SUBORDINATION RESULTS FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS

ZHI-GANG WANG AND R. AGHALARY

Abstract

In the present paper, we derive some subordination results for certain classes of analytic functions by making use of a subordination theorem. Relevant connections of the results presented here with those obtained in earlier works are also pointed out.

1. Introduction and Preliminaries

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

Also let \mathcal{S} denote the subclass of \mathcal{A} consisting of all functions which are univalent in \mathbb{U}.

For $0 \leqq \alpha<1$, we denote by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ the usual subclasses of \mathcal{S} consisting of functions which are starlike of order α and convex of order α in \mathbb{U}, respectively, that is,

$$
\mathcal{S}^{*}(\alpha):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{U}\right\},
$$

and

$$
\mathcal{K}(\alpha):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{U}\right\} .
$$

[^0]Obviously, for any $0 \leqq \alpha<1$, we have

$$
f \in \mathcal{K}(\alpha) \Longleftrightarrow z f^{\prime} \in \mathcal{S}^{*}(\alpha)
$$

Let $\mathcal{T}(\lambda, \alpha)$ denote the class of functions in \mathcal{A} satisfying the following inequality:

$$
\Re\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{U}
$$

for some $\alpha(0 \leqq \alpha<1)$ and $\lambda(0 \leqq \lambda \leqq 1)$, and let $\mathcal{C}(\lambda, \alpha)$ denote the class of functions in \mathcal{A} satisfying the following inequality:

$$
\Re\left(z \frac{\lambda z^{2} f^{\prime \prime \prime}(z)+(2 \lambda+1) z f^{\prime \prime}(z)+f^{\prime}(z)}{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{U}
$$

for some $\alpha(0 \leqq \alpha<1)$ and $\lambda(0 \leqq \lambda \leqq 1)$. We note that

$$
f \in \mathcal{C}(\lambda, \alpha) \Longleftrightarrow z f^{\prime} \in \mathcal{T}(\lambda, \alpha)
$$

The classes $\mathcal{T}(\lambda, \alpha)$ and $\mathcal{C}(\lambda, \alpha)$ were introduced and investigated by Altintas [1], and Kamali and Akbulut [2], respectively.

Let $\mathcal{M}(\beta)$ be the subclass of \mathcal{A} consisting of functions f which satisfy the inequality:

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\beta, \quad z \in \mathbb{U}
$$

for some $\beta(\beta>1)$, and let $\mathcal{N}(\beta)$ be the subclass of \mathcal{A} consisting of functions f which satisfy the inequality:

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\beta, \quad z \in \mathbb{U}
$$

for some $\beta(\beta>1)$. The classes $\mathcal{M}(\beta)$ and $\mathcal{N}(\beta)$ were introduced and investigated recently by Owa and Srivastava [5] (see also Nishiwaki and Owa [3], Owa and Nishiwaki [4], Srivastava and Attiya [7]).

Salagean [6] introduced the following operator:

$$
D^{0} f(z)=f(z), \quad D^{1} f(z)=D f(z)=z f^{\prime}(z)
$$

and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in \mathbb{N}:=\{1,2, \ldots\})
$$

We note that

$$
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j} \quad\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right)
$$

Motivated by the above mentioned function classes, we now introduce the following subclasses of \mathcal{A} involving the Salagean operator.

Definition 1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{n}(\lambda, \alpha)$ if it satisfies the following inequality:

$$
\begin{equation*}
\Re\left(\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}\right)>\alpha, \quad z \in \mathbb{U} \tag{1.2}
\end{equation*}
$$

where

$$
n \in \mathbb{N}_{0}, 0 \leqq \alpha<1 \quad \text { and } \quad 0 \leqq \lambda \leqq 1 .
$$

It is easy to see that the classes $\mathcal{T}(\lambda, \alpha)$ and $\mathcal{C}(\lambda, \alpha)$ are special cases of the class $\mathcal{S}_{n}(\lambda, \alpha)$.
Definition 2. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{n}(\lambda, \beta)$ if it satisfies the following inequality:

$$
\Re\left(\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}\right)<\beta, \quad z \in \mathbb{U}
$$

where

$$
n \in \mathbb{N}_{0}, \beta>1 \quad \text { and } \quad 0 \leqq \lambda \leqq 1
$$

It is also easy to see that the classes $\mathcal{M}(\beta)$ and $\mathcal{N}(\beta)$ are special cases of the class $\mathcal{M}_{n}(\lambda, \beta)$.

