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SUBRINGS IN TRIGONOMETRIC POLYNOMIAL RINGS

TARIQ SHAH AND EHSAN ULLAH

Abstract. In this study we explore the subrings in trigonometric polyno-
mial rings. Consider the rings T and T ′ of real and complex trigonometric
polynomials over the fields R and its algebraic extension C respectively (
see [6]). We construct the subrings T0 of T and T ′0, T ′1 of T ′. Then T0 is
a BFD whereas T ′0 and T ′1 are Euclidean domains. We also discuss among
these rings the Condition : Let A ⊆ B be a unitary (commutative) ring
extension. For each x ∈ B there exist x′ ∈ U(B) and x′′ ∈ A such that
x = x′x′′.

1. Introduction

Following Cohn [3], an integral domain say D is atomic if each nonzero
nonunit of D is a product of irreducible elements (atoms) of D, and it is well
known that UFDs, PIDs and Noetherian domains are atomic domains. An
integral domain D satisfies the ascending chain condition on principal ideals
(ACCP) if there does not exist any infinite strictly ascending chain of principal
integral ideals of D. Every PID, UFD and Noetherian domain satisfy ACCP
and a domain satisfying ACCP is atomic. Grams [5] and Zaks [11] provided
examples of atomic domains which do not satisfy ACCP. An integral domain
D is a bounded factorization domain (BFD) if it is atomic and for each nonzero
nonunit of D, there is a bound on the length of factorization into products of
irreducible elements (cf. [1]). Examples of BFDs are UFDs and Noetherian or
Krull domains (cf. [1, Proposition 2.2]). By [10], an integral domain D is said
to be a half-factorial domain (HFD) if D is atomic and whenever x1, . . . xm =
y1, . . . yn, where x1, x2, . . . xm, y1, y2 . . . yn are irreducibles in D, then m = n.
A UFD is obviously an HFD, but the converse fails, since any Krull domain
D with CI(D) ∼= Z2 is an HFD [10], but not a UFD. Moreover, a polynomial
extension of an HFD is not an HFD, for example Z[

√−3][X] is not an HFD,
as Z[

√−3] is an HFD but not integrally closed [4].
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In general,

UFD =⇒ HFD =⇒ BFD =⇒ ACCP =⇒ Atomic.

But none of the above implications is reversible.
In integral domains, factorization properties have been a common interest

of algebraists, particularly for polynomial rings. In this study, we would inves-
tigate the factorization properties of the subrings of trigonometric polynomial
rings T and T ′ (see [6]). The basic concepts, notions and terminology are as
standard in [6].

For the factorization of exponential polynomials, J. F. Ritt developed: “If
1 + a1e

α1x + · · ·+ aneαnx is divisible by 1 + b1e
β1x + · · ·+ bre

βrx with no b = 0,
then every β is a linear combination of α1, . . . , αn with rational coefficients”[8,
Theorem].

Latter on getting inspired by this, G. Picavet and M. Picavet [6] investigated
some factorization properties in trigonometric polynomial rings. Following [6],
when we replace all αk above by im, with m ∈ Z, we obtain trigonometric
polynomials. Whereas

T ′ = {
n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak, bk ∈ C} and

T = {
n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak,bk ∈ R}

are the trigonometric polynomial rings.

Again following [6], sin2 x = (1 − cos x)(1 + cos x) shows that two differ-
ent non-associated irreducible factorizations of the same element may appear.
Throughout we denote by cos kx and sin kx the two functions x 7→ cos kx and
x 7→ sin kx (defined over R). Also from basic trigonometric identities, it is
obvious that for each n ∈ N\{1}, cos nx represents a polynomial in cos x with
degree n and sin nx represents the product of sin x and a polynomial in cos x
with degree n − 1. Conversely by linearization formulas, it follows that any
product cosn x sinp x can be written as:

q∑

k=0

(ak cos kx + bk sin kx), where q ∈ N and ak, bk ∈ Q.

Hence T = R[cos x, sin x] ⊆ C[cos x, sin x] = T ′.

Here T ′ is a Euclidean domain and T is a Dedekind half-factorial domain
(see [6, Theorem 2.1 & Theorem 3.1]). We continue the investigations to find
the factorization properties in trigonometric polynomial rings, begun in [6]. In
other words we extend this study towards finding factorization properties of
the subrings of trigonometric polynomial rings, by establishing T0, T ′

0, and T ′
1

as subrings.
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In this paper we explored T0, T ′
0 and T ′

1 and demonstrated that, the ring T ′
0

and T ′
1 are Euclidean domains, whereas T0 is a BFD. We also characterized

the irreducible elements of T ′
0, and discussed Condition 1 (see [7, page 661])

among trigonometric polynomial rings.

