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CLASSIFICATION OF RANDERS METRICS OF SCALAR
FLAG CURVATURE

XINYUE CHENG AND ZHONGMIN SHEN

Abstract. This is a survey article about the recent developments in classi-
fying Randers metrics of scalar flag curvature under an additional condition
on the isotropic S-curvature. The authors give an outline of the proof for
the classification theorem.

1. Introduction

A Randers metric on a manifold M is a Finsler metric defined in the following
form:

F = α + β,

where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form on
M .

Randers metrics were first introduced by physicist G. Randers in 1941 from
the standpoint of general relativity. Later on, these metrics were applied to the
theory of electron microscope by R. S. Ingarden in 1957, who first named them
Randers metrics.

Randers metrics also arise naturally from the navigation problem on a Rie-
mannian space (M, h) under the influence of an external force field W [17]. It
is shown that least time paths are geodesics of a Randers metric F = α + β
determined by

(1) h
(
x,

y

F
−Wx

)
= 1.
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Akbar-Zadeh’s famous rigidity theorem says that every Finsler metric of neg-
ative constant flag curvature on a closed manifold must be a Riemannian metric.
If “constant flag curvature” is changed to “scalar flag curvature”, we have the
following rigidity theorem, namely, every Finsler metric of negative scalar flag
curvature on a closed manifold of dimension n ≥ 3 must be a Randers metric
[11]. This leads to the study of Randers metrics of scalar flag curvature.

The S-curvature plays a very important role in Finsler geometry (cf. [15, 19]).
It is known that, for a Finsler metric F = F (x, y) of scalar flag curvature, if the
S-curvature is isotropic with S = (n + 1)c(x)F , then the flag curvature must be
in the following form

(2) K =
3c̃xmym

F
+ σ,

where σ = σ(x) and c̃ = c̃(x) are scalar functions with c − c̃ = constant [5].
This leads to the study of Finsler metrics of scalar flag curvature with isotropic
S-curvature. In this paper, our goal is to give an outline of the classification the-
orem on the Randers metrics of scalar flag curvature with isotropic S-curvature.
Our main theorem is Theorem 5.3 (see section 5).

Hilbert’s Fourth Problem is to characterize the distance functions on an open
subset U in Rn such that geodesics are straight lines. A Finsler metric F is
said to be projectively flat if it is a smooth solution of Hilbert’s Fourth Problem.
Projectively flat Finsler metrics on U can be characterized by the following
equations:

Gi = P (x, y)yi,

where P (x, λy) = λP (x, y), ∀λ > 0. It is easy to show that any projectively flat
metric F = F (x, y) is of scalar flag curvature. Moreover, the flag curvature is
given by

K =
P 2 − Pxmym

F 2
.

The Beltrami theorem says that a Riemannian metric is locally projectively
flat if and only if it is of constant sectional curvature. Nevertheless, examples
show that this is no longer true for Finsler metrics. This leads to the study of
projectively flat Finsler metrics with isotropic S-curvature.

2. Definitions and Notations

A Finsler metric on a manifold M is a continuous function F : TM → [0,∞)
satisfying the following conditions:

(1) Regularity : F is smooth on TM\{0}.
(2) Positive homogeneity: F (x, λy) = λF (x, y), λ > 0.
(3) Strong convexity: the fundamental tensor gij(x, y) is positive definite for

all (x, y) ∈ TM\{0}, where gij(x, y) := 1
2

[
F 2

]
yiyj (x, y).

For each vector y ∈ TxM , we have an inner product gy = gijdxi ⊗ dxj on
TxM .



CLASSIFICATION OF RANDERS METRICS OF SCALAR FLAG CURVATURE 53

The geodesics are characterized by the following equations in local coordinates

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where

Gi =
1
4
gil

{[
F 2

]
xmyly

m − [
F 2

]
xl

}
.