We now provide some coefficient sufficient conditions for functions belonging to the classes $\mathcal{S}_{n}(\lambda, \alpha)$ and $\mathcal{M}_{n}(\lambda, \beta)$, which will be used in the proofs of our main theorems.
Lemma 1. Let $0 \leqq \alpha<1$ and $0 \leqq \lambda \leqq 1$. If $f \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{j=2}^{\infty}\left(j^{n+1}-\alpha j^{n}\right)(1-\lambda+\lambda j)\left|a_{j}\right| \leqq 1-\alpha \tag{1.3}
\end{equation*}
$$

then $f \in \mathcal{S}_{n}(\lambda, \alpha)$.
Proof. To prove the claim, it suffices to show that

$$
\left|\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}-1\right|<1-\alpha, \quad z \in \mathbb{U} .
$$

By noting that for any $z \in \mathbb{U}$, we have

$$
\begin{aligned}
& \left|\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}-1\right| \\
& \quad=\left|\frac{\sum_{j=2}^{\infty}\left[(1-\lambda)\left(j^{n+1}-j^{n}\right)+\lambda\left(j^{n+2}-j^{n+1}\right)\right] a_{j} z^{j-1}}{1+\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right] a_{j} z^{j-1}}\right| \\
& \quad \leqq \frac{\sum_{j=2}^{\infty}\left[(1-\lambda)\left(j^{n+1}-j^{n}\right)+\lambda\left(j^{n+2}-j^{n+1}\right)\right]\left|a_{j}\right|}{1-\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right]\left|a_{j}\right|}
\end{aligned}
$$

It follows from (1.3) that the above last expression is bounded above by $1-\alpha$. This completes the proof of Lemma 1 .

Lemma 2. Let $\beta>1$ and $0 \leqq \lambda \leqq 1$. If $f \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right](j+|j-2 \beta|)\left|a_{j}\right| \leqq 2(\beta-1), \tag{1.4}
\end{equation*}
$$

then $f \in \mathcal{M}_{n}(\lambda, \beta)$.
Proof. To prove $f \in \mathcal{M}_{n}(\lambda, \beta)$, it suffices to show that

$$
\begin{align*}
& \left|\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}\right| \tag{1.5}\\
& \quad<\left|\frac{(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}-2 \beta\right| .
\end{align*}
$$

We consider $M \in \mathbb{R}$ defined by

$$
\begin{aligned}
M & :=\left|(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)\right| \\
& -\left|(1-\lambda) D^{n+1} f(z)+\lambda D^{n+2} f(z)-2 \beta\left[(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)\right]\right| \\
= & \left|z+\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right] a_{j} z^{j}\right| \\
& -\left|z+\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right] a_{j} z^{j}-2 \beta z-2 \beta \sum_{j=2}^{\infty}\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right] a_{j} z^{j}\right| .
\end{aligned}
$$

Thus, for $|z|=r<1$, we have

$$
\begin{aligned}
& M \leqq r+\sum_{j=2}^{\infty}\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right]\left|a_{j}\right| r^{j} \\
&-\left[(2 \beta-1) r-\sum_{j=2}^{\infty}\left|\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right]-2 \beta\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right]\right|\left|a_{j}\right| r^{j}\right] \\
&<\left(\sum _ { j = 2 } ^ { \infty } \left\{\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right]\right.\right. \\
&\left.\left.+\left|\left[(1-\lambda) j^{n+1}+\lambda j^{n+2}\right]-2 \beta\left[(1-\lambda) j^{n}+\lambda j^{n+1}\right]\right|\right\}\left|a_{j}\right|-2(\beta-1)\right) r .
\end{aligned}
$$

It follows from (1.4) that $M<0$, which implies that (1.5) holds true, hence $f \in \mathcal{M}_{n}(\lambda, \beta)$.

In view of Lemmas 1 and 2, we now introduce the following subclasses:

$$
\widetilde{\mathcal{S}_{n}}(\lambda, \alpha) \subset \mathcal{S}_{n}(\lambda, \alpha) \text { and } \widetilde{\mathcal{M}_{n}}(\lambda, \beta) \subset \mathcal{M}_{n}(\lambda, \beta)
$$

which consist of functions $f \in \mathcal{A}$ whose coefficients of the series satisfy the inequalities (1.3) and (1.4), respectively.

The main purpose of the present paper is to derive some subordination results for the classes $\widetilde{\mathcal{S}_{n}}(\lambda, \alpha)$ and $\widetilde{\mathcal{M}_{n}}(\lambda, \beta)$. To prove our main results, we also need the following definitions and lemma.

