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SUBORDINATION RESULTS FOR CERTAIN CLASSES OF
ANALYTIC FUNCTIONS

ZHI-GANG WANG AND R. AGHALARY

Abstract. In the present paper, we derive some subordination results
for certain classes of analytic functions by making use of a subordination
theorem. Relevant connections of the results presented here with those
obtained in earlier works are also pointed out.

1. Introduction and Preliminaries

Let A denote the class of functions of the form:

(1.1) f(z) = z +
∞∑

j=2

ajz
j,

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.
Also let S denote the subclass of A consisting of all functions which are uni-
valent in U.

For 0 5 α < 1, we denote by S∗(α) and K(α) the usual subclasses of S
consisting of functions which are starlike of order α and convex of order α in
U, respectively, that is,

S∗(α) :=

{
f : f ∈ A and <

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
,

and

K(α) :=

{
f : f ∈ A and <

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
.

2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
Key words and phrases. Analytic functions; Hadamard product (or Convolution); Sub-

ordination between analytic functions; Salagean operator.
The present investigation was supported by the Scientific Research Fund of Hunan Provin-

cial Education Department under Grant 08C118 of People’s Republic of China.
211



212 ZHI-GANG WANG AND R. AGHALARY

Obviously, for any 0 5 α < 1, we have

f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α).

Let T (λ, α) denote the class of functions in A satisfying the following in-
equality:

<
(

zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)

)
> α, z ∈ U

for some α (0 5 α < 1) and λ (0 5 λ 5 1), and let C(λ, α) denote the class of
functions in A satisfying the following inequality:

<
(

z
λz2f ′′′(z) + (2λ + 1)zf ′′(z) + f ′(z)

λz2f ′′(z) + zf ′(z)

)
> α, z ∈ U

for some α (0 5 α < 1) and λ (0 5 λ 5 1). We note that

f ∈ C(λ, α) ⇐⇒ zf ′ ∈ T (λ, α).

The classes T (λ, α) and C(λ, α) were introduced and investigated by Altintas
[1], and Kamali and Akbulut [2], respectively.

Let M(β) be the subclass of A consisting of functions f which satisfy the
inequality:

<
(

zf ′(z)

f(z)

)
< β, z ∈ U

for some β (β > 1), and let N (β) be the subclass of A consisting of functions
f which satisfy the inequality:

<
(

1 +
zf ′′(z)

f ′(z)

)
< β, z ∈ U

for some β (β > 1). The classes M(β) and N (β) were introduced and inves-
tigated recently by Owa and Srivastava [5] (see also Nishiwaki and Owa [3],
Owa and Nishiwaki [4], Srivastava and Attiya [7]).

Salagean [6] introduced the following operator:

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N := {1, 2, . . .}).
We note that

Dnf(z) = z +
∞∑

j=2

jnajz
j (n ∈ N0 := N ∪ {0}).

Motivated by the above mentioned function classes, we now introduce the
following subclasses of A involving the Salagean operator.
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Definition 1. A function f ∈ A is said to be in the class Sn(λ, α) if it satisfies
the following inequality:

(1.2) <
(

(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)

)
> α, z ∈ U,

where
n ∈ N0, 0 5 α < 1 and 0 5 λ 5 1.

It is easy to see that the classes T (λ, α) and C(λ, α) are special cases of the
class Sn(λ, α).

Definition 2. A function f ∈ A is said to be in the class Mn(λ, β) if it
satisfies the following inequality:

<
(

(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)

)
< β, z ∈ U,

where
n ∈ N0, β > 1 and 0 5 λ 5 1.

It is also easy to see that the classes M(β) and N (β) are special cases of
the class Mn(λ, β).

We now provide some coefficient sufficient conditions for functions belonging
to the classes Sn(λ, α) and Mn(λ, β), which will be used in the proofs of our
main theorems.

Lemma 1. Let 0 5 α < 1 and 0 5 λ 5 1. If f ∈ A satisfies the following
coefficient inequality:

(1.3)
∞∑

j=2

(jn+1 − αjn) (1− λ + λj) |aj| 5 1− α,

then f ∈ Sn(λ, α).

Proof. To prove the claim, it suffices to show that∣∣∣∣
(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)
− 1

∣∣∣∣ < 1− α, z ∈ U.

