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THEORY OF THE ZERO ORDER EFFECT SUITABLE TO
INVESTIGATE THE SPACE-TIME GEOMETRICAL

PROPERTIES

SERGEY SIPAROV

Abstract. The applicability of Einsteins relativity theory on galactic scale
and the role of geometry for the solution of the problems of observational
astrophysics are discussed. The theory of the zero order effect to study the
geometrical properties of space-time in experiment is given.

1. Introduction

The declinations of the planets orbits from ideal circles experimentally discov-
ered by I. Kepler in XVII century posed a dilemma. Either the laws of Nature
and Mathematics were not identical, and the mathematical harmony did not
rule the Universe, or our knowledge was not complete not only in Science but in
Mathematics as well.

In the end of XVIII century C. Gauss became the first who approached the
problem of the applicability of the Euclidean geometry to the World in a con-
structive way. He measured the sum of the interior angles of the triangle in
situ directly. The vortices of the triangle were at the peaks of the surrounding
mountains. Gauss did not find any deviation in the geometry of the world and
Euclidean geometry within the accuracy of his measurements.

In the beginning of the XIX century N. Lobachevsky considered and evaluated
the principal possibilities of the astronomical measurements, and this inevitably
lead him to the construction of the first non-Euclidean geometry.

In the middle of the XIX c. W. Clifford proclaimed and successively defended
his idea that no physical phenomenon can be experimentally distinguished from
the corresponding change of the geometrical curvature of the World.
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Following these ideas A. Einstein in the beginning of XX c. reduced the general
but qualitative Clifford’s statement to the more narrow but quantitative theory.
He demanded the general covariance of physical laws, postulated the invariance
of the light speed and the equivalence principle and produced a theory according
to which the unavoidable gravitation could not be distinguished from the geo-
metrical properties of space-time. In his fundamental paper Einstein considered
the space-time described by Riemann-Minkowski geometry, predicted the effects
that could be experimentally observed in this case and gave the calculation of
them. The experiments revealed the good correlation with the calculation, and
geometry became the full right part of physical theory. On the macro level, it
made the Newton theory of Solar system gravity more precise. On the micro
level, the Dirac theory was introduced into quantum mechanics. On mega level,
the cosmology obtained the expanding Universe theory and the accompanying
circumstances.

When we discuss the experimental data that have to be compared with the
theory, we should mention the scale. There are three such scales in astrophysics:
Solar system, galaxy and all the observable Universe. The known achievements
of the general relativity theory (GRT) based on the introduction of the new
(Riemann) geometry provided the link between the laboratory physics and the
first of these scales. In the end of the XX c. there appeared the astrophysical
data that can not be explained by the theory without new notions like dark
matter or dark energy or without the modification of the foundations of the
theory including the geometry of space-time. When choosing the new geometry
one should start with the analysis of the problems appearing already on the
galactic scale.

Suggesting the physical effect demonstrating the geometrical properties of
space-time, one should pay attention to the fact that the static spherically sym-
metric solutions of the gravity equations both for Riemann geometry and for
its generalization, Finsler geometry, give the same observable predictions. The
effect that could be used for such investigation is the gravitational radiation, i.e.
gravitational waves (GW). The existence of the GW predicted by the GRT has
an indirect experimental support: the change of the orbital period in some dou-
ble star systems [18]. For the different geometries of space-time the GW would
possess different properties. But though there are several physical effects that
could be used to investigate these properties, the problem of the direct obser-
vation of the GW is not solved up to now. This is due to the utmost smallness
of the perturbation that the GW produce on any of the known physical effects
already in the first order of magnitude. Since the GW are waves, we can use the
resonance phenomena that could appear not in the first order of the perturba-
tion theory as it was suggested in various approaches up to now but in the zero
order.



THEORY OF THE ZERO ORDER EFFECT 137

The material is organized as follows. We consider the metrical approach to
the gravitation theory to be valid. Since the geometry appears to be closely
connected to the mass distribution, let us first give some results of the recent
astrophysical observations and discuss their possible interpretations. Then we
will point out some additional details concerning the space-time geometry apart
from those that follow from the experimental data. Then the theory of the
optic-metrical parametric resonance (OMPR) will be discussed and its results
and interpretations for various cases will be analyzed. Finally, the examples of
the astrophysical systems suitable for the observations are given.

2. Experimental data and its interpretation

The results of the astrophysical observations are the following. On the galactic
scale, the rotation curves, i.e. the dependencies of the stars orbital velocities
on their distances to the galaxies centers were measured for some galaxies [7],
[13], [33]. On the Universe scale, the GRT effect of the gravitational lensing
on the galactic clusters is found. This supports the Einstein idea about the
link between the metric and gravity, but the result is several times larger than
the GRT prediction. The acceleration of the Universe expansion is ascertained
[31]-[32], and this leads to the notion of the dark energy.

