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NEW APPROACH FOR CLOSURE SPACES BY RELATIONS

A. A. ALLAM AND M. Y. BAKEIR AND E. A. ABO-TABL

Abstract. Recently, the general topology has become the appropriated
frame for every collection related to relations because topology is required
not only for mathematics and physics but also for biology, rough set theory,
biochemistry, and dynamics. In this paper, we have introduced another
concept of the closure operator. In so doing, the idempotent condition,
which has never been realized, is achieved. The topologies associated with
these closure operators are studied. And we study the subspace, continuous
functions and lower separation axioms in this space. Also we study these
space in digital topology.

1. Introduction

Relations are used in construction of topological structures in several fields
such as, rough set theory [10, 11], digital topology [13, 14], biochemistry [15],
biology [16] and dynamics [5]. It should be noted that the generation of topol-
ogy by relations and the representation of topological concepts via relations
will narrow the gap between topologists and who are interested in applications
of topology. The concepts of aftersets and foresets are used to define closure
operators [12].

In this paper, we present a review of closure spaces and some definitions
related with this work (section 2). We define and investigate a new closure
operator with respect to relation concepts. In so doing, the idempotent con-
dition, which has never been realized, is achieved. The topologies associated
with these closure operators are studied. Minimal neighborhood and accu-
mulation points were defined (section 3). Also we study the closure subspace
of such space (section 4). We reformulate continuous function via relational
concepts and their properties are studied. Moreover open and closed functions
and homeomorphism and their properties are studied (section 5). Lower sep-
aration axioms in such spaces are reformulated via relation concepts (section
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6). Also we study these space in digital topology (section 7). A final section
groups conclusions.

2. Preliminaries

A number of ideas familiar in the topological setting can be straightforwardly
generalized to closure spaces. Note that closure, interior and neighborhoods
are equivalent constructions on a set X. It is possible to translate properties
of the closure function cl into properties of the neighborhood function, and
vice versa. The following are cited from [1, 2, 6, 9].

Definition 2.1. A closure space is a pair (X, cl), where X is any set, and
cl : P (X)→ P (X) is a function associating with each subset A ⊆ X a subset
cl(A) ⊆ X, called the closure of A, such that

(1) cl(φ) = φ,
(2) A ⊆ cl(A),
(3) cl(A ∪ B) = cl(A) ∪ cl(B).

Definition 2.2. Let (X, cl) be a closure space, and let A ⊆ X. Then,

(1) The interior int(A) of A is the set (cl(Ac))c.
(2) A is a neighborhood of an element x ∈ X if x ∈ int(A).
(3) A is closed set if A = cl(A).
(4) A is open set if A = int(A).

Lemma 2.1. In a closure space the following are holds.

(1) A is an open set if and only if Ac is a closed set.

(2) If A ⊆ B then cl(A) ⊆ cl(B).

Definition 2.3. A closure space (X, cl) is topological space iff cl(cl(A)) =
cl(A) for all A ⊆ X.

Definition 2.4. A closure space (X, cl) is called Alexandroff topological space
iff one of the following conditions holds:

(1) Each point in X has a minimal neighborhood.
(2) For each A ⊆ X, cl(A) = ∪x∈A cl({x}).

Definition 2.5. A topological space (X, τ) is T0 if, for any two distinct points
x, y ∈ X, either x contained in an open set which does not contain y, or y is
contained in an open set which does not contain x.

Definition 2.6. A topological space (X, τ) is T1/2 if, every singleton {x} is
open or closed.

Definition 2.7. A topological space (X, τ) is T1 if, for every two distinct
points x, y ∈ X, each is contained in an open set not containing the other.

Definition 2.8. A topological space is R0 if, for every two distinct points x
and y of the space, either cl(x) = cl(y) or cl(x) ∩ cl(y) = φ.
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Definition 2.9. A topological space (X, τ) is called T2-space if and only if for
any two distinct points x, y ∈ X there exist two disjoint open sets U, V such
that x ∈ U and y ∈ V .

Definition 2.10. A topological space (X, τ) is called T5/2-space if and only if
for any two distinct points x, y ∈ X there exist two open sets U, V such that
x ∈ U and y ∈ V and cl(U) ∩ cl(V ) = φ.

Definition 2.11. A function f of a topological space X1 into a topological
space X2 is said to be continuous at a point x ∈ X1 if, given any neighborhood
V of f(x) in X2, there is a neighborhood U of x inX1 such that f(U) ⊆ V .

3. New approach for closure spaces

A relation R from a universe X to a universe X (a relation on X) is a subset
of X×X, i.e., R ⊆ X×X. The formula (x, y) ∈ R is abbreviated as xRy and
means that x is in relation R with y.

Definition 3.1 ([3]). If R is a relation on X, then the aftersets of x ∈ X is
xR = {y : xRy} and the foresets of x ∈ X is Rx = {y : yRx}.

Definition 3.2. Let R be any binary relation on X, a set 〈p〉R is the inter-
section of all aftersets containing p, i.e.,

〈p〉R =

{

∩p∈xR(xR) if ∃x : p ∈ xR,

φ otherwise.

Also R〈p〉 is the intersection of all foresets containing p, i.e.,

R〈p〉 =

{

∩p∈Rx(Rx) if ∃x : p ∈ Rx,

φ otherwise.

Definition 3.3. Let X be any set and R ⊆ X ×X be any binary relation on
X. The relation R gives rise to a closure operation clR on X as follows:

clR(A) = A ∪ {x ∈ X : 〈x〉R ∩ A 6= φ}

Lemma 3.1. For any binary relation R ⊆ X ×X on X, (X, clR) is a closure

space.

Proof. (1) clR(φ) = φ ∪ {x ∈ X : 〈x〉R ∩ φ 6= φ} = φ.
(2) clR(A) = A ∪ {x ∈ X : 〈x〉R ∩A 6= φ} ⊇ A, i.e., A ⊆ clR(A).
(3)

clR(A ∪ B) = (A ∪ B) ∪ {x ∈ X : 〈x〉R ∩ (A ∪B) 6= φ}

= (A ∪ B) ∪ {x ∈ X : (〈x〉R ∩ A) ∪ (〈x〉R ∩ B) 6= φ}

= (A ∪ B) ∪ {x ∈ X : 〈x〉R ∩ A 6= φ} ∪ {x ∈ X : 〈x〉R ∩B 6= φ}

= (A ∪ {x ∈ X : 〈x〉R ∩ A 6= φ}) ∪ (B ∪ {x ∈ X : 〈x〉R ∩ B 6= φ})

i.e., clR(A ∪ B) = clR(A) ∪ clR(B). �
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Lemma 3.2. For any binary relation R on X if x ∈ 〈y〉R, then

〈x〉R ⊆ 〈y〉R.

