Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 25 (2009), 165-170 www.emis.de/journals ISSN 1786-0091

PROJECTIVE RANDERS CHANGES OF SPECIAL FINSLER SPACES

S. BÁCSÓ AND Z. KOVÁCS

ABSTRACT. A change of Finsler metric $L(x,y) \to \bar{L}(x,y)$, is called a Randers change of L if $\bar{L}(x,y) = L(x,y) + b_{\alpha}(x)y^{\alpha}$. The purpose of this paper is to study the conditions for a Finsler space of weakly Berwald/Landsberg type which could be transformed by a Randers change to a Finsler space of the same type.

1. Introduction

Randers's well-known method for giving examples of Finsler spaces has the form

$$L(x,y) = \sqrt{a_{ij}(x)y^i y^j} + b_i(x)y^i$$

where a_{ij} is a Riemannian metric and $\beta(y^i) = b_i y^i$ is a one form with the condition $||b|| = \sqrt{a^{ij}b_ib_j} < 1$ (a^{ij} is the inverse of a_{ij}). If we change $\alpha(x,y) = \sqrt{a_{ij}(x)y^iy^j}$ to a given Finsler metric, this method may lead to another Finsler metric.

Definition ([5]). A change of Finsler metric $L(x,y) \to \bar{L}(x,y)$, is called a Randers change of L if

(1)
$$\bar{L}(x,y) = L(x,y) + b_i(x)y^i$$

where $\beta(x,y) = b_i(x)y^i$ is a one form on a smooth manifold M^n .

Thorough this paper we always suppose the regularity, positive homogeneity and strong convexity for the Finsler structure ([3]), thus we assume a priory that \bar{L} satisfies the ordinary conditions as fundamental function.

Another important change of Finsler metrics is the so called projective change. A change of Finsler metric $L(x,y) \to \bar{L}(x,y)$, is called a *projective change* of L

 $^{2000\} Mathematics\ Subject\ Classification.\ 53B40.$

Key words and phrases. Randers change, weakly-Berwald space, Landsberg space.

if geodesic curves are preserved. It is a well-known fact that $L(x,y) \to \bar{L}(x,y)$ is projective if and only if there exists a scalar field p(x,y) which is positive homogeneous of order one, called the projective factor, satisfying $\bar{G}^i = G^i +$ $p(x,y)y^i$ where G^i are the geodesic spray coefficients.

Projective Randers changes are characterised by the following theorem:

Theorem ([4]). A Randers change is projective if and only if b is a gradient vector field.

Randers changes of special Finsler spaces were studied e.g. in the papers [1], [7]. In [7] Park and Lee gave conditions for Finsler spaces changed by a Randers change to be of Douglas type.

Theorem ([7]). Let $F^n(M^n, L) \to \bar{F}^n(M^n, \bar{L})$ a projective Randers change. If F^n is a Douglas space, then \overline{F}^n is also a Douglas space, and vice versa.

The terminology and notations are referred basically to monograph [6]. Let M^n be an n-dimensional (n > 2) differentiable manifold and F^n be a Finsler space equipped with a fundamental function L(x,y) on M^n . A short review of the basic notations:

- the Finsler metric tensor: $g_{ij} = \dot{\partial}_i \dot{\partial}_j L^2/2$ where $\dot{\partial}_i$ refers to the partial derivation with respect to y^i . g^{ij} is the inverse of g_{ij}
- the distinguished section: $\ell^i = y^i/L$, $\ell_i = y_i/L$
- the angular metric tensor: $h_{ij} = g_{ij} \ell_i \ell_j$
- the geodesic spray coefficients and successive y-derivatives:

$$4G_{j} = (\dot{\partial}_{j}\partial_{i}L^{2})y^{i} - \partial_{j}L^{2}, \quad G^{i} = g^{i\alpha}G_{\alpha},$$

$$G^{i}_{j} = \dot{\partial}_{j}G^{i}, \quad G^{i}_{jk} = \dot{\partial}_{k}G^{i}_{j}, \quad G^{i}_{jkl} = \dot{\partial}_{l}G^{i}_{jk},$$

$$g_{\alpha l}G^{\alpha}_{ijk} = G_{lijk}$$

• the hy-torsion

$$(2) -2P_{ijk} = y_{\alpha}G_{ijk}^{\alpha}.$$

Throughout the paper we shall use the notation $L_i = \dot{\partial}_i L$, $L_{ij} = \dot{\partial}_j \dot{\partial}_i L$ etc. We use the following properties of the angular metric tensor freely:

- $h_{ij} = LL_{ij}$
- $\bullet \ h_{ij}\ell^j = 0$
- $g^{ij}h_{ik} = \delta_k^j \ell^j \ell_k$ $g^{ij}h_{ij} = n 1$.

In the projective geometry of Finsler manifolds, there is an important projective invariant quantity, the *Douglas* tensor defined by

(3)
$$D_{ijk}^{h} = G_{ijk}^{h} - \frac{1}{n+1} \left(G_{ijk} y^{h} + \delta_{i}^{h} G_{jk} + \delta_{j}^{h} G_{ik} + \delta_{k}^{h} G_{ij} \right).$$

2. Projective Randers Changes

Lemma 1. For a Randers change we have $\frac{1}{L} \cdot h_{ij} = \frac{1}{L} \cdot \bar{h}_{ij}$.

Proof. It follows from (1) that $\bar{L}_i = L_i + b_i$, $\bar{L}_{ij} = L_{ij}$. The angular metric tensor satisfies $h_{ij} = LL_{ij}$, thus $\frac{\bar{h}_{ij}}{\bar{L}} = \bar{L}_{ij} = L_{ij} = \frac{h_{ij}}{L}$.

Lemma 2. If $\bar{L}(x,y) = L(x,y) + \beta(x,y)$ is a projective Randers change, then

$$(4) \quad \frac{1}{L}G_{lijk} + \frac{2}{L^{2}}\ell_{l}P_{ijk} - \frac{1}{(n+1)L}\left(h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij}\right) = \frac{1}{\bar{L}}\bar{G}_{lijk} + \frac{2}{\bar{L}^{2}}\bar{\ell}_{l}\bar{P}_{ijk} - \frac{1}{(n+1)\bar{L}}\left(\bar{h}_{il}\bar{G}_{jk} + \bar{h}_{jl}\bar{G}_{ik} + \bar{h}_{kl}\bar{G}_{ij}\right).$$

Proof. From (3) one obtains

$$\begin{split} \frac{1}{L}h_{\alpha l}D_{ijk}^{\alpha} &= \frac{1}{L}\left(g_{\alpha l} - \ell_{\alpha}\ell_{l}\right) \cdot G_{ijk}^{\alpha} \\ &- \frac{1}{(n+1)L}\left(G_{ijk}h_{\alpha l}y^{\alpha} + h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij}\right). \end{split}$$

From the property $h_{\alpha l}y^{\alpha}=0$ it follows that

$$\frac{1}{L}h_{\alpha l}D_{ijk}^{\alpha} = \frac{1}{L}\left(g_{\alpha l} - \ell_{\alpha}\ell_{l}\right) \cdot G_{ijk}^{\alpha} - \frac{1}{(n+1)L}\left(h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij}\right).$$

From the definition of the hy-torsion (see (2)) we conclude that

$$\frac{1}{L}h_{\alpha l}D_{ijk}^{\alpha} = \frac{1}{L}\left(g_{\alpha l} - \frac{y_{\alpha}}{L}\ell_{l}\right) \cdot G_{ijk}^{\alpha}
- \frac{1}{(n+1)L}\left(h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij}\right)
= \frac{1}{L}G_{lijk} + \frac{2}{L^{2}}\ell_{l}P_{ijk}
- \frac{1}{(n+1)L}\left(h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij}\right).$$

The Douglas tensor D_{ijk} is projective invariant. Moreover, by Lemma 1 we have $\frac{1}{L}h_{\alpha l}D^{\alpha}_{ijk}=\frac{1}{L}\bar{h}_{\alpha l}\bar{D}^{\alpha}_{ijk}$ and this fact completes the proof.

