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PROJECTIVE RANDERS CHANGES OF SPECIAL FINSLER
SPACES

S. BACSO AND Z. KOVACS

ABSTRACT. A change of Finsler metric L(x,vy) — L(z,y), is called a Ran-
ders change of L if L(x,y) = L(x,y) + ba(x)y®. The purpose of this paper
is to study the conditions for a Finsler space of weakly Berwald/Landsberg
type which could be transformed by a Randers change to a Finsler space
of the same type.

1. INTRODUCTION

Randers’s well-known method for giving examples of Finsler spaces has the
form
L(z,y) = y/aij(@)y'y? + bi(z)y’
where a;; is a Riemannian metric and 3(y') = by’ is a one form with the
condition ||b|| = \/a%b;b; < 1 (a¥ is the inverse of a;;). If we change a(z,y) =
Vaij(x)y'y’ to a given Finsler metric, this method may lead to another Finsler
metric.

Definition ([5]). A change of Finsler metric L(z,y) — L(z,y), is called a
Randers change of L if

(1) L(z,y) = L(z,y) + bi(x)y’
where 3(x,y) = b;(z)y’ is a one form on a smooth manifold M".

Thorough this paper we always suppose the regularity, positive homogeneity
and strong convexity for the Finsler structure ([3]), thus we assume a priory
that L satisfies the ordinary conditions as fundamental function.

Another important change of Finsler metrics is the so called projective change.
A change of Finsler metric L(z,y) — L(x,y), is called a projective change of L
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if geodesic curves are preserved. It is a well-known fact that L(x,y) — L(z,y)
is projective if and only if there exists a scalar field p(z,y) which is positive
homogeneous of order one, called the projective factor, satisfying G = G* +
p(x,y)y® where G are the geodesic spray coefficients.

Projective Randers changes are characterised by the following theorem:

Theorem ([4]). A Randers change is projective if and only if b is a gradient
vector field.

Randers changes of special Finsler spaces were studied e.g. in the papers [1],
[7]. In [7] Park and Lee gave conditions for Finsler spaces changed by a Randers
change to be of Douglas type.

Theorem ([7]). Let F"(M",L) — F™(M™, L) a projective Randers change. If
F"™ is a Douglas space, then F™ is also a Douglas space, and vice versa.

The terminology and notations are referred basically to monograph [6]. Let
M™ be an n-dimensional (n > 2) differentiable manifold and F™ be a Finsler
space equipped with a fundamental function L(z,y) on M™. A short review of
the basic notations:

e the Finsler metric tensor: g;; = 818] L?/2 where (92 refers to the partial
derivation with respect to y*. g% is the inverse of 9ij
the distinguished section: ¢! = y*/L, ¢; = y;/L
the angular metric tensor: h;; = gi; — ;¢
the geodesic spray coefficients and successive y-derivatives:

4Gj = (éjaiLQ)yi — 8]'L2, Gl = gmGa,

Gi=0;G', Gl =0kGl, Gy =G,

91 G, = Glijk

the hv-torsion

(2) _2Pijk = yaG%k

Throughout the paper we shall use the notation L; = &L, L;; = ajéiL etc. We
use the following properties of the angular metric tensor freely:

° hij : LL”

[ ] hz-jfj == O )

o gUhy = 5% — 03y,

° gijhij =n-—1.

In the projective geometry of Finsler manifolds, there is an important pro-

jective invariant quantity, the Douglas tensor defined by

=Gh

1
(3) ng T (Gijiy™ + 61" Gjr + 5§LGik + 80 Gyj) -
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2. PROJECTIVE RANDERS CHANGES

Lemma 1. For a Randers change we have 1 - h;; = % - hij.

Proof. 1t follows from (1) that L; = L; + b;, Lij =
]_lij hij

tensor satisfies h;; = LL;;, thus =+ = Lij = Ly = =2 O

L;;. The angular metric

Lemma 2. If L(x,y) = L(x,y) + B(z,y) is a projective Randers change, then
2

72 0P, —

1
(4) zGli]’k + (hiGjk + hjiGik, + hiuGij)

(n+1)L

1 - 2 - _ - = - = -
= fGlijk + ﬁglpijk - (haGjk + hjiGik + hinGij) -

(n+1)L
Proof. From (3) one obtains
%halD?jk = % (Gaa — Lalr) - Gy,
—ﬁ (Gijrhary™ + haGjk + hjGik + hiGij) .
From the property hqoy® = 0 it follows that
Fhat DS = 7 (9ot — Calt) - G
1

RCE (hiGjk + hjiGir, + hiGij) .