Definition 3 (Hadamard Product or Convolution). Given two functions $f, g \in$ \mathcal{A}, where f is given by (1.1) and g is defined by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

the Hadamard product (or convolution) $f * g$ is defined by

$$
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z)
$$

Definition 4 (Subordination Principle). Given two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z),
$$

if there exists a Schwarz function ω, which is analytic in \mathbb{U} with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1
$$

such that

$$
f(z)=g(\omega(z))
$$

It is easy to see that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence:

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Definition 5 (Subordination Factor Sequence). A sequence $\left\{b_{j}\right\}_{j=1}^{\infty}$ of complex numbers is said to be a subordination factor sequence if, whenever f of the form (1.1) is analytic, univalent and convex in \mathbb{U}, we have the subordination

$$
\sum_{j=1}^{\infty} a_{j} b_{j} z^{j} \prec f(z), \quad a_{1}=1, z \in \mathbb{U} .
$$

Lemma 3. (See Wilf [9]) The sequence $\left\{b_{j}\right\}_{j=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\Re\left(1+2 \sum_{j=1}^{\infty} b_{j} z^{j}\right)>0, \quad z \in \mathbb{U} .
$$

2. Subordination Result for the Class $\widetilde{\mathcal{S}_{n}}(\lambda, \alpha)$

We begin by presenting our first subordination result given by Theorem 6 below.

Theorem 6. If $f \in \widetilde{\mathcal{S}_{n}}(\lambda, \alpha)$ and $g \in \mathcal{K}(0)$, then

$$
\begin{equation*}
A_{n}(\lambda, \alpha) \cdot(f * g)(z) \prec g(z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re(f)>-\frac{(1-\alpha)+2^{n}(1+\lambda)(2-\alpha)}{2^{n}(1+\lambda)(2-\alpha)} \tag{2.2}
\end{equation*}
$$

for any $0 \leqq \lambda \leqq 1,0 \leqq \alpha<1$ and $n \in \mathbb{N}_{0}$, where, for convenience,

$$
\begin{equation*}
A_{n}(\lambda, \alpha):=\frac{2^{n-1}(1+\lambda)(2-\alpha)}{(1-\alpha)+2^{n}(1+\lambda)(2-\alpha)} . \tag{2.3}
\end{equation*}
$$

The constant factor $A_{n}(\lambda, \alpha)$ in the subordination result (2.1) is sharp, in the sense that $A_{n}(\lambda, \alpha)$ can not be replaced by a larger factor.

Proof. Let $f \in \widetilde{\mathcal{S}_{n}}(\lambda, \alpha)$ and suppose that

$$
g(z)=z+\sum_{j=2}^{\infty} c_{j} z^{j} \in \mathcal{K}:=\mathcal{K}(0)
$$

Then

$$
\begin{equation*}
A_{n}(\lambda, \alpha) \cdot(f * g)(z)=A_{n}(\lambda, \alpha) \cdot\left(z+\sum_{j=2}^{\infty} a_{j} c_{j} z^{j}\right) \tag{2.4}
\end{equation*}
$$

where $A_{n}(\lambda, \alpha)$ is defined by (2.3). Thus, by Definition 4 , the subordination result (2.1) holds true if

$$
\left\{A_{n}(\lambda, \alpha) \cdot a_{j}\right\}_{j=1}^{\infty}
$$

is a subordinating factor sequence, with $a_{1}=1$. By Lemma 3 , this is equivalent to the following inequality:

$$
\begin{equation*}
\Re\left(1+\sum_{j=1}^{\infty} \frac{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} a_{j} z^{j}\right)>0, \quad z \in \mathbb{U} . \tag{2.5}
\end{equation*}
$$

Since

$$
(1-\lambda+\lambda j)\left(j^{n+1}-\alpha j^{n}\right) \quad\left(j \geqq 2 ; n \in \mathbb{N}_{0}\right)
$$

is an increasing function of j, and using Lemma 1 , we have

$$
\begin{aligned}
& \Re\left(1+\sum_{j=1}^{\infty} \frac{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} a_{j} z^{j}\right) \\
&= \Re\left(1+\frac{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} a_{1} z\right. \\
&\left.+\frac{1}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} \cdot \sum_{j=2}^{\infty}(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right) a_{j} z^{j}\right) \\
& \geqq 1-\frac{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} r \\
&-\frac{1}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} \cdot \sum_{j=2}^{\infty}(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)\left|a_{j}\right| r^{j} \\
&>1-\frac{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} r-\frac{1-\alpha}{(1-\alpha)+(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} r \\
&=1-r>0 \quad(|z|=r<1) .
\end{aligned}
$$

This evidently proves the inequality (2.5), and hence also the subordination result (2.1) asserted by Theorem 6. The inequality (2.2) asserted by Theorem 6 follows from (2.1) by setting

$$
g(z)=\frac{z}{1-z}=\sum_{j=1}^{\infty} z^{j} \in \mathcal{K} .
$$

Finally, we consider the function f_{0} defined by

$$
\begin{equation*}
f_{0}(z):=z-\frac{1-\alpha}{(1+\lambda)\left(2^{n+1}-\alpha 2^{n}\right)} z^{2} \quad\left(n \in \mathbb{N}_{0} ; 0 \leqq \lambda \leqq 1 ; 0 \leqq \alpha<1\right) \tag{2.6}
\end{equation*}
$$

which belongs to the class $\widetilde{\mathcal{S}_{n}}(\lambda, \alpha)$. Thus, by (2.1), we know that

$$
A_{n}(\lambda, \alpha) \cdot f_{0}(z) \prec \frac{z}{1-z}, \quad z \in \mathbb{U} .
$$