In the next two sections we give two consequences of the relation (4).

3. Projective Randers change between Landsberg spaces

Definition. If a Finsler space satisfies the condition $P_{ijk} = 0$, we call it a Landsberg space.

Theorem 1. Let F_n and \bar{F}_n be Landsberg spaces and let $\bar{L}(x,y) = L(x,y) + \beta(x,y)$ be a projective Randers change between them. Then

$$G_{lk} - \bar{G}_{lk} = \frac{1}{n-1} h_{kl} \lambda(x, y).$$

where $\lambda(x,y)$ is a scalar field.

Proof. Let F_n and \bar{F}_n be Landsberg spaces, i.e. $P_{ijk} = \bar{P}_{ijk} = 0$. Then (4) becomes

$$\frac{1}{L}G_{lijk} - \frac{1}{(n+1)L} \left(h_{il}G_{jk} + h_{jl}G_{ik} + h_{kl}G_{ij} \right)
= \frac{1}{\bar{L}}\bar{G}_{lijk} - \frac{1}{(n+1)\bar{L}} \left(\bar{h}_{il}\bar{G}_{jk} + \bar{h}_{jl}\bar{G}_{ik} + \bar{h}_{kl}\bar{G}_{ij} \right).$$

Moreover, for Landsberg spaces we have $G_{lijk} - G_{iljk} = 0$, $\bar{G}_{lijk} - \bar{G}_{iljk} = 0$. These properties lead to

$$\frac{1}{(n+1)L} \left(h_{ij}G_{lk} + h_{ik}G_{lj} - h_{jl}G_{ik} - h_{kl}G_{ij} \right)
= \frac{1}{(n+1)L} \left(h_{ij}\bar{G}_{lk} + h_{ik}\bar{G}_{lj} - h_{jl}\bar{G}_{ik} - h_{kl}\bar{G}_{ij} \right).$$

Hence we see that

$$h_{ji}\left(G_{lk} - \bar{G}_{lk}\right) + h_{ki}\left(G_{lj} - \bar{G}_{lj}\right) - h_{jl}\left(G_{ik} - \bar{G}_{ik}\right) - h_{kl}\left(G_{ij} - \bar{G}_{ij}\right) = 0.$$

Contraction with g^{ij} gives

$$(n-1)\left(G_{lk} - \bar{G}_{lk}\right) + h_k^{\alpha}\left(G_{l\alpha} - \bar{G}_{l\alpha}\right) - h_l^{\alpha}\left(G_{\alpha k} - \bar{G}_{\alpha k}\right) - h_{kl}g^{ji}\left(G_{ij} - \bar{G}_{ij}\right) = 0.$$

Denoting $g^{ji}\left(G_{ij}-\bar{G}_{ij}\right)$ by $\lambda(x,y)$ we find that

$$(n-1)\left(G_{lk}-\bar{G}_{lk}\right)+\left(G_{lk}-\bar{G}_{lk}\right)-\left(G_{lk}-\bar{G}_{lk}\right)-h_{kl}\lambda(x,y)=0.$$

4. Projective Randers change between weakly-Berwald spaces

Definition ([2]). If a Finsler space satisfies the condition $G_{ij} = 0$, we call it a weakly-Berwald space.

Theorem 2. Let F_n and \bar{F}_n be two weakly Berwald Finsler spaces which are related by a projective Randers change $L \to \bar{L}$. Let p(x,y) denote the projective factor of the change, that is $\bar{G}^i = G^i + p(x,y)y^i$. Then $\dot{\partial}_i p(x,y)$ does not depend on y.

