 4, . . .) be the (n − 2)th Hermite

polynomial and the nodal points in (1.1) are

−∞ < xn < xn−1 < . . . < x1 < ∞, n ∈ N,
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where Hn−2(xk) = 0, k = 2 . . . n − 2. Then a weight function satisfying the
conditions (1.9) and (1.10) has the form w(x) = exp(−1

2
x2). Indeed, by Szegö

[[6], 5.5.2], the function y = w(x)Wn−2(x) satisfies the differential equation

[w(x)Wn−2(x)]′′ + (2n− 3− x2)w(x)Wn−2(x) = 0,

which implies that
[{w(x)Wn−2(x)}2]′′′ (xk) = 0, k = 2 . . . n− 1.

Also w(xk) 6= 0, k = 2 . . . n− 1.
Hence in the Cases 1, 2 and 3, a weight function satisfying the conditions

(1.9) and (1.10) do exist. Thus, by Theorem 1, a modified weighted (0,1,3)-
interpolation polynomial of degree ≤ 3n-2, satisfying the conditions (1.11)
exists for all the three cases and can be determined uniquely.

Remark 1. The convergence problem of the above problem will be dealt with
in the next communication.

Acknowledgement. I am thankful to the Referee for his constructive
suggestions.
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