The review of the theoretical results is given in [23]. According to the In-
troduction let us give a brief list of the results and ideas concerning only the
galactic scale phenomena. To illustrate them let us give a figure from [8], Fig.1.

The experimental points obtained when measuring the orbital velocities, v,
of stars of the spiral galaxies vis. their distances to the centers of those galaxies,
R, can be described by the empirical formula [22]

(1) v2 =
β∗c2N∗

R
+
γ∗c2N∗R

2
+
γ0c

2R

2
where c is the light speed, N∗ is the number of stars in the galaxy (usually
about 1011), β∗ for the Sun is β∗ = MSG

c2 cm (MS is the Solar mass, G is the
gravity constant), γ∗ and γ0 are universal parameters γ∗ = 5.42 · 10−41cm−1,
γ0 = 3.06 · 10−30cm−1. All the three parameters become of the same order
at the border of a galaxy, while the result of the Newton theory as well as
the Schwarzschilds solution of the GRT equations predict only the decrease of
the velocity corresponding to the first term in Eq.(1). The calculations were
performed with regard to the exponential distribution of stars in a galaxy. To
provide the observed motion of the gleaming stars, the existence of additional
matter interacting with the stars gravitationally is suggested. The mass of this
matter must be thrice as much as the mass of the visible stars, it must be located
at the periphery of a galaxy and it neither emits, nor absorbs the electromagnetic
radiation. In this paper it is essential to underline that the same effects take
place for the clusters of galaxies too [23], that is on a Universe scale. That is
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Figure 1. Orbital velocities (km/s) as functions of R/R0,
where R0 is a characteristic scale for each galaxy. Dashed line
is the Newtonian potential (coinciding with the Schwarzschilds
solution), produced by the observable gleaming matter with re-
gard to the exponential distribution of stars inside the galaxy
[7].

why it is desirable to have the same explanation for both scales and not involve
additional reasons.

The efforts of the theoreticians aimed at the solution of the problem have
two directions. The first is the construction of a theory of the hypothetical
elementary particles forming the dark matter. The second suggests modifying
the existing theory of space-time and gravitation in such a way that there is no
need for the extra type of matter. For any change of the theory the natural test
is the preservation of the existing phenomenology, particularly, Newton gravity
law for the Solar system scale and two other GRT effects following from the
Schwarzschilds solution.

Let us now briefly mention some approaches belonging to the second direction.
I. The most straightforward approach is the successive complication of the

quadratic expression for the Einstein-Hilbert action

(2) SEH = − c3

16πG

∫
d4x(−g)1/2Rα

α
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with account to the metric terms of the higher orders. For example [15],

(3) SW1 = − c3

16πG

∫
d4x(−g)1/2(Rα

α)2

or

(4) SW2 = − c3

16πG

∫
d4x(−g)1/2Rαβ

αβ

The corrections due to Eqs.(3) or (4) must give a negligibly small contribution
to the Schwarzschilds solution. Besides, already this approach makes it possible
to regard the cosmological constant in a way Einstein tried to do it himself.

II. Another natural approach is the introduction of an additional macroscopic
gravitational field, S, usually the scalar one. For example [14]

(5) SBD = − c3

16πG

∫
d4x(−g)1/2(SRα

α − w
S;µS

;µ

S
)

where w is a constant.
III. The third approach is the increase of the number of the space-time di-

mensions with the subsequent transfer to the Plancks scale of lengths. The
corresponding works began from [19] and then lead to the mathematically de-
veloped modern theories of strings [25] and then of branes [30].

Let us now mention the approaches providing not only the specification of
the already existing structures in order to get the solution that is closer to
the observations, but the approaches aimed at the revision of the structures
themselves presumably giving the same result.

IV. The classical foundation can be also revised. The MOND phenomenolog-
ical approach (MOdified Newton Dynamics) was suggested in [26] to introduce
the new world constant with the dimension of an acceleration

(6) µ(
a

a0
)−→a =

−→
f or −→a = ν(

f

a0
)
−→
f

It was suggested to find such functions µ(x) or ν(x) and such value of a0

that they match the classical result for the Solar system scale and give Eq.(1)
for the galaxy scale. The relativistic generalization of MOND was performed
in [9] where the scalar field ψ was introduced to give an additional term to the
expression of Einstein-Hilbert action in the form

(7) S(ψ) = − 1
8πGL2

∫
d4x(−g)1/2f(L2gαβψ;αψ;β)

(f is a scalar function, L is constant). After that the MOND theory can not be
regarded as a pure phenomenology. Naturally, this approach gives a good fit for
the observed rotation curves described by Eq.(1).