2. The subrings of C[ cos x, sin x]

The Construction of T ′
1. We consider

T ′
1 =

{
n∑

k=0

(ak cos kx + ibk sin kx), n ∈ N, ak, bk ∈ R
}

.

Let

z =
n∑

k=0

(ak cos kx + ibk sin kx) ∈ T ′
1,

As cos x = eix+e−ix

2
and sin x = eix−e−ix

2i
, so

z = e−inx

[
n∑

k=0

{(ak + bk

2
)ei(n+k)x + (

ak − bk

2
)ei(n−k)x}

]
,

where ak+bk

2
, ak−bk

2
∈ R. Since z is an arbitrary, therefore every element of T ′

1

is of the form

e−inxP (eix), n ∈ N, where P (X) ∈ R[X].

Conversely,

e−inxP (eix) =
n−1∑

k=0

(αke
−i(n−k)x + α2n−ke

i(n−k)x) + αn,

where αk ∈ R. As eix = cos x + i sin x, so

e−inxP (eix) =
n−1∑

k=0

{(αk + α2n−k) cos(n− k)x +

i(α2n−k − αk) sin(n− k)x}+ αn,

where αk + α2n−k, α2n−k − αk ∈ R. Therefore every element which is of the
form e−inxP (eix), n ∈ N, where P (X) ∈ R[X], is in T ′

1.

Conclusion 1. The consequence of above construction is:

T ′
1 =

{
e−inxP (eix), n ∈ N, where P (X) ∈ R[X]

}
.

So we have an isomorphism f : (R[X])X → T ′
1 through the substitution mor-

phism X → eix. Therefore T ′
1 w (R[X])X .

Theorem 1. T ′
1 is a Euclidean domain.
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Proof. (R[X])X is a localization of R[X] by a multiplicative system generated
by a prime X. Also R[X] is a Euclidean domain. Therefore (R[X])X is a
Euclidean domain [9, Proposition 7]. Hence the isomorphism T ′

1 w (R[X])X in
Conclusion 1 gives the result. ¤

The Construction of T ′
0. We define the set T ′

0 of all polynomials of the form

n∑

k=0

(ak cos kx + bk sin kx),

n ∈ N, ak, bk ∈ C and an = α+γ+iβ, bn = −β+i(α−γ) such that α, β, γ ∈ R,
α, β and γ are not simultaneously zero. Let z ∈ T ′

0 be an arbitrary element,
so we may write

z = a0+
n−1∑

k=1

(ak cos kx+bk sin kx)+{(α+γ+iβ) cos nx+(−β+i(α−γ)) sin nx},

As cos x = eix+e−ix

2
and sin x = eix−e−ix

2i
, so

z = a0 +
n−1∑

k=1

{(a
′
k + b′′k + i(a′′k − b′k)

2
)eikx + (

a′k − b′′k + i(a′′k + b′k)
2

)e−ikx}

+ (α + iβ)einx + γe−inx,

where ak = a′k + ia′′k, bk = b′k + ib′′k and a′k, a′′k, b′k, b′′k ∈ R, a0 ∈ C. Setting

α′k =
a′k + b′′k + i(a′′k − b′k)

2
and β′k =

a′k − b′′k + i(a′′k + b′k)
2

,

we have

z = e−inx

[
a0e

inx +
n−1∑

k=1

{α′kei(n+k)x + β′ke
i(n−k)x}+ (α + iβ)ei2nx + γ

]
,

where α′k, β′k, a0 ∈ C, and α, β, γ ∈ R. Since z is an arbitrary, therefore every
element of T ′

0 is of the form

e−inxP (eix), n ∈ N, where P (X) ∈ R+ XC[X].

Conversely,

e−inxP (eix) = α0e
−inx + α2neinx +

n−1∑

k=1

(αke
−i(n−k)x + α2n−ke

i(n−k)x) + αn,

where α0 ∈ R, αk ∈ C. Let

αk = α′k + iα′′k, α2n−k = α′2n−k + iα′′2n−k, α2n = α′2n + iα′′2n.
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So for eix = cos x + i sin x, we have

e−inxP (eix) = (α0 + α′2n + iα′′2n) cos nx + (−α′′2n + i(α′2n − α0)) sin nx

+
n−1∑

k=1

{(α′k + α′2n−k + i(α′′k + α′′2n−k)) cos(n− k)x

+(α′′k − α′′2n−k + i(α′2n−k − α′k)) sin(n− k)x}+ αn

= an cos nx + bn sin nx

+
n−1∑

k=1

{ak cos(n− k)x + bk sin(n− k)x}+ αn,

where

an = α0 + α′2n + iα′′2n, bn = −α′′2n + i(α′2n − α0),

ak = α′k + α′2n−k + i(α′′k + α′′2n−k)

bk = α′′k − α′′2n−k + i(α′2n−k − α′k).