The local functions Gi = Gi(x, y) are called the geodesic coefficients.
The Riemann curvature Ry := Ri

kdxk
⊗

∂
∂xi |x : TxM → TxM is a family of

linear maps on tangent spaces, defined by

(3) Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yjyk
− ∂Gi

∂yj

∂Gj

∂yk
.

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K(P, y) is
defined by

(4) K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

A Finsler metric F is said to be of scalar flag curvature if the flag curvature
K(P, y) = σ(x, y) is a scalar function on TM\{0}. It is said to be of constant
flag curvature if K(P, y) = constant. At every point, K(P, y) = σ(x, y) if and
only if

(5) Ri
k = σF 2{δi

k − F−2gkjy
jyi}.

Let

(6) Ric := Rm
m.

Ric is a well-defined scalar function on TM\{0}. We call Ric the Ricci curva-
ture.

In Finsler geometry, there are two important non-Riemannian geometric quan-
tities. Recall the Busemann-Hausdorff volume form dV = σF (x)dx1 · · · dxn

which is given by

σF (x) :=
V ol(Bn)

V ol {(yi) ∈ Rn|F (x, y) < 1} .

The first non-Riemannian quantity is the distortion defined by

τ(x, y) := ln

[√
det(gij(x, y))

σF (x)

]
.

It is shown that F is Riemannian if and only if τ = 0 [15]. Thus the distortion
τ measures the non-Euclidean property of the Minkowski space (TxM, Fx).

The second non-Riemannian quantity is he so-called S-curvature defined by

S := τ|mym,
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where “|” denotes the horizontal covariant derivative with respect to any Finsler
connection (such as Berwald connection, Chern connection, etc.). In local coor-
dinates, the S-curvature can be expressed by

(7) S =
∂Gm

∂ym
(x, y)− ym ∂

∂xm

(
ln σF (x)

)
.

(cf. [15, 19]). An important fact is that, for any Berwald metric, the S-curvature
vanishes, S = 0 [14, 15]. The S-curvature S = S(x, y) was first introduced by the
second author when he studied volume comparison in Riemann-Finsler geometry
[14]. He also proved that the S-curvature and the Ricci curvature determine the
local behavior of the Busemann-Hausdorff measure of small metric balls around
a point [16].

We say that the S-curvature is isotropic if there exists a scalar function c =
c(x) on M such that

(8) S = (n + 1)cF.

If c(x) = constant , we say that F is of constant S-curvature.

3. Randers Metrics

We now discuss Randers metrics on an n-dimensional manifold M . Let α =√
aij(x)yiyj be a Riemannian metric β = biy

i be a 1-form on M with ‖βx‖α < 1.
Then F (x, y) := α(x, y) + β(x, y) is a Finsler metric. The volume form dVF of
F is given by

dVF = e(n+1)ρ(x)dVα,

where dVα is the volume form of α and

ρ(x) := ln
√

1− ‖βx‖2α.

Define bi|j by
bi|jθj := dbi − bjθ

j
i ,

where “|” denotes the covariant derivative with respect to α. Let

rij :=
1
2

(
bi|j + bj|i

)
, sij =

1
2

(
bi|j − bj|i

)
, si

j := aihshj ,

sj := bisij , rj := birij , eij := rij + bisj + bjsi.

The S-curvature is given by

S = (n + 1)
{e00

2F
− (s0 + ρ0)

}
,

where e00 := eijy
iyj , s0 := siy

i and ρ0 := ρxi(x)yi. See [15][19]. We have the
following

Lemma 3.1 ([6]). Let F = α + β be a Randers metric on a manifold M . For
a scalar function c = c(x) on M , the following are equivalent:

(a) F is of isotropic S-curvature, S = (n + 1)cF ;
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(b) α and β satisfy that e00 = 2c(α2 − β2), i.e.

rij + bisj + bjsi = 2c(aij − bibj).