Furthermore, it can be easily verified for the function f_{0} given by (2.6) that

$$
\min _{z \in \mathbb{U}}\left\{\Re\left(A_{n}(\lambda, \alpha) \cdot f_{0}(z)\right)\right\}=-\frac{1}{2} .
$$

This complete the proof of Theorem 6 .
Remark 1. Setting $\lambda=0$ in Theorem 6, we get the corresponding result obtained by Eker et al. [8].

3. Subordination Result for the Class $\widetilde{\mathcal{M}_{n}}(\lambda, \alpha)$

The proof of the following subordination result is similar to that of Theorem 6. We, therefore, choose to omit the analogous details involved.

Theorem 7. If $f \in \widetilde{\mathcal{M}_{n}}(\lambda, \alpha)$ and $g \in \mathcal{K}(0)$, then

$$
\begin{equation*}
B_{n}(\lambda, \beta) \cdot(f * g)(z) \prec g(z) \tag{3.1}
\end{equation*}
$$

and

$$
\Re(f)>-\frac{\beta-1+2^{n} \beta(1+\lambda)}{2^{n} \beta(1+\lambda)}
$$

for any $0 \leqq \lambda \leqq 1,0 \leqq \alpha<1$ and $n \in \mathbb{N}_{0}$, where, for convenience,

$$
B_{n}(\lambda, \beta):=\frac{2^{n-1} \beta(1+\lambda)}{\beta-1+2^{n} \beta(1+\lambda)}
$$

The constant factor $B_{n}(\lambda, \beta)$ in the subordination result (3.1) is sharp, in the sense that $B_{n}(\lambda, \beta)$ can not be replaced by a larger factor.

Remark 2. Putting $n=0$ or 1 and $\lambda=0$ in Theorem 7, we get the corresponding results obtained by Srivastava and Attiya [7].

4. Acknowledgements

The authors would like to thank the referee for his careful reading and making some valuable comments which have essentially improved the presentation of this paper.

References

[1] O. Altintaş. On a subclass of certain starlike functions with negative coefficients. Math. Japon., 36(3):489-495, 1991.
[2] M. Kamali and S. Akbulut. On a subclass of certain convex functions with negative coefficients. Appl. Math. Comput., 145(2-3):341-350, 2003.
[3] J. Nishiwaki and S. Owa. Coefficient inequalities for certain analytic functions. Int. J. Math. Math. Sci., 29(5):285-290, 2002.
[4] S. Owa and J. Nishiwaki. Coefficient estimates for certain classes of analytic functions. JIPAM. J. Inequal. Pure Appl. Math., 3(5):Article 72, 5 pp. (electronic), 2002.
[5] S. Owa and H. M. Srivastava. Some generalized convolution properties associated with certain subclasses of analytic functions. JIPAM. J. Inequal. Pure Appl. Math., 3(3):Article $42,13 \mathrm{pp}$. (electronic), 2002.
[6] G. Ş. Sălăgean. Subclasses of univalent functions. In Complex analysis-fifth RomanianFinnish seminar, Part 1 (Bucharest, 1981), volume 1013 of Lecture Notes in Math., pages 362-372. Springer, Berlin, 1983.
[7] H. M. Srivastava and A. A. Attiya. Some subordination results associated with certain subclasses of analytic functions. JIPAM. J. Inequal. Pure Appl. Math., 5(4):Article 82, 6 pp. (electronic), 2004.
[8] S. Sümer Eker, B. Şeker, and S. Owa. On subordination result associated with certain subclass of analytic functions involving Salagean operator. J. Inequal. Appl. Article ID 48294, 6pp., 2007.
[9] H. S. Wilf. Subordinating factor sequences for convex maps of the unit circle. Proc. Amer. Math. Soc., 12:689-693, 1961.

Received on June 20, 2007; accepted on February 1, 2009

School of Mathematics and Computing Science, Changsha University of Science and Technology, Yuntang Campus,
Changsha 410114, Hunan, People's Republic of China
E-mail address: zhigwang@163.com
Department of Mathematics,
University of Urmia,
Urmia, Iran
E-mail address: raghalary@yahoo.com

[^0]: 2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
 Key words and phrases. Analytic functions; Hadamard product (or Convolution); Subordination between analytic functions; Salagean operator.

 The present investigation was supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant 08C118 of People's Republic of China.