In fact, it does not matter if we speak about the dark matter or a scalar field
in the gravitation theory, or about the ether in electrodynamics - in both cases
the object of discussion acts on observable bodies but can not be detected itself.
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But the same can be said about the geometry of the world. The principal idea
of relativity stemming from Lobachevskys work and formulated by Einstein is
that one should not oppose gravitation and geometry but regard them in the
non-separable connection.

V. The geometry of space-time can be also modified. The rejection of sym-
metry in metrics indices [21],[27] can also lead to the suitable description of the
rotation curves while dark matter is not needed.

VI. Already in 1918 H. Weyl [42] stepped aside from the Riemannian geometry
suggested by Einstein in order to unify gravitation and electromagnetism with
the help of metrics. He suggested the transformations of the following form

(8) gµν(x) → e2α(x)gµν(x)

(9) Aµ(x) → Aµ(x)− e∂µα(x)

Here the gravitation and electromagnetism are united by the common function
α(x), and this leads to the new Weylian geometry. The equations that can be
obtained in this approach do not give the regular Einstein equations; neverthe-
less, they contain the Schwarzschilds solution for the Solar system scale. Weyl
called Eq.(8) the gauge transformation, i.e. dependent on scale, but later this
term was adopted by the other fields of physics mainly for the cases when the
exponent was imaginary. In gravitation theory such transformations are now
called conformal.

VII. The further evolution of these ideas leads to the theories of conformal
gravitation where the metrics has an additional symmetry, corresponding to
Eq.(8), the electromagnetic variables are not involved and this means that the
geometry remains Riemannian. Formally such approach is analogous to I, but
the choice of coefficients in Eqs. (3) and (4) is specific. The Einstein equations
that appear in this approach are [24]

(10) 4αgW
µν = 4αg(2C

µλνκ
;λ;κ − CµλνκRλκ) = Tµν

where αg is a dimensionless constant, Cµλνκ is the so called Weyl tensor which
doesnt change with transformations Eq.(8). Then in [24] they change

Wµν(x) → e−6α(x)Wµν(x)

Tµν(x) → e−6α(x)Tµν(x)

transform the coordinates with the use of a certain function B(r) and introduce
the source function f(r). As a result the stationary version of Eq.(10) gives the
Poisson equation but not of the second order as usual, but of the fourth order

(11) ∇4B(r) = f(r)

If there is a spherical symmetry, the Eq.(11) has an exact solution. And this
solution not only contains the term corresponding to the Newton-Schwarzschilds



THEORY OF THE ZERO ORDER EFFECT 141

solution but also the terms corresponding to Eq.(1)

B(r > R) = −g00 = 1− 2β
r

+ γr(12)

2β =
1
6

∫ R

0

dr′r′4f(r′); γ =
1
2

∫ R

0

dr′r′2f(r′)(13)

Solid lines on Fig.1 correspond to the results of the conformal gravitation
approach to the galactic rotation curves. The fits are good. The described
approach does not need the introduction of the additional (dark) matter, i.e.
the additional scalar field. Instead it uses another choice of the scalar function
when formulation of the variation principle. This preserves the Riemannian
geometry of space-time but leads to the Einstein equation of the form of Eq.(10)
which by the way does not have the structure of the wave equation for the
empty space. This means that the GW do not exist, and the effect described in
[18] which coincide with the prediction of the traditional GRT within very high
accuracy must be explained in some other way.

The material discussed in this Section suggests the following conclusion. The
successful modifications of the theory that correlate with the experimental data
point at the possible existence of the additional terms in the gravitation law,
their role depending on the chosen scale. Preserving Riemannian geometry one
has to chose one of the following:

• either to search for an additional dark matter, located at the periphery
of a galaxy;

• or to describe the gravitation on the scale of a galaxy using another
scalar when formulating the variation principle for the action.

3. Finslerian geometry of the anisotropic space-time

Apart from the scale, one has to pay attention to another important thing.
The data present on Fig.1 and those analogous to them do mainly concern the
spiral galaxies that have expressed (space) anisotropy. But the notion of an
isotropy could be regarded in a broader sense. The generalization of the GRT
for the anisotropic space-time in which, for example, the light speed varies and
depends on the direction, was performed in [29] where the theory is based on
Finsler geometry. The metrics in Finsler geometry depends not only on the
coordinate of a point (xα) as in Riemannian geometry, but on a certain tangent
vector too, (

·
x

α
) = dxα

dt (t is a parameter). Usually, [35], this metrics is presented
as

(14) gµν(x,
·
x) =

1
2
∂2F 2(x,

·
x)

∂
·
x

µ
∂
·
x

ν
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where F (x,
·
x) is a smooth, scalar, homogeneous of the first order, positive func-

tion with determinant det |∂2F 2(x,
·
x)

∂
·
x

µ
∂
·
x

ν | 6= 0. One of the principal results obtained
in [29] is the proof that the analogues of Einstein equation in Finsler case (for
various metrics) have Schwarzschilds solutions. It is also shown that within the
same accuracy of measurements performed in the Solar system, it is impossible
to distinguish these solutions from those of the GRT. Two other effects (the
light bending when passing close to the Sun and the red shift) are present both
in Riemann and Finsler cases though for different reasons. That is why these
effects cant be used to make a justified choice of geometry to describe the real
space-time.