By noting that for any z ∈ U, we have
∣∣∣∣
(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)
− 1

∣∣∣∣

=

∣∣∣∣∣

∑∞
j=2[(1− λ)(jn+1 − jn) + λ(jn+2 − jn+1)]ajz

j−1

1 +
∑∞

j=2[(1− λ)jn + λjn+1]ajzj−1

∣∣∣∣∣

5
∑∞

j=2[(1− λ)(jn+1 − jn) + λ(jn+2 − jn+1)] |aj|
1−∑∞

j=2[(1− λ)jn + λjn+1] |aj| .

It follows from (1.3) that the above last expression is bounded above by 1−α.
This completes the proof of Lemma 1. ¤
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Lemma 2. Let β > 1 and 0 5 λ 5 1. If f ∈ A satisfies the following
coefficient inequality:

(1.4)
∞∑

j=2

[
(1− λ)jn + λjn+1

]
(j + |j − 2β|) |aj| 5 2(β − 1),

then f ∈Mn(λ, β).

Proof. To prove f ∈Mn(λ, β), it suffices to show that

(1.5)

∣∣∣∣
(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)

∣∣∣∣

<

∣∣∣∣
(1− λ)Dn+1f(z) + λDn+2f(z)

(1− λ)Dnf(z) + λDn+1f(z)
− 2β

∣∣∣∣ .

We consider M ∈ R defined by

M :=
∣∣(1− λ)Dn+1f(z) + λDn+2f(z)

∣∣
− ∣∣(1− λ)Dn+1f(z) + λDn+2f(z)− 2β

[
(1− λ)Dnf(z) + λDn+1f(z)

]∣∣

=

∣∣∣∣∣∣
z +

∞∑

j=2

[
(1− λ)jn+1 + λjn+2

]
ajz

j

∣∣∣∣∣∣

−
∣∣∣∣∣∣
z +

∞∑

j=2

[
(1− λ)jn+1 + λjn+2

]
ajz

j − 2βz − 2β
∞∑

j=2

[
(1− λ)jn + λjn+1

]
ajz

j

∣∣∣∣∣∣
.

Thus, for |z| = r < 1, we have

M 5r +
∞∑

j=2

[
(1− λ)jn+1 + λjn+2

] |aj | rj

−

(2β − 1)r −

∞∑

j=2

∣∣[(1− λ)jn+1 + λjn+2
]− 2β

[
(1− λ)jn + λjn+1

]∣∣ |aj | rj




<

( ∞∑

j=2

{[(1− λ)jn+1 + λjn+2
]

+
∣∣[(1− λ)jn+1 + λjn+2

]− 2β
[
(1− λ)jn + λjn+1

]∣∣} |aj | − 2(β − 1)
)

r.

It follows from (1.4) that M < 0, which implies that (1.5) holds true, hence
f ∈Mn(λ, β). ¤

In view of Lemmas 1 and 2, we now introduce the following subclasses:

S̃n(λ, α) ⊂ Sn(λ, α) and M̃n(λ, β) ⊂Mn(λ, β),

which consist of functions f ∈ A whose coefficients of the series satisfy the
inequalities (1.3) and (1.4), respectively.
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The main purpose of the present paper is to derive some subordination

results for the classes S̃n(λ, α) and M̃n(λ, β). To prove our main results, we
also need the following definitions and lemma.

Definition 3 (Hadamard Product or Convolution). Given two functions f, g ∈
A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑

n=2

bnzn,

the Hadamard product (or convolution) f ∗ g is defined by

(f ∗ g)(z) := z +
∞∑

n=2

anbnz
n =: (g ∗ f)(z).

Definition 4 (Subordination Principle). Given two functions f and g, analytic
in U, we say that the function f is subordinate to g in U, and write

f(z) ≺ g(z),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1

such that

f(z) = g(ω(z)).

It is easy to see that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following
equivalence:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Definition 5 (Subordination Factor Sequence). A sequence {bj}∞j=1 of complex
numbers is said to be a subordination factor sequence if, whenever f of the
form (1.1) is analytic, univalent and convex in U, we have the subordination

∞∑
j=1

ajbjz
j ≺ f(z), a1 = 1, z ∈ U.

Lemma 3. (See Wilf [9]) The sequence {bj}∞j=1 is a subordinating factor se-
quence if and only if

<
(

1 + 2
∞∑

j=1

bjz
j

)
> 0, z ∈ U.
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2. Subordination Result for the Class S̃n(λ, α)

We begin by presenting our first subordination result given by Theorem 6
below.

