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CLIFFORD HYPERSURFACES IN A UNIT SPHERE
SHARIEF DESHMUKH

ABSTRACT. Let M be a compact Minimal hypersurface of the unit sphere
S™*1. In this paper we use a constant vector field on R"*2 to characterize

the Clifford hypersurfaces S* (ﬂ) x S (1/%), l+m=n,in S*1. We

also study compact minimal Einstein hypersurfaces of dimension greater
than two in the unit sphere and obtain a lower bound for first nonzero
eigenvalue \; of its Laplacian operator.

1. INTRODUCTION

Let M be a compact Minimal hypersurface of the unit sphere S™*! and
A be its shape operator. In [4], it is shown that if ||A||> = n, then the
hypersurface is either Veronese surface (n = 2) or the Clifford hypersurface

St (ﬁ) x S™ (\/?), Il +m = n. For a pair of integers I,m, | + m = n,
Clifford hypersurface is defined by

l m l m
g ( 5) s () = { e € B R ol = 2 = 2

which is an embedded minimal hypersurface of the unit sphere S"™! of constant
scalar curvature and length of its shape operator satisfies ||A||”> = n. One of
the interesting questions is to obtain different characterizations of the Clifford
hypersurfaces in the unit sphere S"*!. In this paper we obtain one such char-
acterization for Clifford hypersurfaces among compact minimal hypersurfaces
without assuming that they have constant scalar curvature. We denote by
N and N the unit normal vector field of the minimal hypersurface M in S™!
and that of the unit sphere S"*! in the Euclidean space R™™2 respectively. We
denote by (,) the Euclidean metric on R"*2. One of the main results is the
following;:
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Theorem 1. Let M be a compact and connected minimal hypersurface of the
unit sphere S"*, n > 2. Then M is a Clifford hypersurface if and only if there
exists a monzero constant vector field a on R™? such that (a, N) = c<a,N>
holds for a nonzero constant c.

In the geometry of minimal hypersurfaces of the unit sphere the Chern’s
conjecture ”For compact minimal hypersurfaces of constant scalar curvature
in the unit sphere S™™! the set of values of the square of the length of the
shape operator ||A||* is a discrete set”, is well known (cf. [15, p.693]). It is
known that first two values of ||A||* are 0 and n (cg. [3, 7, 11]). In respect of
the third value of ||A|*, Peng and Terng [9] have proved that if | A|* > n, then
|A|]> > n + ¢(n) where ¢(n) > T3~ is a positive constant. Also for n = 3 these

authors proved that HA||2 > 6 and consequently they conjectured that the

third value of || A||* should be 2n. Indeed the immersion f: SO(3) — S* of the

Lie group SO(3) defined by f(g) = gBg~!, where B is a 3 x 3 diagonal matrix

with diagonal \/LE’ —\%, 0 is a minimal immersion with ||A||*> = 6 (cf. [6]). Then

Yang and Cheng (cf. [13, 14]) improved the result of Peng and Terng by proving
9

c¢(n) > 2n — 2. These authors in [12] further improved this result by proving

if |A|*> > n, then ||A|* > $(4n 4+ 1). In this paper we prove the following
Theorem.

Theorem 2. Let M be a compact minimal hypersurface of constant scalar
curvature in the unit sphere S*"*1. If the shape operator A and the Ricci
curvature of M satisfy HAH2 > 2n, and Ric < 2(n — 1), then there exists an
eigenvalue X > 4n of the Laplace operator on M satisfying || A|* = X — 2n.

Other important question in the geometry of compact minimal hypersurface
in the unit sphere S™™! is to show that the first nonzero eigenvalue A\; of
its Laplacian operator satisfies \; = n, known as Yau’s problem (cf. [15]).
For embedded compact minimal hypersurfaces it has been known that A\; > 2
(cf. [5]), however no such result is available for immersed minimal hypersurfaces
in S"*1. In this paper we prove the following result for an immersed compact
minimal Einstein hypersurface of the unit sphere S

Theorem 3. Let M be an immersed compact minimal Einstein hypersurface
of the unit sphere S™', n > 2. Then the first nonzero eigenvalue \, of the
Laplacian operator on M satisfies

1
n—1

2. PRELIMINARIES

Let M be an immersed compact minimal hypersurface of the unit sphere
S+l - with unit normal vector field N and shape operator A. We denote by V
and V the Riemannian connections on M and S™*! respectively and by ¢ the
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Riemannian metric on S™*! as well as that induced on M. The Ricci tensor
Ric and the scalar curvature S of M are given by (cf. [2])
(21)  Ric(X,Y) = (n = 1)g (X,Y) = g(AX, AY), S =n(n—1)— [ A’