Every Randers metric F = α + β with α =
√

aij(x)yiyj and β = bi(x)yi can
be described as a solution to the following equation:

(9) h
(
x,

y

F
−Wx

)
= 1,

where h(x, y) =
√

hij(x)yiyj is a Riemannian metric and W = W i(x) ∂
∂xi is a

vector field with ‖Wx‖h = h(x, Wx) < 1. The relationship between (α, β) and
(h,W ) are given below.

aij =
(1− ‖W‖2)hij + WiWj

(1− ‖W‖2)2 , bi = − Wi

1− ‖W‖2 .

hij = (1− ‖β‖2)(aij − bibj), W i = − bi

1− ‖β‖2 ,

where Wi := hijW
j and bi := aijbj . Moreover,

‖Wx‖2h := hijW
iW j = aijbibj =: ‖βx‖2α,

Zermelo’s navigation problem is to determine shortest time paths on a Rie-
mannian manifold (M,h) with external force W . It turns out that the shortest
paths are the geodesics of the Randers metric F = α + β determined by (9)
([4, 17]). We call (h,W ) the navigation represention of F . One can study the
geometry of a Randers metric F = α+β via its navigation representation (h, W ).

Let

Rij :=
1
2

(Wi;j + Wj;i) , Sij =
1
2

(Wi;j −Wj;i) , Si
j := hirSrj ,

Rj := W iRij , Sj := WiSi
j = W iSij , R := RjW

j ,

where “;” denotes the covariant derivative with respect to h.

Lemma 3.2 ([7]). Let F = α + β be a Randers metric on a manifold M , which
is expressed in terms of a Riemannian metric h and a vector field W by (9).
Then

S =
n + 1
2F

{
2FR0 −R00 − F 2R}

.

From Lemma 3.2, we can prove the following

Lemma 3.3 ([7, 22]). Let F = α + β be a Randers metric on a manifold M ,
which is expressed in terms of a Riemannian metric h and a vector field W by
(9). Then S = (n + 1)cF if and only if R00 = −2ch2. In this case,

(10) Gi = Ḡi − FSi
0 −

1
2
F 2Si + cFyi,

where Ḡi denote the geodesic coefficients of h.
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Now, we are ready to study and characterize Randers metrics of scalar flag
curvature with isotropic S-curvature.

4. Projectively Flat Randers Metrics with Isotropic S-Curvature

First recall a classification theorem.

Theorem 4.1 ([18]). Let F = α + β be an n-dimensional Randers metric of
constant Ricci curvature Ric = (n−1)σF 2 with β 6≡ 0. Suppose that F is locally
projectively flat. Then σ ≤ 0. Further, if σ = 0, F is locally Minkowskian. If
σ = −1/4, F can be expressed in the following form

(11) F =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2 ± 〈x, y〉
1− |x|2 ±

〈a, y〉
1 + 〈a, x〉 , y ∈ TxRn,

where a ∈ Rn is a constant vector with |a| < 1. The Randers metric in (11) has
the following properties:

(a) K = −1/4;
(b) S = ± 1

2 (n + 1)F ;
(c) all geodesics of F are straight lines.

Later on, D. Bao and C. Robles proved the following result: if a Randers
metric F is Einstein with Ric = (n−1)σ(x)F 2, then F is of constant S-curvature
[2]. This leads to the study of projectively flat Randers metrics with isotropic
S-curvature.

Let F = α+β be a locally projectively flat Randers metric. Then α is locally
projectively flat and β is closed. According to the Beltrami theorem in Riemann
geometry, α is locally projectively flat if and only if it is of constant sectional
curvature. Thus we may assume that α of constant sectional curvature µ. It is
locally isometric to the following standard metric αµ on the unit ball Bn ⊂ Rn

or the whole Rn for µ = −1, 0, +1:

α−1(x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2 , y ∈ TxBn ∼= Rn,(12)

α0(x, y) = |y|, y ∈ TxRn ∼= Rn,(13)

α+1(x, y) =

√
|y|2 + (|x|2|y|2 − 〈x, y〉2)

1 + |x|2 , y ∈ TxRn ∼= Rn.(14)

Then we can determine β if µ + 4c(x)2 6= 0,

β = − 2cxk(x)yk

µ + 4c(x)2
.