Proof. The equation (4) for a weakly-Berwald space becomes:

$$\frac{1}{L}G_{lijk} + \frac{2}{L^2}\ell_l P_{ijk} = \frac{1}{\bar{L}}\bar{G}_{lijk} + \frac{2}{\bar{L}^2}\ell_l \bar{P}_{ijk}.$$

Because of

$$\frac{1}{L}G_{lijk} + \frac{2}{L^2}\ell_l P_{ijk} = \frac{1}{L}g_{\alpha l}G^{\alpha}_{ijk} - \frac{\ell_l}{L^2}y_{\alpha}G^{\alpha}_{ijk} = \frac{1}{L}\left[\left(g_{\alpha l} - \ell_l\ell_{\alpha}\right)G^{\alpha}_{ijk}\right]$$

we have

$$\frac{1}{L}h_{l\alpha}G_{ijk}^{\alpha} = \frac{1}{\bar{L}}\bar{h}_{l\alpha}\bar{G}_{ijk}^{\alpha}.$$

Then it follows from $h_{l\alpha}/L = \bar{h}_{l\alpha}/\bar{L}$ that

$$\frac{1}{L}h_{l\alpha}G^{\alpha}_{ijk} = \frac{1}{L}h_{l\alpha}\bar{G}^{\alpha}_{ijk},$$

that is

$$(5) 0 = h_{l\alpha} \left(\bar{G}_{ijk}^{\alpha} - G_{ijk}^{\alpha} \right).$$

After successive derivations we have:

$$\begin{split} \bar{G}^i &= G^i + p(x, y)y^i \\ \bar{G}^j_i &= G^i_j + p_j y^i + p \delta^i_j \\ \bar{G}^i_{jk} &= G^i_{jk} + p_{jk} y^i + p_j \delta^i_k + p_k \delta^i_j \\ \bar{G}^{\alpha}_{ijk} &= G^{\alpha}_{ijk} + p_{ijk} y^{\alpha} + p_{jk} \delta^{\alpha}_i + p_{ik} \delta^{\alpha}_j + p_{ij} \delta^{\alpha}_k. \end{split}$$

Substituting the last formula into (5) we have

$$0 = h_{l\alpha} \left(p_{ijk} y^{\alpha} + p_{jk} \delta_i^{\alpha} + p_{ik} \delta_j^{\alpha} + p_{ij} \delta_k^{\alpha} \right)$$

$$0 = h_{li} p_{jk} + h_{li} p_{ik} + h_{lk} p_{ij}.$$

By contracting with g^{li} we obtain $0 = (n-1)p_{jk} + p_{jk} + p_{jk}$. This shows that $(n+1)p_{jk} = 0$ therefore $p_j(x,y)$ does not depend on y.

References

- [1] S. Bácsó and I. Papp. *P-Finsler spaces with vanishing Douglas tensor. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), 25:90–95, 1998.
- [2] S. Bácsó and R. Yoshikawa. Weakly-Berwald spaces. Publ. Math. Debrecen, 61(1-2):219– 231, 2002.
- [3] D. Bao, S.-S. Chern, and Z. Shen. An introduction to Riemann-Finsler geometry, volume 200 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
- [4] M. Hashiguchi and Y. Ichijyō. Randers spaces with rectilinear geodesics. *Rep. Fac. Sci. Kagoshima Univ.*, (13):33–40, 1980.
- [5] M. Matsumoto. On Finsler spaces with Randers' metric and special forms of important tensors. J. Math. Kyoto Univ., 14:477–498, 1974.
- [6] M. Matsumoto. Finsler geometry in the 20th-century. In *Handbook of Finsler geometry*. Vol. 1, 2, pages 557–966. Kluwer Acad. Publ., Dordrecht, 2003.
- [7] H.-S. Park and I.-Y. Lee. The Randers changes of Finsler spaces with (α, β) -metrics of Douglas type. J. Korean Math. Soc., 38(3):503–521, 2001.

S. BÁCSÓ
UNIVERSITY OF DEBRECEN,
4010 DEBRECEN,
PF. 12,
HUNGARY
E-mail address: bacsos@inf.unideb.hu

Z. Kovács College of Nyíregyháza, 4400 Nyíregyháza, Sóstói út 31/B Hungary

 $E\text{-}mail\ address{:}\ \mathtt{kovacsz@nyf.hu}$