X,Y € X(M), where X(M) is the Lie-algebra of smooth vector fields on M.
For a constant vector field a on R"™2, we define smooth functions f,h: M — R
by

(2.2) f={(a,Ny, h= <a,N>

where (,) is the Euclidean metric on R""2 and consequently the restriction of
a to M can be expressed as

(2.3) a=t+ fN+hN

where t € X(M) is the tangential component of a to M. Using Gauss formula
for the hypersurface M in S™*! and for the hypersurface S"*! in R"*2, we
obtain

(2.4) Vxt=fAX)—-hX, X(f)=-g9(At,X), X(h)=g(t,X)
X € X(M), and consequently the gradient fields V f, Vh of the functions f, h
are given by
(2.5) Vf=-A(), Vh=t
Since M is minimal hypersurface, using equations (2.4) and (2.5), we obtain

the following expressions for the Laplacians Af and Ah of the functions f and
h

(2.6) Af=—|lAIPf, Ah=—nh

Using the fact 3Af? = fAf + |IVf|* and the equations (2.5) and (2.6) we
have the following

Lemma 2.1. Let M be a compact orientable minimal hypersurface of the unit
sphere S, Then

S =n 1 [raor = [ap

An odd dimensional unit sphere S?**! in the Euclidean space R**2 inherits
contact structure induced by the complex structure J on R?***2. The unit
normal vector field N of the unit sphere defines a unit vector field & = —JN
on the sphere S?"™! with its dual form n and a tensor filed ¢ of type (1,1)
defined by

(2.7) Vi€ = —pX

for a smooth vector field X on S**1. This gives contact structure (p,&,n, g)
on the unit sphere S*"*! that satisfies (cf. [1])

P’X =X +n(X)& (&) =1, ¢€ =0, n(eX) =0,
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9(p X, Y) = g(X,Y) = n(X)n(Y)
N(X) = 9(X.€), (Vxp) (V) =g(X,Y){ —n(Y)X
for smooth vector fields X,Y on S?**!. For an immersed hypersurface M of
the unit sphere S*"*! with unit normal vector field N, ¢(N) is tangential to
M and thus we put u = —p(N) where u € X(M). Define a smooth function

p = g(§ N) on M and thus we express the restrictions of £ and pX to M,
X e X(M) as

(2.8) E=v+pN, X =¢vX+ a(X)N

where v, (X)) are tangential components of £ and pX to M respectively and
a is a 1-form on M dual to u, that is o(X) = g(X,u), X € X(M). Let 3 be
the 1-form dual to the vector field v. Then the hypersurface M inherits the
structure (¢, u, v, a, 3, g) which has the property summarized in the following
Lemma the proof of which follows trivially by the properties of the contact
structure on S?"*! and the Gauss formula for the hypersurface.

Lemma 2.2. Let M be an orientable hypersurface of the unit sphere S?"+1,
Then M inherits the structure (¢, u,v,a, 3,g) satisfying
(i) ¥°X = =X + a(X)u + B(X)v, a(u) = B(v) =1 —p?, ¥(u) = —pv,
(i) g(vX,9Y) = g(X,Y) — a(X)a(Y) = B(X)B(Y), a(X) = g(X,u),
B(X) - g(X,U), 9(77va Y) = _g(Xu 77Z)Y)
(iii) (Vxv)(Y) = g(X,Y)v — B(Y)X + a(Y)AX — g(AX,Y)u, Vxu =
pX + 19 (AX), Vyxv=—¢(X) 4+ pAX
where V is the Riemannian connection on the hypersurface and X, Y € X(M).

For a non-totally geodesic compact minimal hypersurface M of constant
scalar curvature in the unit sphere S™*! by equations in (2.6) it follows that n
and ||A||* are eigenvalues of the Laplacian operator on M. It is an interesting
question to see whether sum of two eigenvalues of Laplacian operator on a
Riemannian manifold is also an eigenvalue of the Laplacian operator. Indeed
for compact minimal hypersurface of constant scalar curvature in the odd
dimensional unit sphere S2**1, 2n+|| A||* is also an eigenvalue of the Laplacian
operator as seen in the following:

Lemma 2.3. Let M be a compact minimal hypersurface of constant scalar
curvature of the unit sphere S*" 1. Then the function p satisfies

Ap=—(2n+|AI*)p
Proof. Using the definition of p and equations (2.7), (2.8) we immediately get
the following expression for the gradient Vp
(2.9) Vp=—u—Av
Now using (iii) in Lemma 2.2 and the skew-symmetry of the operator v, get

div(u) = 2np, div(v) = || A" p
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and consequently using this in equation (2.9) we have proved the Lemma. O