Proof. Let z ∈ 〈x〉R = ∩x∈wR(wR). Then z is contained in any wR which
contains x, and since also x is contained in any uR which contains y, then z
is contained in any uR which contains y, i.e., z ∈ 〈y〉R. Then

〈x〉R ⊆ 〈y〉R.

�

Lemma 3.3. For any binary relation R on X, (X, clR) is idempotent, i.e.,

clR(clR(A)) = clR(A).

Proof. We want to show that clR(clR(A)) ⊆ clR(A). Suppose y ∈ clR(clR(A)).
Then since

clR(clR(A)) = clR(A) ∪ x ∈ X : 〈x〉R ∩ clR(A) 6= φ,

we have either

(3.1) y ∈ clR(A)

or
y ∈ x ∈ X : 〈x〉R ∩ clR(A) 6= φ.

In the latter case we have 〈y〉R ∩ clR(A) 6= φ, i.e.,

〈y〉R ∩ (A ∪ x ∈ X : 〈x〉R ∩ A 6= φ) 6= φ,

and hence (〈y〉R ∩A) ∪ (〈y〉R ∩ {x ∈ X : 〈x〉R ∩A 6= φ}) 6= φ. It follows that
either 〈y〉R ∩ A 6= φ or

〈y〉R ∩ {x ∈ X : 〈x〉R ∩ A 6= φ} 6= φ.

In the former case we have

(3.2) y ∈ clR(A),

and in the latter, there is a z such that z ∈ 〈y〉R and

z ∈ {x ∈ X : 〈x〉R ∩ A 6= φ},

i.e., 〈z〉R ∩ A 6= φ; in this case, since z ∈ 〈y〉R, we have

〈z〉R ⊆ 〈y〉R

(by lemma 3.2), and hence 〈y〉R ∩ A 6= φ, so

(3.3) y ∈ clR(A).

From (3.1), (3.2) and (3.3), therefore, we have y ∈ clR(A), so clR(clR(A)) ⊆
clR(A). Since (X, clR) is a closure space, the reverse inclusion also holds, so
clR(clR(A)) = clR(A). �

From lemma 3.3 we can prove the next theorem.

Theorem 1. Every closure space (X, clR) is topological space.
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We can introduce the interior operation from the closure operation as follows:
Since intR(A) = (clR(Ac))c then,

intR(A) = (Ac ∪ {x ∈ X : 〈x〉R ∩ Ac 6= φ})c

= A ∩ ({x ∈ X : 〈x〉R ∩ Ac 6= φ})c

= A ∩ {x ∈ X : 〈x〉R ⊆ A}

= {x ∈ A : 〈x〉R ⊆ A}.

Definition 3.4. A point x ∈ A is an interior point of a subset A of X if
〈x〉R ⊇ A. i.e., intR(A) = {x ∈ A : 〈x〉R ⊆ A}.

Lemma 3.4. Let R be any binary relation on a nonempty set X, then

{x} ∪ 〈x〉R

is a minimal neighborhood of x for all x ∈ X, i.e., NR(X) = {x} ∪ 〈x〉R.

Proof. We want to show that {x} ∪ 〈x〉R is a minimal neighborhood of x for
all x ∈ X. There are two cases, the first is if 〈x〉R = φ, then {x} = {x ∈ {x} :
〈x〉R ⊆ {x}} = intR({x}), i.e., {x} is the smallest open set containing x and
so

(3.4) NR(x) = {x}.

The second is if 〈x〉R 6= φ, then from lemma 3.2 we have 〈x〉R = {y ∈ 〈x〉R :
〈y〉R ⊆ 〈x〉R} = intR(〈x〉R), i.e., 〈x〉R is the smallest open set containing x
and so

(3.5) NR(x) = 〈x〉R.

From (3.4) and (3.5) we have,NR(X) = {x} ∪ 〈x〉R. �

From the last lemma we can write the minimal neighborhood of a point x
in a closure space (X, clR) as follows:

NR(x) =

{

〈x〉R if 〈x〉R 6= φ,

{x} if 〈x〉R = φ.

Lemma 3.5. Let R be any binary relation on X and for each a subset A of a

closure space (X, clR), then clR(A) = ∪x∈A(clR({x})).

Proof. Since clR(A) = A ∪ {y ∈ X : 〈y〉R ∩A 6= φ}, then

clR(A) = A ∪ {y ∈ X : 〈y〉R ∩A 6= φ}

= ∪x∈A({x} ∪ {y ∈ X : 〈y〉R ∩ (∪x∈A({x})) 6= φ})

= (∪x∈A({x})) ∪ (∪x∈A{y ∈ X : 〈y〉R ∩ {x} 6= φ})

= ∪x∈A(({x}) ∪ {y ∈ X : 〈y〉R ∩ {x} 6= φ})

= ∪x∈A(clR({x})).

�
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By lemma 3.4 and 3.5 we can prove the following theorem.

Theorem 2. Let R be any binary relation then a closure space (X, clR) is an

Alexandroff topological space.

Lemma 3.6. For any binary relation R on X we have, y ∈ 〈x〉R if and only

if x ∈ clR({y}).

Proof. Let y ∈ 〈x〉R, then 〈x〉R∩{y} 6= φ, and hence x ∈ clR({y}). Conversely,
if x ∈ clR({y}), then 〈x〉R ∩ {y} 6= φ, and so y ∈ 〈x〉R. �

Lemma 3.7. In a closure space (X, clR) if 〈x〉R = φ, then {x} is closed.

Proof. Let 〈x〉R = φ, then for all y ∈ X (x /∈ 〈y〉R). Thus 〈y〉R ∩ {x} = φ for
all y ∈ X, hence clR({x}) = {x}. And so {x} is closed. �

Lemma 3.8. In a closure space (X, clR) the open sets are precisely the unions

∪x∈A(NR(x)) for all A ⊆ X.

Proof. Let A be any open set in (X, clR), then

A = intR(A) = {x ∈ A : 〈x〉R ⊆ A}.

Hence A is a neighborhood of each of its elements, so for each x ∈ A, NR(x) ⊆
A then ∪x∈A(NR(x)) ⊆ A. But since x ∈ NR(x) for all x, we have A ⊆
∪x∈A(NR(x)). And so A is the union of the minimal neighborhoods of its
elements. Conversely, consider any subset A ⊆ X. We want to show that
∪x∈A(NR(x)) is an open set. We want to show that NR(x) is open. First if
〈x〉R 6= φ, then for any point y ∈ NR(x) = 〈x〉R we have

〈y〉R ⊆ 〈x〉R and y ∈ intR(〈x〉R) = intR(NR(x)),

thus NR(x) is open. Second if 〈x〉R = φ then

NR(x) = {x} = {x ∈ {x} : 〈x〉R ⊆ {x}} = intR({x}),

i.e., NR(x) = intR(NR(x)). Then NR(x) is an open set. �

Definition 3.5. Let R be any binary relation on X then a point x ∈ X is
called an accumulation point of A iff (〈x〉R − {x}) ∩ A 6= φ. The set of all
accumulation points of A is denoted by A′, i.e.,

A′ = {x ∈ X : (〈x〉R− {x}) ∩A 6= φ}.