Therefore every element which is of the form e−inxP (eix), n ∈ N, where
P (X) ∈ R+ XC[X], is in T ′

0.

Conclusion 2. The consequence of above construction is:

T ′
0 =

{
e−inxP (eix), n ∈ N, where P (X) ∈ R+ XC[X]

}
.

So again we have an isomorphism f : (R+ XC[X])X → T ′
0 through the substi-

tution morphism X → eix. Therefore T ′
0 w (R+ XC[X])X .

Theorem 2. The integral domain T ′
0 is a Euclidean domain having irreducible

elements, up to units, trigonometric polynomials of the form cos x+ i sin x−a,
where a ∈ C\{0}.
Proof. Since (R+XC[X])X = C[X, 1/X] = C[X]X is a UFD (PID, Euclidean
domain, etc.). Thus the domain (R+XC[X])X is a Euclidean domain. Now
use the isomorphism T ′

0 w (R+XC[X])X in Conclusion 2. ¤
The following assertion is the analogue of [6, Corollary 2.2] and gives the

factorization in T ′
0 instead of T ′.

Corollary 1. Let z =
n∑

k=0

(ak cos kx + bk sin kx), n ∈ N\{1}, ak, bk ∈ C

with (an, bn) 6= (0, 0), such that an = α + γ + iβ and bn = −β + i(α − γ),
where α, β, γ ∈ R. Let d be a common divisor of the integers k such that
(ak, bk) 6= (0, 0). Then z has a unique factorization

λ(cos nx− i sin nx)

2n
d∏

j=1

(cos dx + i sin dx− αj), where λ, αj ∈ C\{0}.

Proof. Since T ′
0 ⊆ T ′, therefore proof follows by [6, Corollary 2.2]. ¤



40 TARIQ SHAH AND EHSAN ULLAH

Now onwards the symbol ∩ in all diagrams will represent the inclusion ⊆.

Remark 1. R+XC[X] is a Noetherian HFD wedged between two Euclidean
domains R[X] and C[X], that is R[X] ⊆ R+XC[X] ⊆ C[X] and the localiza-
tion of all these by a multiplicative system generated by X preserves their
factorization properties in the following way

R[X] ⊆ R+XC[X] ⊆ C[X]
∩ ∩ ∩

(R[X])X ⊆ (R+XC[X])X ⊆ (C[X])X .

Using Conclusion 1, Conclusion 2 and [6, Theorem 2.1], we have

R[X] ⊆ R+XC[X] ⊆ C[X]
∩ ∩ ∩
T ′

1 ⊆ T ′
0 ⊆ T ′,

where T ′
0 is a Euclidean domain wedged between two Euclidean domains T ′

1

and T ′.

Remark 2. (a) Consider the domain extension R[X] ⊆ (R[X])X . As XR[X] is
a maximal ideal of R[X] and XR[X] ∩ (X) 6= φ. Therefore the extended
ideal (XR[X])e = (R[X])X [12, Corollary 2]. Hence (XR[X])e w T ′

1 by
Conclusion 1.

(b) If we consider the domain extension R+XC[X] ⊆ (R+XC[X])X . We ob-
serve, that XC[X] is a maximal ideal of R+XC[X] and XC[X] ∩ (X) 6= φ.
Therefore the extended ideal (XC[X])e = (R+XC[X])X [12, Corollary 2].
Hence (XC[X])e w T ′

0 by Conclusion 2.
(c) On the same lines we can apply the same result to the domain extension

C[X] ⊆ (C[X])X . In this case XC[X] is a maximal ideal of C[X] and
XC[X] ∩ (X) 6= φ. Therefore the extended ideal (XC[X])e = (C[X])X

[12, Corollary 2]. Hence (XC[X])e w T ′ by [6, Theorem 2.1].

Definition 1. Let J be a subset of T ′
1 defined by

J =

{
n∑

k=0

(ak cos kx + ibk sin kx), n ∈ N, ak, bk ∈ Q and an = bn

}
.

Definition 2. Let I be a subset of T ′
0 defined by

I =

{ n∑

k=0

(ak cos kx + bk sin kx) : n ∈ N, ak, bk ∈ C

and an = α + iβ, bn = −β + iα

}
.

Lemma 1. For the maximal ideal XR[X] (respectively XC[X]) of R[X] (re-
spectively R+XC[X]), we have (XR[X])X w J (respectively (XC[X])X w I).