Finsler geometry can be involved into the traditional approach by the use
of a special metrics in tangent space. This metrics consists of two parts one
of which can depend not only on the coordinate but on the vector direction
as well. If one performs a conformal transformation with the ‘horizontal’ part,
the corresponding corrections of the ‘vertical’ part would affect the Einstein
equations. In this case they present a system of equations for the corresponding
tensors [6].

There are several additional reasons to turn to a special case of Finsler ge-
ometry - to the spaces with the Berwald-Moor metrics which corresponds to

(15) F (y) = (y1y2y3y4)1/4; yα =
dxα

dt

In [10] it is shown that the well-known (physical) problem of the spontaneous
symmetry break in the fermion-antifermion condensate corresponds to the (geo-
metrical) partial or complete isotropy break of the space-time if its metrics can
be described as

ds′ = (dx0 − dx1 − dx2 − dx3)
1+r1+r2+r3

4 (dx0 − dx1 + dx2 + dx3)
1+r1−r2−r3

4

· (dx0 + dx1 − dx2 + dx3)
1−r1+r2−r3

4 (dx0 + dx1 + dx2 − dx3)
1−r1−r2+r3

4

(16)

Here the non-dimensional parameters ri characterize the rate of anisotropy. If
we take the simplest case ri = 0 and introduce the new coordinates ξi = Aijxj ,
where

(17) Aij =




1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1




then, the interval Eq.(16) takes the form

(18) ds′ = dsBM = (dξ1dξ2dξ3dξ4)1/4
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The difference of this approach from the standard theory is the following:
the spontaneous symmetry break is accompanied not by the appearance of the
cosmological constant, but by the appearance of the space-time anisotropy.

The similar expression for the metrics which factually uses the notion of a
volume was used in [4] to construct the theory of gravitation. In [5] indepen-
dently of [29] there was obtained the conclusion that it is impossible to observe
the effects pointing at the difference in metrical properties between Riemann
space-time and Finsler space-time on the Solar system scale.

In [28] and the subsequent series of papers the Berwald-Moor metrics is
connected with the fundamental mathematical properties of the little known
number-like object hyper complex numbers H4. The use of the H4 or other
algebra of the kind might lead to the change in the description of phenomena
not only in mega scale but on a micro scale of quantum phenomena, and this
has a ring with the ideas [34].

It should be underlined that though there are certain promising perspectives
in the theory dealing with Finsler geometry, the connection of this direction
with observations is insufficient. Moreover, the experiment that could make it
possible to judge upon the geometrical properties of space-time has not been
suggested up to now.

4. Optic-metrical parametric resonance

As it was mentioned in the previous Section, the experiments dealing with
static case don’t suite, thats why the GW were suggested as a proper effect to
study the space-time geometrical properties. But all the methods suggested up
to now to detect the GW (eighteen in number [16]) deal with the registration of
the GW effects as the first order perturbations. For the Solar system it means
the accuracy of 10−24 which is not yet achieved in spite of long lasting efforts
and expensive projects. And even in case of success, the extremely small value
of the supposed effect would give a small confidence in the results while the
problems of registering and processing would be hard to overcome if one intends
to use this effect for further investigations.

Let us take the semi-classical model to describe the interaction between the
atom and the electromagnetic field which is well known in theoretical spec-
troscopy [41]. We are going to apply it to describe the action of the GW on the
atom of a space maser.

Let us first regard a two-level atom in the monochromatic quasi-resonant
strong field with frequency, Ω, which is close to the atomic frequency ω. ‘Strong’
field means that the stimulated transitions dominate. This system is described in
terms of the density matrix on the one hand, and the field is described classically,
on the other hand. As a result we get a system of Bloch equations for the density
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matrix components
d

dt
ρ22 = −γρ22 + 2iα1 cos(Ωt− k1y)(ρ21 − ρ12)(19)

(
∂

∂t
+ v

∂

dy
)ρ12 = −(γ12 + iω)ρ12 − 2iα1 cos(Ωt− k1y)(ρ22 − ρ11)(20)

ρ22 + ρ11 = 1(21)

Here ρ22 and ρ11 are the populations of the levels, ρ12 and ρ21 are the polar-
ization terms, γ and γ12 are the longitudinal and transversal decay rates of the
atom (since level 1 is the ground level, γ12 = γ/2); α1 = µE

~ is the Rabi param-
eter (Rabi frequency) proportional to the intensity of the electromagnetic wave
(EMW), µ is the dipole momentum, E is the electric stress; ~ = 1.05 ·10−27 erg·s
is Planck’s constant; k1is the wave vector of the EMW, v is the atom velocity
along the Oy-axis pointing at the detector, γ << α1 is the condition of the
strong field.