Lemma 3.9. Let R be any binary relation on X then clR(A) = A ∪A
′

.

Proof. Suppose y ∈ clR(A). Then since

clR(A) = A ∪ {x ∈ X : 〈x〉R ∩A 6= φ},

we have either y ∈ A, i.e.,

(3.6) y ∈ A ∪ A
′
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or y ∈ {x ∈ X : 〈x〉R ∩ A 6= φ}. In the latter case we have 〈y〉R ∩ A 6= φ.
Either y ∈ A, then

(3.7) y ∈ A ∪ A
′

or y /∈ A, hence (〈y〉R− {y}) ∩A 6= φ, and so y ∈ A
′

, i.e.,

(3.8) y ∈ A ∪ A
′

From (3.6), (3.7), and (3.8), therefore, we have clR(A) ⊆ A ∪ A
′

.
Conversely, assume that y ∈ A ∪A

′

. We have either y ∈ A, i.e.,

(3.9) y ∈ clR(A)

or y ∈ A
′

. In the latter case, if y ∈ A, then

(3.10) y ∈ clR(A)

and if y /∈ A, then (〈y〉R− {y}) ∩ A 6= φ, thus 〈y〉R ∩A 6= φ, hence

(3.11) y ∈ clR(A).

From (3.9), (3.10) and (3.11) we have A ∪ A
′

⊆ clR(A). And so clR(A) =
A ∪ A

′

. �

4. Closure subspace

In the next definition we will introduce the definition of the closure subspace
via relation concepts.

Definition 4.1. Let A ⊆ X and RA ⊆ R, then (A, clRA
) is called a closure

subspace of a closure space (X, clR) if 〈x〉RA = 〈x〉R ∩A for all x ∈ A.

Lemma 4.1. Let (A, clRA
) be a closure subspace of a closure space (X, clR),

then 〈x〉RA = 〈x〉R ∩ A for all x ∈ A if and only if clRA
(B) = clR(B) ∩ A for

all B ⊆ A.

Proof. Assume that 〈x〉RA = 〈x〉R ∩ A for all x ∈ A. We want to show that
clRA

(B) = clR(B) ∩ A for all B ⊆ A. Then

clRA
(B) = B ∪ {x ∈ A : 〈x〉RA ∩ B 6= φ}

= B ∪ {x ∈ A : 〈x〉R ∩A ∩B 6= φ}

= B ∪ ({x ∈ X : 〈x〉R ∩B 6= φ} ∩ A)

= (B ∪ {x ∈ X : 〈x〉R ∩B 6= φ}) ∩ (B ∪A)

= clR(B) ∩A.

Conversely, suppose that clRA
(B) = clR(B) ∩ A for all B ⊆ A. Then

B ∪ {x ∈ A : 〈x〉RA ∩B 6= φ} = (B ∪ ({x ∈ X : 〈x〉R ∩ B 6= φ}) ∩A

= (A ∩ B) ∪ (A ∩ {x ∈ X : 〈x〉R ∩B 6= φ})

= B ∪ {x ∈ A : (〈x〉R ∩A) ∩ B 6= φ}.

Thus we have 〈x〉RA = 〈x〉R ∩ A. �
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From the previous lemma we can prove the following theorem.

Theorem 3. Let (X, clR) be a closure space and A ⊆ X, then (A, clRA
) is a

closure subspace if and only if clRA
(B) = clR(B) ∩ A for all B ⊆ A.

Proof. Assume that clRA
(B) = clR(B) ∩A. We want to show that (A, clRA

) is
a closure space.
(1) clRA

(φ) = clR(φ) ∩A = φ ∩ A = φ
(2) clRA

(B) = clR(B) ∩ A ⊇ B (since B ⊆ A and B ⊆ clR(B)).
(3)

clRA
(B1 ∪B2) = clR(B1 ∪B2) ∩ A

= (clR(B1) ∪ clR(B2)) ∩ A

= (clR(B1) ∩A) ∪ (clR(B2) ∩A)

= clRA
(B1) ∪ clRA

(B2).

Conversely, immediately derived from lemma 4.1. �

Also we can show that the closure subspace (A, clRA
) is a topological space

by the following lemma.

Lemma 4.2. A closure subspace (A, clRA
) of a closure space (X, clR) is a

topological space.

Proof. We want only show that the closure operator clRA
is idempotent. Then

clRA
(clRA

(B)) = clRA
(clR(B) ∩ A)

= clR(clR(B) ∩ A) ∩ A

⊆ clR(clR(B)) ∩ clR(A) ∩A

⊆ clR(B) ∩ A

⊆ clRA
(B).

Thus we have clRA
(clRA

(B)) = clRA
(B). �

5. Continuous functions

The concept of continuous function is basic to much of mathematics. More
general kinds of continuous functions arise as one goes further in mathematics.

Definition 5.1. Let (X1, clR1
) and(X2, clR2

) be two closure spaces. The func-
tion f : X1 → X2 is continuous at x ∈ X1 if and only if

f(〈x〉R1) ⊆ 〈f(x)〉R2.

Proposition 5.1. Let f be a function of a closure space (X1, clR1
) into a

closure space(X2, clR2
). If f is continuous at x ∈ X1 and x ∈ clR1

(A), then

f(x) ∈ clR2
(f(A)).



NEW APPROACH FOR CLOSURE SPACES BY RELATIONS 293

Proof. Suppose x ∈ clR1
(A). Then since clR1

(A) = A∪ {x ∈ X1 : 〈x〉R1 ∩A 6=
φ}, we have either x ∈ A, i.e.,

(5.1) f(x) ∈ f(A)

or x ∈ {x ∈ X1 : 〈x〉R1 ∩ A 6= φ}. In the latter case we have 〈x〉R1 ∩ A 6= φ,
hence, f(〈x〉R1) ∩ f(A) 6= φ. Since f is continuous at x, i.e., f(〈x〉R1) ⊆
〈f(x)〉R2, then

(5.2) 〈f(x)〉R2 ∩ f(A). 6= φ

From (5.1) and (5.2) we have f(x) ∈ clR2
(f(A)). �

Definition 5.2. A function from a closure space (X1, clR1
) into a closure space

(X2, clR2
) is said to be continuous on X1 if it is continuous at each point of

X1.