On the other hand, we have

ci|j = −c(µ + 4c2)aij +
12ccicj

µ + 4c2
.
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Now, we can solve the above equations for c and determine β and the flag
curvature K.

Theorem 4.2 ([5]). Let F = α + β be a locally projectively flat Randers metric
on an n-dimensional manifold M and µ denote the constant sectional curvature
of α. Suppose that the S-curvature is isotropic, S = (n + 1)c(x)F . Then F can
be classified as follows.

(A) If µ + 4c(x)2 ≡ 0, then c(x) = constant and K = −c2 ≤ 0.
(A1) if c = 0, then F is locally Minkowskian with flag curvature K = 0;
(A2) if c 6= 0, then after a normalization, F is locally isometric to the

following Randers metric on the unit ball Bn ⊂ Rn,

(15) F (x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)± 〈x, y〉

1− |x|2 ± 〈a, y〉
1 + 〈a, x〉 ,

where a ∈ Rn with |a| < 1, and the flag curvature of F is negative
constant, K = − 1

4 .
(B) If µ + 4c(x)2 6= 0, then F is given by

(16) F (x, y) = α(x, y)− 2cxk(x)yk

µ + 4c(x)2

and the flag curvature of F is given by

(17) K =
3cxk(x)yk

F (x, y)
+ 3c(x)2 + µ.

(B1) when µ = −1, α = α−1 can be expressed in the form (12) on Bn.
In this case,

(18) c(x) =
λ + 〈a, x〉

2
√

(λ + 〈a, x〉)2 ± (1− |x|2) ,

where λ ∈ R and a ∈ Rn with |a|2 < λ2 ± 1.
(B2) when µ = 0, α = α0 can be expressed in the form (13) on Rn. In

this case,

(19) c(x) =
±1

2
√

κ + 〈a, x〉+ |x|2 ,

where κ > 0 and a ∈ Rn with |a|2 < κ.
(B3) when µ = 1, α = α+1 can be expressed in the form (14) on Rn. In

this case,

(20) c(x) =
ε + 〈a, x〉

2
√

1 + |x|2 − (ε + 〈a, x〉)2 ,

where ε ∈ R and a ∈ Rn with |ε|2 + |a|2 < 1.
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Theorem 4.2 (A) follows from the classification theorem in [18] after we prove
that the flag curvature is constant in this case. From Theorem 4.2 we obtain
some interesting projectively flat Randers metrics with isotropic S-curvature.

Example 4.1. Let
(21)

F−(x, y) =

√
(1− |x|2)|y|2 + 〈x, y〉2

√
(1− |x|2) + λ2 + λ〈x, y〉

(1− |x|2)
√

(1− |x|2) + λ2
, y ∈ TxBn,

where λ ∈ R is an arbitrary constant. The geodesics of F− are straight lines in
Bn. One can easily verify that F− is complete in the sense that every unit speed
geodesic of F− is defined on (−∞,∞). Moreover F− has strictly negative flag
curvature K ≤ − 1

4 .

Example 4.2. Let

(22) F0(x, y) =
|y|

√
1 + |x|2 + 〈x, y〉√

1 + |x|2 , y ∈ TxRn.

The geodesics of F0 are straight lines in Rn. One can easily verify that F0 is
positively complete in the sense that every unit speed geodesic of F0 is defined
on (−a,∞). Moreover F0 has positive flag curvature K > 0.