In the series of papers [20], [39], [40] the phenomenon of the optic-mechanical
parametric resonance was theoretically investigated. If a component of the ve-
locity of such a two-level atom parallel to the wave-vector of the field varies
periodically with time at frequency related to the Rabi frequency, then the scat-
tered radiation obtains the so called non-stationary component at the frequency
close to the frequency of the atomic transition. In other words, the signal at
this frequency will be periodically amplified and attenuated with the frequency
of the mechanical oscillations of the atom. This effect is due to the redistribu-
tion of the energy between the frequencies due to the parametric resonance. In
regular observations this signal cant be registered because of the time averaging,
but if a special device known in spectroscopy as a gate detector is used, or the
signal is registered in time domain and then processed in a special way, then
the non-stationary component can be detected and measured. It turns out that
the amplitude of such signal is comparable to the height of the regular peak
characterizing the interaction between the atom and the resonant field. That is
this signal is large.

Turning to the investigation of the astrophysical system, we see that the
sources of the monochromatic EMW are known in space. These are the space
masers whose atoms are in the ground states and the transitions take place
from the metastable levels, i.e. in this case they fit the two-level model. The
saturated space masers realize the conditions of the strong field. On the other
hand, we can suppose that there exists the reason due to which the distance and
consequently the atom velocity component in the direction at the detector on
the Earth would periodically change. This reason is the action of the periodical
GW emitted by a pulsar located as shown on Fig.2.

The GW acts on the atomic levels, on the EMW of the maser and on the
atom location. In [36] it was shown that the first effect is negligibly small in
comparison with the other two. The action of the GW on the monochromatic
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Figure 2.

EMW is accounted for when solving the eikonal equation

(22) gik ∂ψ

∂xi

∂ψ

∂xk
= 0

The law of the atomic motion must be obtained from the solution of the
geodesic equation

(23)
d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0

saturated space maser in the field of the GW. Solving them and demanding
the conditions of the parametric resonance to be fulfilled, we can calculate the
signal. This effect is of the zero order and its detection on the Earth is possible
with the help of the already existing radio telescopes that are able to detect the
space maser signal.

Such experiment can be used to investigate the space-time geometrical prop-
erties in the following way. The theoretical expressions that must be compared
to the experiment results should be obtained with the help of the various sug-
gestions about the space-time geometry. The suggestion that gives the best fit
with the experimental results will correspond to the geometrical properties of
real space-time.

5. Isotropic perturbation of the Minkowski metrics

Let us consider the geometry to be Riemannian and use the regular Einstein
equations in the approximation of the weak field far from masses gik = g(0)ik +
hik. The corrections to the metric tensor of the flat space-time suffice the wave
equation. In the simplest case for the plane waves it has the form

(24) (
∂2

∂x2
− 1
c

∂2

∂t2
)hk

i = 0

The solution can be naturally taken as [3]

(25) hk
i = Re[Ak

i exp(ikαx
α)]
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that suffice the equation if kαk
α = 0, i.e. kα is a light-like vector. That is why

the metric tensor can be written as

(26) gik =




1 0 0 0
0 −1 0 0
0 0 −1 + h cos D

c (x0 − x1) 0
0 0 0 −1− h cos D

c (x0 − x1)




where h is the dimensionless amplitude of the GW (h << 1), D is the frequency
of the GW.

Solving Eq.(22) with regard to Eq.(26), we see that the GW leads to the
phase modulation of the EMW. Since h is small, the latter can be presented [37]
as a superposition

(27) E(t) = E cos(Ωt− ky) +E
ω

4D
h[cos((Ω−D)t− ky)− cos((Ω +D)t− ky)]

The solution of Eq.(23) with regard to the Eq.(26) gives [36]

(28) y(t) ∼ h
c

D
sin(Dt+ kgx)

where kg is the wave vector of the GW. The expression Eq.(28) gives the
following formula for the component of the atomic velocity in the direction of
the Earth

v = v0 + v1 cosDt(29)
v1 = hc(30)

Substituting Eq.(29) and Eq.(27) into Eq.(19), we get

d

dt
ρ22 = −γρ22 + 2i[α1 cos(Ωt− ky) + α2 cos((Ω−D)t− ky)