From the definition of the hv-torsion (see (2)) we conclude that

1 1 « 6%
_hole?jk =7 <gal - y_€l> T Yigk

L L L
_ﬁ (haGik + hjGik + hiiGij)
= %Glijk + %&Pijk
_ﬁ (haGik + hjuGik + hiaGij) -
The Douglas tensor D, is projective invariant. Moreover, by Lemma 1 we have
%halDiajk = %Basz‘jk and this fact completes the proof. 0

In the next two sections we give two consequences of the relation (4).

3. PROJECTIVE RANDERS CHANGE BETWEEN LANDSBERG SPACES

Definition. If a Finsler space satisfies the condition P;;, = 0, we call it a
Landsberg space.
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Theorem 1. Let F,, and F, be Landsberg spaces and let L(x,y) = L(x,y) +
B(x,y) be a projective Randers change between them. Then

1

G — G = 1hkl)\(55;y)-

where N(x,y) is a scalar field.

Proof. Let F,, and F,, be Landsberg spaces, i.e. Py, = Pijk = 0. Then (4)
becomes

1

O (haGjk + hjiGik, + hiaGij)

1
ZGlijk -
1~ 1 — - = S
= fGlz’jk - m (haGik + hjiGik + hinGij) -
Moreover, for Landsberg spaces we have Gyijr — Gijr = 0, C_?lijk — Giljk = 0.
These properties lead to

1
O (hij Gk + hirGij — hjiGik — hiGij)
1 _ _ _ _
= CES) (hijGik + hitGij — hjGir — hiaGij) -

Hence we see that

hji (Guie — Guk) + hii (Gij — Gig) — hji (Gie — Gir) — hua (Gij — Gij) = 0.
Contraction with g¥ gives
(n—1) (G — Gur) + h (Gia — Gia) — bf* (Gak — Gax)
— hig’ (Gij — Gyj) = 0.
Denoting ¢’* (G;; — Gy;) by A(x,y) we find that
(n—1) (G — Guix) + (Gie — Gi) — (Gir — Gix) — hiaA(z,y) = 0.

4. PROJECTIVE RANDERS CHANGE BETWEEN WEAKLY-BERWALD SPACES

Definition ([2]). If a Finsler space satisfies the condition G;; = 0, we call it a
weakly-Berwald space.

Theorem 2. Let F,, and F,, be two weakly_Berwald Finsler spaces which are
related by a projective Randers change L — L. Let p(x,y) denote the projective
factor of the change, that is G* = G*+p(z,y)y*. Then d;p(x,y) does not depend
on y.
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Proof. The equation (4) for a weakly-Berwald space becomes:

1 2 1 _ 2 _
sz‘k + ﬁglpijk = fGlijk: + ﬁﬂlpijk-
Because of
1 2 1 . 4 1 .
ZGlijk + ﬁflpijk = ZgozlGijk; - ﬁyaGijk =71 [(gar — lils) Gijk;]
we have

1 a 1 o
ZhlaGijk = Ehla ijk*

Then it follows from hyo /L = hio /L that
1 « 1 o
zhlan‘jk = Zhla ijko
that is

After successive derivations we have:
G' =G +plz,y)y’
GI =G+ pjy’ + pd)
G’;k; = G;k; +pjkyi +pj6/i +pk:6;
G = Gije + Pijky™ + Pjkd;' + pird; + pijoy -
Substituting the last formula into (5) we have
0 = hia (Pijry® + P65 + Pird§ + piOf)
0 = hiipjr + hijpir + higpi;-

By contracting with ¢ we obtain 0 = (n — 1)pjk + pjk + pjk. This shows that
(n 4 1)pjx = 0 therefore p;(z,y) does not depend on y. d
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