Theorem 4.2 is a local classification theorem. If we assume that the manifold
is closed (compact without boundary), then the scalar function c(x) takes much
more special values [5]. In particular, we have the following

Theorem 4.3 ([5]). Let Sn = (M, α) is the standard unit sphere and F =
α + β be a projectively flat Randers metric on Sn. Suppose that S-curvature is
isotropic, S = (n + 1)c(x)F . Then

c(x) =
f(x)

2
√

1− f(x)2

and

F (x, y) = α(x, y)− fxk(x)yk

√
1− f(x)2

,

where f(x) is an eigenfunction of Sn corresponding to the first eigenvalue. More-
over,

(a) δ :=
√
|∇f |2α(x) + f(x)2 < 1 is a constant and we have the following

estimates for flag curvature

2− δ

2(1 + δ)
≤ K ≤ 2 + δ

2(1− δ)
.

(b) The geodesics of F are the great circles on Sn with F -length 2π.
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5. Randers Metrics of Scalar Flag Curvature with Isotropic
S-curvature

In this section we are going to discuss Randers metrics of scalar flag curvature
with isotropic S-curvature.

Using (10), we get the following

Lemma 5.1 ([7]). Let F = α+β be a Randers metric expressed by (9). Suppose
that it has isotropic S-curvature, S = (n + 1)cF . Then for any scalar function
µ = µ(x) on M ,

Ri
k −

(3cxmym

F
+ µ− c2 − 2cxmWm

){
F 2δi

k − FFykyi
}

= R̃i
k − µ

(
h̃2δi

k − ξkξi
)
− ξk

h̃ + W̃0

{
R̃i

p − µ
(
h̃2δi

p − ξpξ
i
)}

W p,
(23)

where
ξi := yi − F (x, y)W i, ξk := hikξi,

W̃0 := Wiξ
i, h̃ = hijξ

iξj

and
R̃i

k := R̄ i
p kqξ

pξq.

Here R̄ i
p kq denote the Riemann curvature tensor of h.

From (23), we can easily prove the following

Theorem 5.2 ([7]). Let F be a Randers metric on n-dimensional manifold
M defined by (9). Suppose that S = (n + 1)c(x)F . Then F is of scalar flag
curvature if and only if h is of sectional curvature K̄ = µ, where µ = µ(x) is
a scalar function (=constant if n ≥ 3). In this case, the flag curvature of F is
given by

K =
3c̃xmym

F
+ σ,

where σ := µ− c2 − 2cxmWm and c̃− c = constant.

In dimension n ≥ 3, if K̄ = µ(x), then µ(x) = µ is a constant. At any point,
there is a local coordinate system in which h is given by

(24) h =

√
|y|2 + µ(|x|2|y|2 − 〈x, y〉2)

1 + µ|x|2 ,

Suppose that S = (n + 1)c(x)F , namely, W satisfies

(25) Wi;j + Wj;i = −4chij .

One can solve (25) and obtain

(26) c =
δ + 〈a, x〉√
1 + µ|x|2 ,
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(27) W = −2
{(

δ
√

1 + µ|x|2 + 〈a, x〉
)
x− |x|2a√

1 + µ|x|2 + 1

}
+xQ+b+µ〈b, x〉x,

where δ is a constant, Q = (q i
j ) is an anti-symmetric matrix and a, b ∈ Rn are

constant vectors. See [20] for more details. We obtain the following classification
theorem.

Theorem 5.3 ([7]). Let F = α + β be a Randers metric on a manifold M of
dimension n ≥ 3, which is expressed in terms of a Riemannian metric h and a
vector field W by (9). Then F is of scalar flag curvature K = K(x, y) and of
isotropic S-curvature S = (n + 1)c(x)F if and only if at any point, there is a
local coordinate system in which h is given by (24) and c and W are given by
(26) and (27) respectively. In this case, the flag curvature is given by

(28) K =
3cxmym

F
+ σ,

where σ = µ− c2 − 2cxmWm.

Proof. By assumption, the dimension of M is not less than 3. First we assume
that F = α + β is of isotropic S-curvature and of scalar flag curvature. By
Theorem 5.2, the flag curvature of F is given by (28) and h has constant sectional
curvature K̄ = µ. At any point, there is a local coordinate system in which h is
given by (24). By the Theorem 1.2 in [20], if S = (n + 1)cF , then c and W are
given by (26) and (27) respectively in the same local coordinate system.