− α2 cos((Ω +D)t− ky)](ρ21 − ρ12)
(31)

d

dt
ρ12 = −(γ12 + iω)ρ12 − 2i[α1 cos(Ωt− ky) + α2 cos((Ω−D)t− ky)

− α2 cos((Ω +D)t− ky)](ρ22 − ρ11)
(32)

ρ22 + ρ11 = 1
where α2 = ωh

4Dα1, and where the relation (29) was taken into account in the
expression for the full time derivative d

dt = ∂
∂t+kv. The system (31) can be solved

by the asymptotic expansion method. If certain conditions on the parameters
are fulfilled, we can speak of the optic-metrical parametric resonance (OMPR).
These conditions formulated in [36], [37]] have the form:

• The EMW is spectroscopically strong

(33)
γ

α1
= Γε; Γ = O(1); ε << 1

• The amplitude condition of the OMPR related to the trichromatic field
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(34)
α2

α1
=
ωh

4D
= aε; a = O(1); ε << 1

• The amplitude condition of the OMPR related to the periodic change
of the atomic velocity

(35)
kv1
α1

=
ωh

α1
= κε;κ = O(1); ε << 1

• The frequency condition of the OMPR

(36) (ω − Ω + kv0)2 + 4α2
1 = D2 +O(ε) ⇒ D ∼ 2α1

If the conditions (33-36) are fulfilled, then solving Eqs.(31) by the asymptotic
expansion method for the small parameter, ε, we get the principal term of the
expansion for Im(ρ21) which characterizes the scattered energy flow. At the
frequency shifted by D from the central peak, the flow is proportional to ε0 and
has the form

(37) Im(ρ21) ∼ α1

D
cos 2Dt+O(ε)

The negative values correspond to the amplification, the positive values cor-
respond to the attenuation of the energy flow at the mentioned frequency due to
the redistribution of the energy of the maser radiation in the conditions of the
OMPR. Similarly to [20], [39], [40] in the regular observations of the space maser
signal it is impossible to observe the non-stationary component because of the
time averaging, but the use of the gate detector, or the appropriate processing
of the signal in the time domain would provide the observable OMPR signal.
This result means that the GW whose existence follows from the GRT and is
indirectly supported in [18] could be observed in the direct way with the help
of the OMPR based method. More detailed discussion and the analysis of the
feasibility of the OMPR conditions for the real astrophysical systems are given
in [36], [37]. Here we will only mention that if this type of a signal is detected
in the process of purposeful observations, the reason for it can be undoubtedly
identified as the GW.

If the GW emitted by the pulsars and the short-period doubles do exist, the
OMPR based method can become the foundation of the gravitational astronomy
for the inner region of the Milky Way disk. Appendix 1 contains the coordinates
of the astrophysical systems suitable for observations both for the galactic vicin-
ity of the Sun and for the periphery of our galaxy (see pulsar 3) which also
belongs to the class of spiral galaxies.

But it could happen that the signal in the proposed experiment would be
absent or would differ from the predicted one for some of the observation points.
This will mean that some essential factors were not taken into account. And the
space-time geometrical properties are among these factors.
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6. Anisotropic perturbation of the Minkowski metrics

All the calculations leading to Eq.(24) could be repeated, if we change the
expression for the metrics to

(38) gij(x) → gij(x,
·
x) = ηij(x) + hij(x,

·
x)

where

(39) ηij(x) = η
(0)
ij (x)

is the Minkowski metrics for the flat space, hij(x,
·
x) is a small perturbation such

that hk
i (x,

·
x) = η(0)kihij(x,

·
x). The structure of Einstein equations will remain

the same and the perturbation hk
i (x,

·
x) will still suffice the wave equation similar

to Eq.(24). But the expression Eq.(25) will look like

(40) hk
i(x,

·
x) = Re[Ak

i(
·
x) exp(ikαx

α)]

This means that the amplitude of the GW will vary in various directions of
their propagation. From the point of view of observations based on the OMPR
method this difference can not be observed directly since the effect is of the zero
order. But it will reveal itself in the indirect way, for example, the conditions of
the OMPR will be sufficed at different distances in different directions from one
and the same GW source. Then the conditions (34) and (35) will transform to
the following

• The amplitude condition of the OMPR related to the trichromatic field

(41)
α2ς1(

·
x)

α1
= ς1(

·
x)

ωh

4Dz′
= aς1(

·
x)ε; a = O(1); ε << 1

• The amplitude condition of the OMPR related to the periodic change
of the atomic velocity

(42)
kv1ς2(

·
x)

α1
= ς2(

·
x)
ωh

α1
= κς2(

·
x)ε;κ = O(1); ε << 1

Here functions ς1(
·
x), ς2(

·
x) are related to the expressions for the amplitudes,

Ak
i(
·
x), of the GW.