3. PROOF OF THEOREMS

Proof of Theorem 1. Let M be the minimal hypersurface of the unit sphere
S"*t1 and a, be a nonzero constant vector field on R"*? satisfying (a, N) =
c <a, N> for a constant ¢ # 0. Thus using f = ch in equation (2.6) we conclude
that (n — HAH2) h = 0. Since M is connected, we have either n = ||A||*> or
else h = 0. If h = 0, then by our assumption f = 0 and by first equation
in Lemma 2.1 we have t = 0. This together with equation (2.3) and the fact
that a is a constant vector field implies that a = 0 which is a contradiction.
Hence ||A|> = n, n > 2 and this proves that M is a Clifford hypersurface

sl (\/g) x S™ (/) 1+ m =n (cf. [3]).
Conversely suppose M = S! <\/%) x S™ (\/?)’ l+m =n. Let U;: S (\/%)

R and Wy: S™ (/=) — R™! be the natural embeddings with unit normals
N; and Ns respectively. Then the embedding W = (W, ¥y) gives the minimal

hypersurface M = S <\/%> x Sm (\/?), [ +m = n of the unit sphere S"*!

and the unit normals N of M in S"*! and N of S"*! in R"*? are given by

e () 5= ()

Then the coordinate vector field a = % on R"? satisfies f = ch, for the
constant ¢ = /Tt # 0. O

Proof of Theorem 2. Let M be the minimal hypersurface of the unit sphere
52+ with shape operator A and Ricci curvature satisfying the hypothesis of
the Theorem. Then by Lemma 2.2, the function p satisfies

(3.1) Ap=—(2n+|Al")p

We claim that the function p is not a constant on M. If is p a constant then
by equation (3.1) we get p = 0 and consequently the equations (2.8) and (2.9)
will imply that ¢ = v is tangent to M and that A( = —u, and that « is a unit
vector field (by Lemma 2.2). Thus

Ric(&,§) =(2n—1)—1=2(n—1)

which is a contradiction. Hence p is a non-constant smooth function. Thus
by equation (3.1) we see that p is an eigenfunction of the Laplacian operator
corresponding to eigenvalue X\ = 2n + ||A||* > 4n, that is [|[A|* =X —2n. O

Proof of Theorem 3. Let M be a compact minimal Einstein hypersurface of
the unit sphere S™*!1. Then its Ricci curvature tensor is given by

Ric = Eg
n
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where S is the scalar curvature of M which is a constant as n > 2, and
consequently ||A||]* is a constant. Moreover by equation (2.1) we have

2
o 1A

n

This shows, as trA = 0 and eigenvalues of A are i@, that dim M = even,

say 2m, and consequently M is a minimal hypersurface of the odd-dimensional
unit sphere S?" ! and therefore has (v, u, v, o, 3, g)-structure described in the
Lemma 2.2.

Let M be a compact minimal Einstein hypersurface of the unit sphere S?m+!
and 0: M — R be a smooth function. For this smooth function we define an
operator B,: X(M) — X(M) by

B,(X)=VxVo

Then the operator B, is symmetric and trB, = Ao, moreover it is straight-
forward to verify that

(3.2) (VB,) (X,Y) = (VB,) (Y,X) = R(X,Y)Vo

where R is the curvature tensor field of the hypersurface and the covariant
derivative (VB,) (X,Y) = VxB,(Y) — B,(VxY). Also for a X € X(M) and

a local orthonormal frame {eq, ..., ey, } we have

X(A0) = X (3 g(Ba(en),e)) = D g((VB,) (X,e2), )

which together with equation (3.2) gives

2m

(3.3) > (VB,) (ei,e:) = V(Ao) + %va

=1

Now take o as eigenfunction of A corresponding to first nonzero eigenvalue
A1, that is Ao = —\jo. Then we have

(3.4) /||va||2 _ )\1/0—2

We use equation (3.3) to compute

(3.5) div(B, (Vo)) = || B|* + Zg (Vo,(VB,) (e, €:))
= |B,||> = \i | Vo> 4+ Ric(Ve, Vo)

If M is totally geodesic then we have Ay = 2m = n and the result holds.
Therefore suppose M is not totally geodesic. Then M is Clifford hypersurface
(cf. [10]), and we have || A||* = 2m, consequently A? = I which gives

(3.6) Ric(Vo, Vo) = 2(m — 1) |Vo|?
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Thus integrating equation (3.5) and using (3.4) and (3-6) we get
A2 A
2 AL 9) _ A 2
J (18217 - 30%) = 2 e — 1) it~ 1) [ o
M M

As trB, = —\ 0, by Schwartz’s inequality the first integrand in above equation
is non-negative, which gives A\;(2m — 1) > 4m(m — 1) and this proves the
Theorem. 0]
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