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SECOND ORDER PARALLEL TENSORS ON α – SASAKIAN
MANIFOLD

LOVEJOY DAS

Abstract. Levy had proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of
the metric tensor. Sharma [12] has proved that a second order parallel
tensor in a Kaehler space of constant holomorphic sectional curvature is a
linear combination with constant coefficients of the Kaehlarian metric and
the fundamental 2 – form. In this paper we show that a second order sym-
metric parallel tensor on an α – K contact (α ∈ Ro) manifold is a constant
multiple of the associated metric tensor and we also prove that there is no
nonzero skew symmetric second order parallel tensor on an α – Sasakian
manifold.

1. Introduction

In 1923, Eisenhart [10] showed that a Riemannian manifold admitting a
second order symmetric parallel tensor other than a constant multiple of the
metric tensor is reducible. In 1926, Levy [11] had obtained the necessary and
sufficient conditions for the existence of such tensors, Recently Sharma [12]
has generalized Levy’s result by showing that a second order parallel (not
necessarily symmetric and non singular) tensor on an n – dimensional (n Â 2)
space of constant curvature is a constant multiple of the metric tensor. Sharma
has also proved in [12] that on a Sasakian manifold there is no nonzero parallel
2 – form. In this paper we have considered an almost contact metric manifold
and have proved the following two theorems.

Theorem 1.1. On an α−K contact (α ∈ Ro) manifold a second order sym-
metric parallel tensor is a constant multiple of the associated positive definite
Riemannian metric tensor.
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Now the question arises whether there is a skew symmetric second order
parallel tensor on a α − k contact manifold. We do not have an answer to it.
However we do have an answer if the manifold is α− Sasakian where α ∈ R0.

Theorem 1.2. On an α− Sasakian manifold there is no nonzero parallel 2 –
forms.

2. Preliminaries

A C∞ manifold M of dimension 2n + 1 is called a contact manifold if it
carries a global 1 – form A such that A ∧ (dA)n 6= 0. On a contact manifold
there exists a unique vector field T called the characteristic vector field such
that

(2.1) A (T ) = 1, (dA) (T, X) = 0

for any vector field X on M . By polarization we obtain a Riemannian metric
g called an associated metric and a (1, 1) tensor field φ on M such that

φ2 = −I + A⊗ T

(dA) (X, Y ) = g (X, φY )

A (X) = g (X, T )

(2.2)

for the arbitrary vector fields X and Y on M. If in addition to (2.1) and (2.2),
Mn admits a positive definite Riemannian metric g such that

g (φX, φY ) = g (X,Y )− A (X) A (Y )

φ (T ) = 0, A (φ (X)) = 0,∀ X, Y ∈ X (M)

and rank (φ) = 2n everywhere on M .

(2.3)

Such a manifold satisfying (2.1), (2.2), and (2.3) is called an almost contact
metric manifold. The structure endowed in M is called (φ,A, T, g) – structure.

For a (φ,A, T, g) – structure, the skew symmetric bilinear form

(2.4) Φ (X, Y ) = g (X,φY )

is called the fundamental 2 – form of the almost contact metric structure.

3. Some Definitions and Theorems

Definition 3.1. An almost contact metric structure is said to be an α – K
contact structure if the vector field T is killing with respect to g.

In proving Theorems 1.1 and 1.2, we need the following theorems.

Theorem 3.1. On an α – K contact structure the following holds.

(3.1) ∇XT = −αφx for all X ∈ X (M)

where ∇ is the Riemannian connection of g.



SECOND ORDER PARALLEL TENSORS ON α – SASAKIAN MANIFOLD 67

Theorem 3.2. An almost contact metric structure – (φ,A, T, g) is α – Sasakian
iff

(3.2) (∇xφ) Y = α{g (X, Y ) T − A (Y ) X}
where ∇ denotes the Riemannian connection of g.

Proof. The proofs of the above theorems follows in a similar fashion as in the
Theorem 6.3 by Blair [3]. ¤
Definition 3.2 ([2]). An almost α – Sasakian manifold M is an almost contact
metric manifold such that φ (X, Y ) = 1

α
dη (X,Y ) , α ∈ R0 and M is a α –

Sasakian manifold if the structure is normal.