Proof. Follows by Conclusion 1 (respectively Conclusion 2). ¤
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Condition 1. Let A ⊆ B be a unitary (commutative) ring extension. For
each x ∈ B there exist x′ ∈ U(B) and x′′ ∈ A such that x = x′x′′ [7, page 661].

Example 1. (a) If the ring extension A ⊆ B satisfies Condition 1, then the ring
extension A + XB[X] ⊆ B[X] (or A + XB[[X]] ⊆ B[[X]]) also satisfies
Condition 1.

(b) If the ring extensions A ⊆ B and B ⊆ C satisfy Condition 1, then so does
the ring extension A ⊆ C.

(c) If B is a fraction ring of A, then the ring extension A ⊆ B satisfies Con-
dition 1. Hence the ring extension A ⊆ B satisfies Condition 1 is the
generalization of localization.

(d) If B is a field, then the ring extension A ⊆ B satisfies Condition 1.

Condition 2. Let A, A1, B, B1 be unitary (commutative) rings such that

A ⊆ B
∩ ∩
A1 ⊆ B1

Then for each x ∈ B1 there exist x′ ∈ U(B) and x′′ ∈ A1 such that x = x′x′′.

Lemma 2. Let A ⊆ B be a unitary (commutative) ring extension which satis-
fies Condition 1. If N is a multiplicative system in A then the ring extension
N−1A ⊆ N−1B satisfies Condition 2.

Proof. Since the ring extension A ⊆ B satisfies Condition 1. Therefore for
each a ∈ B there exist b ∈ U(B) and c ∈ A such that a = bc. Obviously
N−1A ⊆ N−1B and let x = a

s
∈ N−1B. Then x = a

s
, a ∈ B, s ∈ N . This

implies x = bc
s

= b c
s
, where b ∈ U(B) and c

s
∈ N−1A. ¤

Example 2. (a) If the ring extensions A ⊆ B and B ⊆ C satisfy Condition 2,
then so does the ring extension A ⊆ C.

(b) For A = A1 and B = B1 the Condition 1 and Condition 2 coincides.
(c) If the ring extension A1 ⊆ B1 satisfies Condition 2, then it does satisfies

Condition 1.
(d) By Lemma 2, the ring extensions T ′

1 ⊆ T ′
0 and T ′

0 ⊆ T ′ satisfy Condition 2
so does the ring extension T ′

1 ⊆ T ′.

Remark 3. Consider the commutative inclusion diagram made by the following
domain extensions

R[X] ⊆ R+XC[X] ⊆ C[X]
∩ ↘ ∩ ↘ ∩
T ′

1 ⊆ T ′
0 ⊆ T ′.

Among these domain extensions R+XC[X] ⊆ C[X], R[X] ⊆ T ′
1, R+XC[X] ⊆

T ′
0 and C[X] ⊆ T ′ satisfy Condition 1 (see Example 1). Whereas the domain

extensions T ′
0 ⊆ T ′ and T ′

0 ⊆ T ′ satisfy Condition 2. So by transitivity the
domain extensions R[X] ⊆ T ′

0, R + XC[X] ⊆ T ′ and T ′
1 ⊆ T ′ also satisfy

Condition 2. Also note that the domain extension R[X] ⊆ R + XC[X] does
not satisfy any of Condition 1 and Condition 2.
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The subring of R[ cos x, sin x]. Consider the substitution morphism

g : Z[X,Y ] → Z[cos x, sin x],

defined by g(X) = cos x and g(Y ) = sin x such that

g(X2 + Y 2 − 1) = g(X2) + g(Y 2)− 1 = cos2 x + sin2 x− 1 = 0.

This implies (X2 + Y 2 − 1) = Ker g, therefore

Z[cos x, sin x] w Z[X, Y ]/(X2 + Y 2 − 1).

Theorem 3. The integral domain T0 = Z[ cos x, sin x] is a BFD.

Proof. Since Z[X,Y ]/(X2+Y 2−1) w Z[cos x, sin x], with Z[X, Y ] a Noetherian
domain. Therefore Z[cos x, sin x] is Notherian, hence the result. ¤

Remark 4. (a) T is a Dedekind HFD [6, Theorem 3.1], whereas T0 is a Noe-
therian BFD.

(b) T0 is a free Z[cos x]-module and has basis {1, sin x}.
(c) Z[cos x] is a Euclidean domain because Z[cos x] w Z[X], therefore the BFD

T0 lies between Euclidean domains Z[cos x] and T ′
0.

(d) T ′
0 is a free T0-module and has basis {1, i}.

(e) T ′ is a T0-module also T is a T0-module.
(f) T ′ is a T ′

0-module.
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