Theorem 4. Let f be a function of a closure space (X1, clR1
) into a closure

space (X2, clR2
), then the following conditions are equivalent:

(i) f is continuous,

(ii) For every subset A of X1, f(clR1
(A)) ⊆ clR2

(f(A)),
(iii) The inverse image of every closed subset of X2 is a closed subset of X1,

(iv) The inverse image of every open subset of X2 is an open subset of X1.

Proof. (i)→(ii) Since clR1
(A) = A ∪ {x ∈ X1 : 〈x〉R1 ∩A 6= φ}, then

f(clR1
(A)) = f(A ∪ {x ∈ X1 : 〈x〉R1 ∩A 6= φ})

⊆ f(A) ∪ {f(x) ∈ X2 : 〈x〉R1 ∩A 6= φ}.

Since f is continuous, i.e., f(x) ∈ clR2
(f(A)), hence

f(clR1
(A)) ⊆ f(A) ∪ {f(x) ∈ X2 : 〈f(x)〉R2 ∩ f(A) 6= φ} = clR2

(f(A)).

(ii)→(iii) Let A ⊆ X2 be a closed subset of X2, we want to show that f−1(A)
is a closed subset of X1. Let x ∈ clR1

(f−1(A)) then

f(x) ∈ f(clR1
(f−1(A))) ⊆ clR2

(f(f−1(A))) ⊆ clR2
(A) = A,

hence x ∈ f−1(A) and so clR1
(f−1(A)) = f−1(A), i.e., f−1(A)is a closed subset

of X1.
(iii)→ (iv) Let A ⊆ X2 be an open subset of X2. We want to show that

f−1(A) is an open subset of X1. Since A is open in X2, then Ac is closed in X2

and so f−1(Ac) is closed in X1, hence (f−1(Ac))cis open in X1. Since for any
function f we have f−1(A) ∩ f−1(Ac) = φ and f−1(A) ∪ f−1(Ac) = X1, thus
f−1(A) = (f−1(Ac))c, i.e., f−1(A) is open in X1.

(iv)→ (i) We want to show that f is continuous at any point x ∈ X1, i.e.,

f(〈x〉R1) ⊆ 〈f(x)〉R2.

Let y /∈ 〈f(x)〉R2 for all f(x) ∈ A and A be an open subset of X2 which
contains f(x), then y /∈ A. Since f−1(A) is an open subset containing x, i.e.,
〈x〉R1 ⊆ f−1(A), then f(〈x〉R1) ⊆ A, hence y /∈ f(〈x〉R1) i.e., f(〈x〉R1) ⊆
〈f(x)〉R2, thus f is continuous at x ∈ X1. �
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Proposition 5.2. Let f : (X1, clR1
) → (X1, clR2

) be a one-to-one correspon-

dence function, then f−1 is a continuous function at f(x) for all x ∈ X1 if

and only if 〈f(x)〉R2 ⊆ f(〈x〉R1).

Proof. Assume that f−1 is a continuous function at f(x), then

f−1(〈f(x)〉R2) ⊆ 〈f
−1(f(x))〉R1,

hence
f(f−1(〈f(x)〉R2)) ⊆ f(〈f−1(f(x))〉R1),

thus 〈f(x)〉R2 ⊆ f(〈x〉R1) since f is one-to-one correspondence.
Conversely, assume that 〈f(x)〉R2 ⊆ f(〈x〉R1). Since f is one-to-one corre-

spondence, then 〈f(x)〉R2 ⊆ f(〈f−1(f(x))〉R1) and

f(f−1(〈f(x)〉R2)) ⊆ f(〈f−1(f(x))〉R1),

hence
f−1(〈f(x)〉R2) ⊆ 〈f

−1(f(x))〉R1,

then f−1 is a continuous function at f(x) for all x ∈ X1. �

Proposition 5.3. Let f : (X1, clR1
) → (X2, clR2

) be a function, then f is

continuous if and only if f−1(intR2
(B)) = intR1

(f−1(B)) for all B ⊆ X2.

Proof. Since intR2
(B) = {y ∈ B : 〈y〉R2 ⊆ B}, then f−1(intR2

(B)) = {f−1(y) :
〈y〉R2 ⊆ B}. Since {ff−1(y)} ⊆ {y}, then 〈ff−1(y)〉R2 ⊆ 〈y〉R2, hence

〈f(f−1(y))〉R2 ⊆ B,

then f−1(〈f(f−1(y))〉R2) ⊆ f−1(B), thus f−1(f(〈f−1(y)〉R1)) ⊆ f−1(B) (since
f is continuous), thus 〈f−1(y)〉R1 ⊆ f−1(B), then

f−1(intR2
(B)) = {f−1(y) : 〈f−1(y)〉R1 ⊆ f−1(B)} = intR1

(f−1(B)),

for all B ⊆ X2.
Conversely, assume that f−1(intR2

(B)) = intR1
(f−1(B)), for all B ⊆ X2.

We want to show that f is continuous. Let B ⊆ X2 be an open subset of
X2, i.e., B = intR2

(B), then f−1(B) = f−1(intR2
(B)) = intR1

(f−1(B)), i.e.,
f−1(B) is an open subset of X1. Thus f is continuous on X1. �

Lemma 5.1. Let f be an identity function from a closure space (X1, clR1
) into

a closure space (X2, clR2
), then f is continuous if and only if R1 ⊆ R2.

Proof. Suppose f is a continuous function, then f(〈x〉R1) ⊆ 〈f(x)〉R2. Since
f is an identity function, then f(〈x〉R1) = 〈x〉R1 also f(x) = x, hence

〈x〉R1 ⊆ 〈x〉R2,

i.e., ∩x∈yR1
(yR1) ⊆ ∩x∈yR2

(yR2), thus yR1 ⊆ yR2 for all y ∈ X1, then R1 ⊆ R2.
Conversely, assume that R1 ⊆ R2, then yR1 ⊆ yR2 for all y ∈ X1 and

so ∩x∈yR1
(yR1) ⊆ ∩x∈yR2

(yR2), i.e.,〈x〉R1 ⊆ 〈x〉R2. Since f is an identity
function, then f(〈x〉R1) = 〈x〉R1 and f(x) = x, hence f(〈x〉R1) ⊆ 〈f(x)〉R2,
and so f is a continuous function on X1. �
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Lemma 5.2. Let f : (X1, clR1
) → (X2, clR2

) be a continuous function and

A = f(X1), then f : (X1, clR1
)→ (A, clR∗) is also continuous function.

Proof. We want to show that f(〈x〉R1) ⊆ 〈f(x)〉R∗. Since

〈f(x)〉R∗ = (〈f(x)〉R2) ∩A

and 〈x〉R1 ⊆ X1, then f(〈x〉R1) ⊆ f(X) = A also f(〈x〉R1) ⊆ 〈f(x)〉R2 (since
f is continuous), then f(〈x〉R1) ⊆ (〈f(x)〉R2) ∩A, i.e.,

f(〈x〉R1) ⊆ 〈f(x)〉R∗.