7. Investigations of the space-time properties with the help of the
OMPR effect

In this Section we will analyze the possible results of the OMPR based exper-
iment with regard to the problems mentioned in Sections 1 and 2. It was found
[36], [37] that the distances between the GW sources (pulsars or doubles) and
space masers are not small but are of interstellar scale. This means that one
and the same GW source could affect several masers. Such a source is a kind
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of a beacon with the frequency now known to the eight decimal digits, while
this or that maser is a receiver. The Milky Way scale experiment should be
performed in the following way. Let us chose the GW sources in various places
of our galaxy and regard several masers together with each of them paying at-
tention to the conditions (33-36). Then we will try to detect the OMPR signal
according to the method described in [37] for the GW sources closer to the inner
part of the galaxy (IPG) and for the GW sources closer to the periphery part
of the galaxy (PPG). One may check that these experiments can give only nine
possible outcomes that will have the meanings given below.

1: no OMPR signal for all the masers corresponding to the IPG GW sources,
no OMPR signal for all the masers corresponding to the PPG GW sources.

Interpretation: no gravitational waves (and no possibility for the GW astron-
omy) → Einstein equations for the empty space dont have the structure of the
wave equation → no need for dark matter → Riemannian geometry suits.

Problems: choice of the scalar in the variation principle, interpretation of the
results in [18].

2: OMPR signal is present for all the masers corresponding to the IPG GW
sources, no OMPR signal for all the masers corresponding to the PPG GW
sources.

Interpretation: scale dependence (possibly, conformal gravity outside the
galaxy), Riemannian geometry suits, GRT in the IPG where GW astronomy
is possible.

3: no OMPR signal for all the masers corresponding to the IPG GW sources,
OMPR signal is present for all the masers corresponding to the PPG GW sources.

Interpretation: scale dependence (possibly, conformal gravity in the IPG),
Riemannian geometry suits, GRT outside the galaxy where GW astronomy is
possible.

4: OMPR signal is present for all the masers corresponding to the IPG GW
sources, OMPR signal is present for all the masers corresponding to the PPG
GW sources.

Interpretation: Riemannian geometry suits, GRT works and GW astronomy
is possible.

Problems: dark matter problem.
The rest corresponds to the situation when we have to use Eqs.(41-42) instead

of Eqs.(34-35), that is only some of the selected masers behave as they should
when the OMPR conditions are fulfilled. This will point at the anisotropy effects
mentioned in Section 5.

5: OMPR signal is present for some of the masers corresponding to the IPG
GW sources, OMPR signal is present for some of the masers corresponding to
the PPG GW sources.

Interpretation: Finslerian geometry suits, GW astronomy is possible.
Problems: dark matter problem.
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6: OMPR signal is present for some of the masers corresponding to the IPG
GW sources, no OMPR signal for all the masers corresponding to the PPG GW
sources.

Interpretation: scale dependence (possibly, conformal gravity outside the
galaxy), Finslerian geometry suits in the IPG where GW astronomy is possi-
ble.

7: no OMPR signal for all the masers corresponding to the IPG GW sources,
OMPR signal is present for some of the masers corresponding to the PPG GW
sources.

Interpretation: scale dependence (possibly, conformal gravity in the IPG),
Finslerian geometry suits in the PPG where GW astronomy is possible.

8: OMPR signal is present for all the masers corresponding to the IPG GW
sources, OMPR signal is present for some of the masers corresponding to the
PPG GW sources.

Interpretation: Riemannian geometry suits in the IPG, Finslerian geometry
suits in the PPG, GW astronomy is possible.

Problems: dark matter problem.
9: OMPR signal is present for some of the masers corresponding to the IPG

GW sources, OMPR signal is present for all the masers corresponding to the
PPG GW sources.

Interpretation: Finslerian geometry suits in the IPG, Riemannian geometry
suits in the PPG, GW astronomy is possible.

Problems: dark matter problem.
The coordinates of the pairs of masers corresponding to the GW sources

located both in the IPG (pulsar 6) and in the PPG (pulsar 7) are given in
Appendix 2.

If in the observations we find that the situations 5-9 are realized, then the
systematic observations interpreted with the help of expression (40) could give
function in the expression for the metrics corresponding to Eq.(14)

(43)

gij(x,
·
x) = η

(0)
ij (x)+hij(x,

·
x) = η

(0)
ij (x)+

1
2
∂2F 2(x,

·
x)

∂
·
x

k
∂
·
x

i
= η

(0)
ij (x)+η(0)

kj (x)hk
i (x,

·
x)

Thus, if the space-time anisotropy takes place on the galactic scale, then its
quantitative characteristic could be obtained in OMPR based experiment.