Theorem 3.3. An almost contact metric manifold M is α – Sasakian manifold
iff for all X, Y ∈ X (M)

(3.3) R (X, Y ) T = α{A (Y ) X − A (X) Y }
Proof. The proof of the above theorem follows in view of Lemma 6.1 of Blair
[3]

The two conditions of being normal and contact metric may be written as
the following:

(3.4) R(T, X)Y = α{g(X, Y )T − A(Y )X}
¤

Theorem 3.4. For an α−K contact manifold we have

(3.5) R (T,X) T = α{−X + A (X) T}
Proof. In view of (3.4), the proof follows immediately. ¤

For a detailed study on a contact manifold the reader is referred to [2].

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let h denote a (0, 2) – tensor field on an α−K contact
manifold M such that ∇h = 0. Then it follows that

(4.1) h (R (W,X) Y, Z) + h (Y,R (W,X) Z) = 0

for arbitrary vector fields X,Y, Z, W on M .
We write (4.1) as follows

g (R (W,X) Y, Z) + g (Y, R (W,X) , Z) = 0.

On substituting W = Y = Z = T in (4.1) we get:

(4.2) g (R (T, X) T, T ) + g (T, R (T, X) , T ) = 0.

In view of Theorem (3.4), the above equation becomes:

(4.3) g (−αX + αA (X) T, T ) + g (T,−αX + αA (X) T ) = 0.
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In this equation, using (2.2) we get

(4.4) 2αg (X, T ) h (T, T )− αh (X,T )− αh (T,X) = 0.

Differentiating (4.4) covariantly with respect to Y and using Theorem (3.1)
we get

2αh (T, T ) g (∇Y X, T )− 2α2h (T, T ) g (X, φY )

− αg (∇Y X,T ) + α2g (X,φY ) + α2g (φY, X)− αg (T,∇Y X) = 0.
(4.5)

Replacing Y by φY and using equations (2.2), (2.3) and (4.4) we obtain

h (X,Y ) + h (Y, X) = 2h (T, T ) g (X,Y ) .

But h is symmetric, thus on simplifying the above equation we get

(4.6) 2h (T, T ) g (X, Y ) = 2h (X, Y ) .

In view of the fact that h (T, T ) is constant by differentiating it along any
vector on M2n+1 we get

h (T, T ) g (X,Y ) = h (X, Y )

which completes the proof. ¤
Proof of Theorem 1.2. Let us consider h to be a parallel 2 – form on an α−
Sasakian manifold M2n+1 and let H be a (1, 1) tensor field metrically equivalent
to h since h (X,Y ) = g (HX, Y ). Now (4.1) can be written as

(4.7) g (R (W,X) Y, Z) + g (Y,R (W,X) Z) = 0.

Let us put X = Y = T in (4.7) and using the fact that h (X,Y ) = g (HX, Y )
we get

(4.8) g (HR (W,T ) T, Z) + g (HT,R (WT ) Z) = 0.

Applying the skew symmetric property of R (X,Y ) and using (3.3) and (3.4)
in (4.8) and after simplifying, we obtain

(4.9) αg (HZ, T ) T + αg (Z, T ) HT = αHZ.

Differentiating (4.9) along φX we obtain

2αA (X) A (HZ) T − αg (HZ,X) T − αg (HZ, T ) X

= αg (Z,X) HT − 2αA (X) A (Z) HT + αA (Z) HX.
(4.10)

Let {ei} , i = 1, 2, . . . , 2n + 1 be an orthonormal basis of the tangent space.
In the above equation (4.10), we substitute X = ei and take the inner product
with ei and eventually summing over i gives us

α (2n− 1) g (HZ, T ) = 0.

Since α (2n− 1) 6= 0, we have g (HZ, T ) = 0. But g (HZ, T ) = −g (HT, Z).
Thus, HT = 0 and hence (4.9) shows that H = 0, which completes the proof.

¤
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