�

Proposition 5.4. Let A ⊆ X1 be a subset of X1 and f : X1 → X2 be a

continuous function, then f/A : A→ X2 is a continuous function.

Proof. We want to show that f/A(〈x〉RA) ⊆ 〈f/A(x)〉R2 for all x ∈ A. Since
〈x〉RA = 〈x〉R1 ∩A, then

f/A(〈x〉RA) = f(〈x〉RA)

= f(〈X〉R1 ∩ A)

⊆ f(〈x〉R1)

⊆ 〈f(x)〉R2 since f is continuous

⊆ 〈f/A(x)〉R2.

Hence f/A is a continuous function on A. �

Definition 5.3. A function f : (X1, clR1
)→ (X2, clR2

) is called open (closed)
if the image of an open (closed) subset of X1 is an open (closed) subset of X2.

Theorem 5. Let f : X1 → X2 be a function from a closure space (X1, clR1
)

into a closure space (X2, clR2
), then the following conditions are equivalent:

(i) f is open.

(ii) f(intR1
(A)) ⊆ intR2

(f(A)) for all A ⊆ X1.

(iii) if N is a neighborhood of x then there is a neighborhood W of f(x)
such that W ⊆ f(N).

Proof. (i)→ (ii) Since intR1
(A) ⊆ A for all A ⊆ X1, then f(intR1

(A)) ⊆ f(A)
and so intR2

(f(intR1
(A))) ⊆ intR2

(f(A)), then f(intR1
(A)) ⊆ intR2

(f(A)),
(since f is open).

(ii)→ (iii) Let N be a neighborhood of x, then x ∈ intR1
(N), i.e.,

x ∈ 〈x〉R1 ⊆ intR1
(N) ⊆ N,

hence f(x) ∈ f(〈x〉R1) ⊆ f(N) since by (ii) f(〈x〉R1) ⊆ intR2
(f(〈x〉R1)), i.e.,

f(x) ∈ intR2
(f(〈x〉R1)) ⊆ f(N). We can take W = intR2

(f(〈x〉R1)), then
W ⊆ f(N).
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(iii)→(i) Let A be an open subset of X1, then intR1
(A) = A and A is a

neighborhood of all points lies in A, i.e., x ∈ 〈x〉R1 ⊆ A, for all x ∈ A. Thus
there is a neighborhood W of f(x) such that W ⊆ f(A) and so

f(x) ∈ 〈f(x)〉R2 ⊆ W ⊆ f(A),

then 〈f(x)〉R2 ⊆ f(A) for all f(x) ∈ f(A), hence intR2
(f(A)) = f(A), thus

f(A) is an open subset of X2. �

Lemma 5.3. If f : (X1, clR1
)→ (X2, clR2

) is one-to-one correspondence func-

tion, then f is open if and only if f is closed.

Proof. Let f be an open function from X1 onto X2. We want to show that if
A is closed in (X1, clR1

) then f(A) is closed in (X2, clR2
). Since A is closed,

then X1 −A is open, hence f(X1 −A) is open but

f(X1 −A) = f(X1)− f(A) since f is one-to-one

= X2 − f(A) since f is onto,

then f(A) is a closed subset of X2.
Conversely, similarly. �

We introduce the following example to show that the condition one-to-one
correspondence is necessary.

Example 5.1. Let X1 = {a, b, c, d} and X2 = {1, 2, 3, 4} be two universal sets
and

R1 = {(a, a), (a, b), (b, c), (c, d), (d, a)}

and
R2 = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4), (4, 2), (4, 1)}

be two any binary relations on X1 and X2 respectively, and

f : (X1, clR1
)→ (X2, clR2

)

defined as f(a) = f(c) = 1, f(b) = 2 and f(d) = 3. Note that the function f is
not one-to-one correspondence. Also this function is an open function but not
a closed function because there is a closed subset {c} of X1 but f({c}) = {1}
is not a closed subset of X2.

Proposition 5.5. Let f : X1 → X2 be a function from a closure space (X1, clR1
)

into a closure space (X2, clR2
), then f is closed if and only if

clR2
(f(A)) ⊆ f(clR1

(A))

for all A ⊆ X1.

Proof. Suppose f is a closed function. Since A ⊆ clR1
(A), then f(A) ⊆

f(clR1
(A)) also clR2

(f(A)) ⊆ clR2
(f(clR1

(A))) but since f is a closed func-
tion we have clR2

(f(clR1
(A))) = f(clR1

(A)), then clR2
(f(A)) ⊆ f(clR1

(A)).
Conversely, assume that A is a closed subset of X1, then A = clR1

(A). Since
clR2

(f(A)) ⊆ f(clR1
(A)) but f(A) = f(clR1

(A)), then we have clR2
(f(A)) =

f(A). Hence f is a closed function. �



NEW APPROACH FOR CLOSURE SPACES BY RELATIONS 297

Definition 5.4. A function f : (X1, clR1
) → (X2, clR2

) is said to be a homeo-
morphism if f is one-to-one correspondence, continuous and open.

A homeomorphism f : (X1, clR1
)→ (X2, clR2

) gives us a bijective correspon-
dence not only between X1 andX2 but also between the collections of open
sets of X1 and X2. As a result, any property of X1 that is entirely expressed in
terms of the closure space (X1, clR1

) (that is, in terms of the open sets of X1)
yields, via the correspondence f , the correspondence property for the closure
space (X2, clR2

). Such a property of X1 is called a topological property of X1.

Theorem 6. Let f be a one-to-one correspondence function from a closure

space (X1, clR1
) into a closure space (X2, clR2

) , then the following conditions

are equivalent.

(i) f is a homeomorphism,

(ii) f and f−1 are continuous,

(iii) f is continuous and closed,

(iv) f(clR1
(A)) = clR2

(f(A)), for all A ⊆ X1.

Proof. (i)→ (ii) We want to show that only f−1 is continuous. Since f is open,
i.e., if A ⊆ X1 is open then f(A) ⊆ X2 is also open. Suppose A ⊆ X1 is open,
hence (f−1)−1(A) = f(A) is also open and so f−1 is continuous.

(ii)→ (iii) We want to show that f is closed. Assume that A ⊆ X1 is closed,
then X1−A is open and so (f−1)−1(X1−A) is open (since f−1 is continuous)
but (f−1)−1(X1 − A) = f(X1 − A) = f(X1) − f(A) = X2 − f(A) (since f is
one-to-one correspondence), thus f(A) is a closed subset of X2.

(iii)→ (iv) The proof immediately derived from theorem 5.1 and proposition
5.5.