8. Berwald-Moor metrics

The natural continuation of this approach is the consideration of the situation
when the space-time anisotropy is not a small correction as in the previous
Section but is described by Finsler geometry. In accord with the experimental
approach dealing with the GW described above, one should again use the small
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linear correction for the empty space, but the unperturbed metrics now is not
the Minkowski one, but some Finsler space metrics

(44) gij(x,
·
x) = hij(x,

·
x) + χij(x,

·
x)

It seems appealing to choose the Berwald-Moor metrics for the unperturbed
metrics. To speak about the OMPR effect, one should find out explicitly if the
GW are possible in such a space-time and write down the corresponding correc-
tion to the metrics; then also find out how the description of the electromagnetic
processes Eq.(27) change and write down the geodesics equation.

One could expect that the structure of Einstein equations remains that of the
wave equation and, thus, the GW would be possible though maybe become more
complicated. The geodesics equation seems also to become more complicated,
but its solution will still present a technical problem. But the description of the
electromagnetic processes and the description of the GW-EMW interaction will
present a different kind of a problem.

An essential feature discovered and underlined in [29] is the following: the
notion of simultaneity which is the base of any relativistic theory might belong
not to the causal structure but to the structure of Lagrangean. This remark
causes a profound methodological problem. The choice of Riemann geometry
for the description of space-time is closely connected with the invariance of
Maxwell equations – the foundation of the majority of experiments. It was
this fact that Einstein considered while formulating the relativity principle and
while constructing the SRT. Rejecting Riemann geometry, we reject the Maxwell
equations invariance, and this means the appearance of the terms that have the
metric origin. These we will have to interpret in frames of the known phe-
nomenology. The analogous problem was posed in the end of [38]. The situation
becomes even more complicated, if we consider the relation between the gravita-
tion and electromagnetism both for classical GRT effects such as light bending
and gravitational red shift and for the direct transformation of gravity and elec-
tromagnetism into each other [17]. Finally, we see that the transfer to Finsler
geometry demands a detailed physical consideration.

9. Conclusion

The goal of this paper was to suggest an experiment suitable for the inves-
tigation of the space-time geometrical properties and to give the corresponding
theory. The physical effect underlying such experiment is the optic-metrical
parametric resonance described in Sections 3-5 and in papers [36], [37]. The
possible results of the OMPR based observations analyzed in Section 6 could
give an answer to the question which geometry suits best for the description of
the physical space-time. Moreover, these results could also be used to choose
the direction of the further fundamental research. If it turns out that Riemann
geometry is suitable in the galaxy scale, then astrophysics will confront either
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the problem of the choice of the variation principle scalar lying in the base of
the axiomatic theory, or the problem of the dark matter which has to be solved
in frames of the elementary particles theory (and corresponding experiment). In
the last case the GW astronomy can appear and be developed. If it turns out
that the geometry must be modified and, for example, must become Finsler one,
then instead of the mentioned problems the foundations of the electrodynamics
must be carefully examined, and this might have far going consequences on all
the levels from quantum mechanics to cosmology.
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11. Appendix 1

Coordinates and parameters of the astrophysical systems suitable for the
OMPR based detection of the GW [2]-[1]

Name RaJ DecJ d(pc) D(Hz)

1.Pulsar J1022+1001 10:22:58.006 +10001′52.8′′ 300 60.7794489280

Maser AF Leo 11:25:16.4 +15025′22′′ 270

2.Pulsar B0656+14 06:59:48.134 +14014′21.5′′ 290 2.59813685751

Maser U ORI 05:52:51.0 +20010′06.0′′ 280

3.Pulsar J0538+2817 05:38:25.0632 +28017′9.07′′ 1770 6.9852763480

Maser HH 4 05:37:21.8 +23049′24.0′′ 1700

4.Pulsar B0031-07 00:34:08.86 −07021′53.4′′ 720 1.0605004987

Maser U CET 02:31:19.6 −13022′02.0′′ 660

5.Double RXJ0806.3+1527 08:06.3 +15027′′ 100 0.00311526

Maser RT Vir 13:00:06.1 +05027′14′′ 120

12. Appendix 2

Coordinates and parameters of the astrophysical systems suitable for the
OMPR based detection of the GW (space-time anisotropy test) [2]-[1]

Name RaJ DecJ d(pc) D(Hz)
6.Pulsar J1908+0734 19:08:17.01 +07034′14.36′′ 580 4.70914721426
Maser-1 IRC+10365 18:34:59.0 +10023′00.0′′ 500
Maser-2 RT AQL 19:35:36.0 +11036′18.0′′ 530
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