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ON REAL POLYNOMIALS WITHOUT NONNEGATIVE
ROOTS

HORST BRUNOTTE

Abstract. An elementary proof of a result of D. Handelman on real
Laurent polynomials without nonnegative roots is presented.

Among other things D. Handelman established the following result as part
of his profound theory.

Theorem 1 ([2, Theorem A]). Let F, P ∈ R[X, X−1] be non-constant Laurent
polynomials such that P has only positive coefficients and F (r) > 0 for all
r ∈ R>0. Then there exists a positive integer m such that PmFhas only positive
coefficients.

In this short note we provide an elementary proof of this statement. More-
over, we exhibit an effectively computable bound for m. Elementary proofs for
a special case of Theorem 1 were given in [3] and independently in [1].

We start with a series of Lemmas. Apart from Lemma 4 they in fact treat
special cases of our assertion. The essential contents of Lemmas 1 and 2 are
well known for the choice r = 1 (see [3, 1]).

Lemma 1. Let b, c, r ∈ R, r > 0 and assume b2 < 4c. Then there exists
a nonnegative integer n such that (X + r)n · (X2 + bX + c) has only positive
coefficients. One can choose

n ≤ max

{
d1− β

α
e, d1− γe, 0

}

where

α = 4δc− (2c− br)2, β = 12δc− 2σ(2c− br), γ = 8δc− σ2

and

δ = r2 − br + c, σ = 3c− 2br + r2.
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Proof. Pick an integer n > max
{

1−β
α

, 1− γ, 0
}

and write

(X+r)n ·(X2+bX+c) = rnc+rn−1(cn+br)X+
n∑

k=2

pkX
k+(nr+b)Xn+1+Xn+2

where

pk =

(
n

k − 2

)
rn−k+2 + b

(
n

k − 1

)
rn−k+1 + c

(
n

k

)
rn−k =

(
n

k − 1

)
rn−kf(k)

(2 ≤ k ≤ n)

with

f(k) =
n + 1− k

k
c + br +

k − 1

n + 2− k
r2.

Now we have
k(n− k + 2)f(k) = g(k)

with
g(x) = δx2 − ((2c− br)n + σ)x + c(n2 + 3n + 2).

Clearly, δ > 0 and α = r2(4c− b2) > 0. In view of

4δc(n2 + 3n + 2)− ((2c− br)n + σ)2 = n(nα + β) + γ > 0

this implies g(x) > 0 for all x ∈ R, and by our choice of n the claim is
completely proved. ¤
Lemma 2. Let f ∈ R[X] be a monic polynomial having no nonnegative roots
and r ∈ R>0. Then there exists some1 m ∈ N bounded by an effectively com-
putable constant such that (X + r)mf has only positive coefficients.

Proof. We observe that f can be written as a product of monic quadratic
polynomials with negative discriminants and of linear polynomials with pos-
itive coefficients. Then the statement is clear by a straightforward induction
on the degree of f and Lemma 1. ¤
Lemma 3. Let f ∈ R[X] be a monic polynomial having no nonnegative roots
and p ∈ R[X] be a nonconstant polynomial with only positive coefficients. Then
there exists some m ∈ N bounded by an effectively computable constant such
that pmf has only positive coefficients.

The proof of Lemma 3 is based on the following trivial, but useful statement
which was also applied in the proof of [2, Theorem V1 A].

Lemma 4. Let R be a commutative unital ring such that 2 is a unit in R.
Then we have

n∑
i=0

aiX
i = Xn−1

(
anX +

an−1

2

)
+

n−2∑
i=1

X i
(ai+1

2
X +

ai

2

)
+

a1

2
X + a0

for all a0, . . . , an ∈ R (n ≥ 1).

1We denote by N the set of nonnegative integers.
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Proof of Lemma 3. By Lemma 4 there exist linear polynomials p0, . . . , pn ∈
R>0[X] such that

p =
n∑

i=0

X ipi.

Using Lemma 2 we find nonnegative integers m0, . . . , mn bounded by an effec-
tively computable constant such that

(1) pmi
i f ∈ R>0[X] (i = 0, . . . , n).

Let m = m0 + · · ·+ mn and

K =
{
(k0, . . . , kn) ∈ Nn+1 : k0 + · · ·+ kn = m

}
.

Using multinomial coefficients c(k0,...,kn) ∈ N>0 we can write

(2) pmf =
( n∑

i=0

piX
i
)m

f =
∑

(k0,...,kn)∈K

c(k0,...,kn)

( n∏
i=0

(
piX

i
)ki

)
f.

For every k = (k0, . . . , kn) ∈ K the polynomial

gk =
( n∏

i=0

pki
i

)
f

has degree
n∑

i=0

ki + deg(f) = m + deg(f),

and by (1) we find gk ∈ R>0[X] because for some i ∈ {0, . . . , n} we must have
ki ≥ mi. Thus, all polynomials

hk = ckgk ∈ R>0[X] (k ∈ K)

have equal degree m + deg(f), and by (2)

pmf =
∑

(k0,...,kn)∈K

h(k0,...,kn) X
Pn

i=1 iki ∈ R>0[X],

because it can easily be verified that for each integer s ∈ [0, n2] there are
some integers k1, . . . , kn ∈ [0, n] such that s =

∑n
i=1 iki. ¤

Proof of Theorem 1. It is easy to check that the leading coefficient c of F is
positive. Following Handelman we multiply F with a suitable power of X
such that f := c−1XnF is monic without negative exponents and f(0) > 0.
Similarly we find k ∈ N with

p := XkP ∈ R>0[X].

By Lemma 3 there exists a positive m bounded by an effectively computable
constant such that pmf has only positive coefficients. But then also

PmF = cX−(mk+n)pmf ∈ R>0[X, X−1].

¤
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Remark 1. (i) Theorem 1 can be seen as a dynamical problem in the set
W of univariate Laurent polynomials with positive leading coefficients
having no nonnegative roots with respect to the (continuous) trans-
formation

TP (F ) = P · F
with some fixed non-constant P ∈ R>0[X, X−1]. It asserts that the
orbit of TP (F ) eventually meets the open set R>0[X, X−1]. Obviously,
R>0[X, X−1] is contained in the cone W ∪ {0}.

(ii) The upper bound for the constant m as delivered by the proof of
Lemma 3 cannot expected to be sharp. However, this does not affect
the obvious algorithm for the determination of the least exponent m
turning PmF into a Laurent polynomial with only positive coefficients
(see (i)).

(iii) The interested reader is referred to [2, 3] for historical notes on ques-
tions related to Lemma 3.
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