(iv)→ (i) We want to show that f is continuous and open. Since f(clR1
(A)) ⊆

clR2
(f(A)), then f is continuous. Let A be an open subset of X1, then X1−A

is a closed subset of X1 and so

f(clR1
(X1 −A)) = f(X1 −A) = f(X1)− f(A) = X2 − f(A)

and

clR2
(f(X1 −A)) = clR2

(f(X1)− f(A)) = clR2
(X2 − f(A)),

then clR2
(X2 − f(A)) = X2 − f(A), hence X2 − f(A) is closed in X2 and so

f(A) is an open subset in X2. �

Proposition 5.6. Let f : (X1, clR1
) → (X2, clR2

) be a one-to-one correspon-

dence function, then f is a homeomorphism if and only if f(〈x〉R1) = 〈f(x)〉R2

for all x ∈ X1.

Proof. The proof is immediately derived from definition 5.1 and proposition
5.2. �
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6. Lower Separation Axioms

In this section, we give a new definitions of some concepts of the lower
separation axioms via relational concepts and study some of their properties.

Lemma 6.1. Let R be any binary relation and for every two distinct points x
and y in a closure space (X, clR), then x /∈ clR(y) or y /∈ clR(x) if and only if

either x /∈ 〈y〉R or y /∈ 〈x〉R.

Proof. Suppose x /∈ clR(y) or y /∈ clR(x) for every x, y ∈ X. In the former case
we have 〈x〉R∩{y} = φ, i.e., y /∈ 〈x〉R. And in the latter, then 〈y〉R∩{x} = φ,
i.e., x /∈ 〈y〉R. Conversely, Assume that x /∈ 〈y〉R or y /∈ 〈x〉R for every
x, y ∈ X. In the former case we have 〈y〉R ∩ {x} = φ, i.e., y /∈ clR(x). And in
the latter we get 〈x〉R∩ {y} = φ, i.e., And let x ∈ clR(y) and y ∈ clR(x), then
y ∈ 〈x〉R x /∈ clR(y). �

Definition 6.1. Let R be any binary relation, then a closure space (X, clR)
is called T0-space if and only if for every two distinct points x, y ∈ X either
x /∈ 〈y〉R or y /∈ 〈x〉R.

Proposition 6.1. Let f : (X1, clR1
) → (X2, clR2

) be one-to-one correspon-

dence, f−1 be continuous on X2 and (X1, clR1
) be a T0-space then (X2, clR2

) is

also T0-space.

Proof. Assume that x, y ∈ X2 are two distinct points, then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a T0-space, then f−1(x) /∈ 〈f−1(y)〉R1 or f−1(y) /∈ 〈f−1(x)〉R1

and hence f(f−1(x)) /∈ f(〈f−1(y)〉R1) or f(f−1(y)) /∈ f(〈f−1(x)〉R1), so

x /∈ f(〈f−1(y)〉R1) or y /∈ f(〈f−1(x)〉R1),

but f−1 is continuous on X2, then x /∈ 〈f(f−1(y))〉R2 or y /∈ 〈f(f−1(x))〉R2

and hence x /∈ 〈y〉R2 or y /∈ 〈x〉R2, so (X2, clR2
) is a T0-space. �

Corollary 6.1. If f : (X1, clR1
)→ (X2, clR2

) is homeomorphism then the prop-

erty of a T0-space is a topological property.

Lemma 6.2. Let R be any binary relation, then in a closure space (X, clR)
every singleton {x} is open or closed if and only if x /∈ 〈y〉R or 〈x〉R = {x}
or φ for all x, y ∈ X.

Proof. Assume that {x} ⊂ X is a closed or an open subset of X (i.e., clR(x) =
{x} or intR(x) = {x}). In the former case we have {x} = {x} ∪ {y : 〈y〉R ∩
{x} 6= φ}, i.e., 〈y〉R ∩ {x} = φ, so x /∈ 〈y〉R. In the latter case we get
{x} = {x : 〈x〉R ⊆ {x}}, then 〈x〉R = {x} orφ. Conversely, if x /∈ 〈y〉R, then
〈y〉R ∩ {x} = φ, hence y /∈ clR(x) for all y ∈ X, i.e., clR(x) = {x}. Also if
〈x〉R = x orφ, then 〈x〉R ⊆ {x}, and hence {x ∈ {x} : 〈x〉R ⊆ {x}} = {x},
i.e., intR(x) = {x}. So every singleton {x} is open or closed. �
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Definition 6.2. Let R be any binary relation, then a closure space (X, clR)
is called T1/2-space if and only if for every two distinct points x, y ∈ X either
x /∈ 〈y〉R or 〈x〉R = {x} or φ.

Proposition 6.2. Let f : (X1, clR1
) → (X2, clR2

) be one-to-one correspon-

dence, f−1 be continuous on X2 and (X1, clR1
) be a T1/2-space then (X2, clR2

)
is also T1/2-space.

Proof. Assume that x, y ∈ X2 are two distinct points, then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a T1/2-space, then f−1(x) /∈ 〈f−1(y)〉R1 or 〈f−1(x)〉R1 = {f−1(x)}
or φ and hence f(f−1(x)) /∈ f(〈f−1(y)〉R1) or f(〈f−1(x)〉R1) = f{f−1(x)} or
f(φ}, so x /∈ f(〈f−1(y)〉R1) or f(〈f−1(x)〉R1 = {x}) or φ but f−1 is continu-
ous on X2, then x /∈ 〈f(f−1(y))〉R2 or 〈f(f−1(x))〉R2 ⊆ {x} or φ and hence
x /∈ 〈y〉R2 or 〈x〉R2 = {x} or φ, so (X2, clR2

) is a T1/2-space. �

Corollary 6.2. If f : (X1, clR1
) → (X2, clR2

) is homeomorphism then the

property of a T1/2-space is a topological property.

Lemma 6.3. Let R be any binary relation and for every two distinct points

x and y in a closure space (X, clR), then either clR(x) = clR(y) or clR(x) ∩
clR(y) = φ if and only if if x ∈ 〈y〉R then y ∈ 〈x〉R.

Proof. Let x and y be two distinct points in a closure space (X, clR) and
clR(x) = clR(y) or clR(x) ∩ clR(y) = φ. In the former case we have y ∈ clR(x)
and x ∈ clR(y), i.e., x ∈ 〈y〉R and y ∈ 〈x〉R. In the latter case we get
x /∈ clR(y) and y /∈ clR(x), i.e., x /∈ 〈y〉R and y /∈ 〈x〉R. So if x ∈ 〈y〉R then
y ∈ 〈x〉R. Conversely, if x ∈ 〈y〉R then y ∈ 〈x〉R holds, then either

(x ∈ 〈y〉R and y ∈ 〈x〉R)

or
(x /∈ 〈y〉R and y /∈ 〈x〉R)

are holds. In the former case we have y ∈ clR(x) and x ∈ clR(y) for all x, y ∈ X,
then

(6.1) clR(x) = clR(y).