Conversely, assume that there is a local coordinate system in which h, c and
W are given by (24), (26) and (27) respectively, then by Theorem 1.2 in [20],
S = (n+1)cF . Since h has constant sectional curvature K̄ = µ, by Theorem 5.2,
F is of scalar curvature with flag curvature given by (28). ¤

Let us take a look at a special example.

Example 5.1. In (24)-(27), let µ = 0, δ = 0, Q = 0 and b = 0. We get

h = |y|, c = 〈a, x〉, W = −2〈a, x〉x + |x|2a.

The Randers metric F = α + β is given by

F =

√
(1− |a|2|x|4)|y|2 + (|x|2〈a, y〉 − 2〈a, x〉〈x, y〉)2

1− |a|2|x|4

−|x|
2〈a, y〉 − 2〈a, x〉〈x, y〉

1− |a|2|x|4 .

The above defined Randers metric F is of isotropic S-curvature and scalar flag
curvature, i.e.,

S = (n + 1)〈a, x〉 F, K =
3〈a, y〉

F
+ 3〈a, x〉2 − 2|a|2|x|2.
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6. Randers metrics with almost isotropic flag curvature

From the discussion above, it is natural to consider a Randers metric F =
α(x, y) + β(x, y) of scalar flag curvature with

(29) K =
3c̃xm(x)ym

F (x, y)
+ σ(x),

where c̃ = c̃(x) and σ = σ(x) are scalar functions on the manifold. Randers
metrics with such property are said to be of almost isotropic flag curvature.

Note that for a Randers metric satisfying (29), the Ricci curvature is given
by

(30) Ric = (n− 1)
{3c̃xm(x)ym

F (x, y)
+ σ(x)

}
F (x, y)2.

We have the following

Lemma 6.1 ([21]). If a Randers metric F = α + β satisfies (30), then it has
isotropic S-curvature S = (n + 1)c(x)F with c̃− c = constant.

By Theorem 5.3 and Lemma 6.1, we obtain a local classification theorem of
Randers metrics with (29).

Theorem 6.2 ([21]). Let F = α + β be a Randers metric on a manifold M of
dimension n ≥ 3, which is expressed in terms of a Riemannian metric h and a
vector field W by (9). Then F is of scalar flag curvature with

K =
3c̃xm(x)ym

F (x, y)
+ σ(x)

if and only if at any point, there is a local coordinate system in which h and W
are given by

(31) h =

√
|y|2 + µ(|x|2|y|2 − 〈x, y〉2)

1 + µ|x|2 ,

(32) W = −2
{(

δ
√

1 + µ|x|2 + 〈a, x〉
)
x− |x|2a√

1 + µ|x|2 + 1

}
+xQ+b+µ〈b, x〉x,

where δ, µ are constants, Q = (q i
j ) is an anti-symmetric matrix and a, b ∈ Rn

are constant vectors. Moreover, c̃ − c = constant and σ = µ − c2 − 2cxmWm,
where

(33) c =
δ + 〈a, x〉√
1 + µ|x|2

Suppose that K = σ = constant. Then c̃ = constant and c = constant. By
(33), we see that if µ = 0, then c = δ and σ = µ− c2. W is given by

(34) W = −2δx + xQ + b + µ〈b, x〉x.
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If µ 6= 0, then c = 0 and σ = µ, W is given by

(35) W = xQ + b + µ〈b, x〉x,

Corollary 6.3 ([3]). Let F = α + β be a Randers metric on a manifold M of
dimension n ≥ 3, which is expressed in terms of a Riemannian metric h and a
vector field W by (9). Then F is of constant flag curvature K = σ if and only
if at any point, there is a local coordinate system in which h and W are given
by (31) and W is given by (34) or (35) depending on the value of µ.

Corollary 6.3 is the classification theorem due to D. Bao, C. Robles and
Z. Shen [4].
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