Theorem 6. If f ∈ S̃n(λ, α) and g ∈ K(0), then

(2.1) An(λ, α) · (f ∗ g)(z) ≺ g(z)

and

(2.2) <(f) > −(1− α) + 2n(1 + λ)(2− α)

2n(1 + λ)(2− α)

for any 0 5 λ 5 1, 0 5 α < 1 and n ∈ N0, where, for convenience,

(2.3) An(λ, α) :=
2n−1(1 + λ)(2− α)

(1− α) + 2n(1 + λ)(2− α)
.

The constant factor An(λ, α) in the subordination result (2.1) is sharp, in the
sense that An(λ, α) can not be replaced by a larger factor.

Proof. Let f ∈ S̃n(λ, α) and suppose that

g(z) = z +
∞∑

j=2

cjz
j ∈ K := K(0).

Then

(2.4) An(λ, α) · (f ∗ g)(z) = An(λ, α) ·
(

z +
∞∑

j=2

ajcjz
j

)
,

where An(λ, α) is defined by (2.3). Thus, by Definition 4, the subordination
result (2.1) holds true if

{An(λ, α) · aj}∞j=1

is a subordinating factor sequence, with a1 = 1. By Lemma 3, this is equivalent
to the following inequality:

(2.5) <
(

1 +
∞∑

j=1

(1 + λ)(2n+1 − α2n)

(1− α) + (1 + λ)(2n+1 − α2n)
ajz

j

)
> 0, z ∈ U.

Since

(1− λ + λj)(jn+1 − αjn) (j = 2; n ∈ N0)
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is an increasing function of j, and using Lemma 1, we have

<
(

1 +
∞∑

j=1

(1 + λ)(2n+1 − α2n)

(1− α) + (1 + λ)(2n+1 − α2n)
ajz

j

)

= <
(

1 +
(1 + λ)(2n+1 − α2n)

(1− α) + (1 + λ)(2n+1 − α2n)
a1z

+
1

(1− α) + (1 + λ)(2n+1 − α2n)
·
∞∑

j=2

(1 + λ)(2n+1 − α2n)ajz
j

)

= 1− (1 + λ)(2n+1 − α2n)

(1− α) + (1 + λ)(2n+1 − α2n)
r

− 1

(1− α) + (1 + λ)(2n+1 − α2n)
·
∞∑

j=2

(1 + λ)(2n+1 − α2n) |aj| rj

> 1− (1 + λ)(2n+1 − α2n)

(1− α) + (1 + λ)(2n+1 − α2n)
r − 1− α

(1− α) + (1 + λ)(2n+1 − α2n)
r

= 1− r > 0 (|z| = r < 1).

This evidently proves the inequality (2.5), and hence also the subordination
result (2.1) asserted by Theorem 6. The inequality (2.2) asserted by Theorem 6
follows from (2.1) by setting

g(z) =
z

1− z
=

∞∑
j=1

zj ∈ K.

Finally, we consider the function f0 defined by
(2.6)

f0(z) := z − 1− α

(1 + λ)(2n+1 − α2n)
z2 (n ∈ N0; 0 5 λ 5 1; 0 5 α < 1),

which belongs to the class S̃n(λ, α). Thus, by (2.1), we know that

An(λ, α) · f0(z) ≺ z

1− z
, z ∈ U.

Furthermore, it can be easily verified for the function f0 given by (2.6) that

min
z∈U

{< (An(λ, α) · f0(z))} = −1

2
.

This complete the proof of Theorem 6. ¤

Remark 1. Setting λ = 0 in Theorem 6, we get the corresponding result ob-
tained by Eker et al. [8].
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3. Subordination Result for the Class M̃n(λ, α)

The proof of the following subordination result is similar to that of Theo-
rem 6. We, therefore, choose to omit the analogous details involved.

Theorem 7. If f ∈ M̃n(λ, α) and g ∈ K(0), then

(3.1) Bn(λ, β) · (f ∗ g)(z) ≺ g(z)

and

<(f) > −β − 1 + 2nβ(1 + λ)

2nβ(1 + λ)

for any 0 5 λ 5 1, 0 5 α < 1 and n ∈ N0, where, for convenience,

Bn(λ, β) :=
2n−1β(1 + λ)

β − 1 + 2nβ(1 + λ)
.

The constant factor Bn(λ, β) in the subordination result (3.1) is sharp, in the
sense that Bn(λ, β) can not be replaced by a larger factor.

Remark 2. Putting n = 0 or 1 and λ = 0 in Theorem 7, we get the corre-
sponding results obtained by Srivastava and Attiya [7].
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