In the latter case we get y /∈ clR(x) and x /∈ clR(y) for all x, y ∈ X, then

(6.2) clR(x) ∩ clR(y) = φ.

From (6.1) and (6.2) the proof is complete. �

Definition 6.3. Let R be any binary relation, then a closure space (X, clR) is
called R0-space if and only if for every two distinct points x, y ∈ X if x ∈ 〈y〉R
then y ∈ 〈x〉R.

Proposition 6.3. Let f : (X1, clR1
) → (X2, clR2

) be one-to-one correspon-

dence, f−1 be continuous on X2 and (X1, clR1
) is a R0-space then (X2, clR2

) is

also R0-space.
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Proof. Assume that x, y ∈ X2 are two distinct points then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a R0-space, i.e., if f−1(x) ∈ 〈f−1(y)〉R1 then f−1(y) ∈ 〈f−1(x)〉R1

and hence if f(f−1(x)) ∈ f(〈f−1(y)〉R1) then f(f−1(y)) ∈ f(〈f−1(x)〉R1), so if
x ∈ f(〈f−1(y)〉R1) then y ∈ f(〈f−1(x)〉R1) but f−1 is continuous on X2, thus
we have if x ∈ 〈f(f−1(y))〉R2 then y ∈ 〈f(f−1(x))〉R2 and hence if x ∈ 〈y〉R2

then y ∈ 〈x〉R2. Then (X2, clR2
) is a R0-space. �

Corollary 6.3. If f : (X1, clR1
) → (X2, clR2

) is homeomorphism then the

property of a R0-space is a topological property.

Lemma 6.4. Let R be any binary relation and for every two distinct points x
and y in a closure space (X, clR), then x /∈ clR(y) and y /∈ clR(x) if and only

if both x /∈ 〈y〉R and y /∈ 〈x〉R are holds.

Proof. Suppose x /∈ clR(y) and y /∈ clR(x) for every x, y ∈ X. In the former
case we have 〈x〉R ∩ {y} = φ, then y /∈ 〈x〉R. Also in the latter case we get
〈y〉R∩{x} = φ, hence x /∈ 〈y〉R. So x /∈ 〈y〉R and y /∈ 〈x〉R for every x, y ∈ X.
Conversely, assume that x /∈ 〈y〉R and y /∈ 〈x〉R for every x, y ∈ X. In the
former case we have 〈y〉R ∩ {x} = φ, then y /∈ clR(x) and in the latter case
we get 〈x〉R ∩ {y} = φ, hence x /∈ clR(y). Thus x /∈ clR(y) and y /∈ clR(x) for
every x, y ∈ X. �

Definition 6.4. Let R be any binary relation, then a closure space (X, clR)
is called T1-space if and only if for every two distinct points x, y ∈ X both
x /∈ 〈y〉R and y /∈ 〈x〉R are holds.

Proposition 6.4. Let f : (X1, clR1
) → (X2, clR2

) be one-to-one correspon-

dence, f−1 be continuous on X2 and (X1, clR1
) be a T1-space then (X2, clR2

) is

also T1-space.

Proof. Assume that x, y ∈ X2 are two distinct points then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a T1-space, i.e., f−1(x) /∈ 〈f−1(y)〉R1 and f−1(y) /∈ 〈f−1(x)〉R1.
Then f(f−1(x)) /∈ f(〈f−1(y)〉R1) and f(f−1(y)) /∈ f(〈f−1(x)〉R1) and hence
x /∈ f(〈f−1(y)〉R1) and y /∈ f(〈f−1(x)〉R1) but f−1 is continuous on X2, so
x /∈ 〈f(f−1(y))〉R2 and y /∈ 〈f(f−1(x))〉R2 and hence x /∈ 〈y〉R2 and y /∈ 〈x〉R2.
Thus (X2, clR2

) is a T1-space. �

Corollary 6.4. If f : (X1, clR1
)→ (X2, clR2

) is homeomorphism then the prop-

erty of a T1-space is a topological property.

Corollary 6.5. For any closure space (X, clR) the following are holds,

(1) T1 ⇒ T1/2 ⇒ T0.

(2) T1 ⇒ R0.

(3) T1 = R0 + T0.

Proof. The proof is immediately derived from lemma 6.1, 6.2, 6.3 and 6.4. �



NEW APPROACH FOR CLOSURE SPACES BY RELATIONS 301

Lemma 6.5. Let R be any reflexive relation on X, then in a closure space

(X, clR) for any two distinct points x, y ∈ X there exist two disjoint open sets

U, V such that x ∈ U and y ∈ V if and only if 〈x〉R ∩ 〈y〉R = φ.

Proof. Suppose x, y ∈ X are two distinct points and U, V are two disjoint
open sets containing x, y respectively, i.e., x ∈ U = {x : 〈x〉R ⊂ U} and
y ∈ V = {y : 〈y〉R ⊂ V }, then 〈x〉R ∩ 〈y〉R ⊂ U ∩ V = φ for all x, y ∈ X.
Conversely, assume 〈x〉R∩〈y〉R = φ for all x, y ∈ X. Then x ∈ 〈x〉R = U and
y ∈ 〈y〉R = V and hence U ∩ V = 〈x〉R ∩ 〈y〉R = φ. �

Definition 6.5. Let R be any binary reflexive relation, then a closure space
(X, clR) is called T2-space if and only if for every two distinct points x, y ∈ X
we have 〈x〉R ∩ 〈y〉R = φ.

Proposition 6.5. Let f : (X1, clR1
) → (X2, clR2

) be one-to-one correspon-

dence, f−1 be continuous on X2 and (X1, clR1
) be a T2-space then (X2, clR2

) is

also T2-space.

Proof. Assume that x, y ∈ X2 are two distinct points then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a T2-space, i.e., 〈f−1(x)〉R1 ∩ 〈f
−1(y)〉R1 = φ, then

f(〈f−1(x)〉R1 ∩ 〈f
−1(y)〉R1) = f(φ)

and hence f(〈f−1(x)〉R1) ∩ f(〈f−1(y)〉R1) = φ but f−1 is continuous on X2,
then 〈f(f−1(x))〉R2∩〈f(f−1(y))〉R2 = φ, thus 〈x〉R2∩〈y〉R2 = φ. So (X2, clR2

)
is a T2-space. �

Corollary 6.6. If f : (X1, clR1
) → (X2, clR2

) is homeomorphism then the

property of a T2-space is a topological property.

Lemma 6.6. Let R be any reflexive relation on X, then in a closure space

(X, clR) for any two distinct points x, y ∈ X there exist two open sets U, V
containing x, y respectively such that clR(U) ∩ clR(V ) = φ if and only if

clR(〈x〉R) ∩ clR(〈y〉R) = φ.

Proof. Assume that x, y ∈ X are two distinct points and let U, V are two open
sets containing x, y respectively such that clR(U) ∩ clR(V ) = φ. We want to
prove that clR(〈x〉R) ∩ clR(〈y〉R) = φ for all x, y ∈ X. If

clR(〈x〉R) ∩ clR(〈y〉R) 6= φ,

i.e., there is z such that z ∈ clR(〈x〉R) and z ∈ clR(〈y〉R), then 〈z〉R∩〈x〉R 6= φ
and 〈z〉R ∩ 〈y〉R 6= φ. Since x ∈ U and y ∈ V then 〈x〉R ⊂ U and 〈y〉R ⊂ V ,
hence 〈z〉R ∩ U 6= φ and 〈z〉R ∩ V 6= φ so z ∈ clR(U) and z ∈ clR(V ), i.e.,
z ∈ clR(U) ∩ clR(V ) and so clR(U) ∩ clR(V ) 6= φ, which that is contradiction
then clR(〈x〉R) ∩ clR(〈y〉R) = φ for all x, y ∈ X.

Conversely, suppose clR(〈x〉R) ∩ clR(〈y〉R) = φ for all x, y ∈ X and R is
reflexive relation. Then x ∈ 〈x〉R = U (open subset) and y ∈ 〈y〉R = V (open
subset). Hence clR(U) ∩ clR(V ) = clR(〈x〉R) ∩ clR(〈y〉R) = φ. �
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Definition 6.6. Let R be any binary reflexive relation, then a closure space
(X, clR) is called T5/2-space if and only if for every two distinct points x, y ∈ X
then clR(〈x〉R) ∩ clR(〈y〉R) = φ.

Proposition 6.6. Let

f : (X1, clR1
)→ (X2, clR2

)

be homeomorphism and (X1, clR1
) be a T5/2-space then (X2, clR2

) is also T5/2-

space.

Proof. Assume that x, y ∈ X2 are two distinct points then f−1(x) and f−1(y)
are two distinct points in X1, since f is one-to-one correspondence. But
(X1, clR1

) is a T5/2-space, i.e., clR1
(〈f−1(x)〉R1) ∩ clR1

(〈f−1(y)〉R1) = φ, then

f(clR1
(〈f−1(x)〉R1) ∩ clR1

(〈f−1(y)〉R1)) = f(φ)

and hence f(clR1
(〈f−1(x)〉R1))∩ f(clR1

(〈f−1(y)〉R1)) = φ but f is homeomor-
phism, then clR2

(f(〈f−1(x)〉R1)) ∩ clR2
(f(〈f−1(y)〉R1)) = φ also f is homeo-

morphism, thus clR2
(〈f(f−1(x))〉R2) ∩ clR2

(〈f(f−1(y))〉R2) = φ, so

clR2
(〈x〉R2) ∩ clR2

(〈y〉R2) = φ.

Thus we have (X2, clR2
) is a T5/2-space. �

Corollary 6.7. If f : (X1, clR1
) → (X2, clR2

) is homeomorphism then the

property of a T5/2-space is a topological property.

Example 6.1. Let X = {a, b, c, d} and R be any binary relation on X,

R = {(a, a), (a, b), (b, d), (c, d), (d, d)},

then
〈a〉R = {a, b}, 〈b〉R = {a, b}, 〈c〉R = φ, 〈d〉R = {d}.

Note that the closure space (X, clR) is not T1/2 because a ∈ 〈b〉R, also is not
T0 because a ∈ 〈b〉R and b ∈ 〈a〉R. But the closure space (X, clR) is R0-space.
And the corresponding topology of this relation is

τ = {φ, X, {c}, {d}, {c, d}, {a, b}, {a, b, c}, {a, b, d}}.

Note that in this topology every τ -open set is τ - closed set, i.e., this topology
is a quasi-discrete topology.

7. Digital line

In this section we define a transitive relation to generate the digital line and
so called Khalimesky line, which has many application in computer science.

Let X = Z and R be a transitive relation on Z,

R = {(2n, 2n), (2n, 2n + 1), (2n, 2n− 1) : n ∈ Z},

then

〈2n+1〉R = {2n+1}, 〈2n−1〉R = {2n−1} and 〈2n〉R = {2n−1, 2n, 2n+1}.
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Note that the closure space (Z, clR) is T0 and T1/2-space but not T1 because
2n + 1 ∈ 〈2n〉R and 2n /∈ 〈2n + 1〉R, also not R0 because 2n + 1 ∈ 〈2n〉R but
2n /∈ 〈2n + 1〉R.

In this space clR(2n) = {2n} and clR(2n + 1) = {2n, 2n + 1, 2n + 2} also
NR(2n) = {2n−1, 2n, 2n+1} and NR(2n+1) = {2n+1}. Note that this space
is called the digital line (Z, K) and so-called Khalimsky line [7, 8] generated
by the above relation. Also we can write this relation in an equivalent form as
follows: xRy ⇔ x→ y.

Example 6.1 and this application show that the two separation axioms T0

and T1/2 are independent with Ro.
In Z the 2-neighbors of x is N2(x) = {x − 1, x + 1}, then the following

conditions are holds on Z by the above relation.
(1) If two points x, y ∈ Z are 2-neighbors, then either x→ y or y → x.
(2) If two points x, y /∈ Z are not 2-neighbors, then bothx 9 y and y 9 x.

Lemma 7.1. If x1, x2, x3 ∈ Z such that x2 ∈ N2(x1) and x3 ∈ N2(x2), then

we have either x1 → x2 ← x3 or x1 ← x2 → x3.

Proof. By condition (1) we have either x1 → x2 or x2 → x1. Let x1 → x2. Also
by condition (1) either x2 → x3 or x3 → x2. If x2 → x3 then by transitivity
x1 → x3 which contradiction to condition (2). Hence x3 → x2. �

Then by lemma 7.1 we can draw the graph of this relation as follows:

Note that → ◦ ← is equivalent to open set also ← • → is equivalent to the
closed set. We can obtain the results in [4] by this method.

8. Conclusion

Topology is a branch of mathematics, whose concepts exist not only in
almost all branches of mathematics, but also in many real life applications.
Relations are used in construction of topological structures in several fields.

In this paper, we investigate a new concept of a binary relation R (〈x〉R)
to generate a closure operator. In so doing, the idempotent condition, which
has never been realized, is achieved. The topology associated with this closure
operator are studied.

So we choose this line aiming to fill the gap between topologists and appli-
cation. Also to open the door for more topological applications.
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