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EXAMPLES AND NOTES ON GENERALIZED CONICS AND

THEIR APPLICATIONS

Á NAGY AND CS. VINCZE

Abstract. Let Γ be a subset of the Euclidean coordinate space. A gen-
eralized conic is a set of points with the same average distance from the
points γ ∈ Γ. First of all we consider some realizations of this concept.
Basic properties will be given together with an application. It is a general
process to construct convex bodies which are invariant under a fixed sub-
group G of the orthogonal group in R

n. Such a body induces a Minkowski
functional with the elements of G in the linear isometry group. To take
the next step consider R

n as the tangent space at a point of a connected
Riemannian manifold M and G as the holonomy group. By the help of the
method presented here M can be changed into a non-Riemannian Berwald
manifold with the same canonical linear connection as that of M as a Rie-
mannian manifold. Indicatrices with respect to the Finslerian fundamental
function are generalized conics with respect to the Euclidean norm induced
by the Riemannian metric.

1. Examples and basic properties

Let Γ be a subset of the Euclidean coordinate space R
n. Norm and distance of

the elements of the space are defined by the help of the canonical inner product

< γ1, γ2 >:= γ1
1γ1

2 + . . . γn
1 γn

2

as usual. A generalized conic is a set of points with the same average distance
from the points γ ∈ Γ. First of all we consider some realizations of this concept.

Example 1. Γ = {γ1, . . . , γm} is a finite set of points in R
n and the average

distance is measured as the arithmetic mean

F (x) :=
d(x, γ1) + · · · + d(x, γm)

m
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of distances from the points γi’s. Hypersurfaces of the form F (x) = const. are
called polyellipses/polyellipsoids with foci γ1, . . . , γm, see [3], [4] and [8].

Remark 1. Instead of the arithmetic mean we can use its weighted version [4]
or any other types of mean.

Example 2. Let

e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1)

be the canonical basis and consider the hyperplanes

Hi := aff {e1, . . . , ei−1, ei+1, . . . , en}, where i = 1 . . . n.

Γ = {H1, . . . , Hn} and the average distance is measured as the arithmetic mean

F (x) :=
d(x, H1) + · · · + d(x, Hn)

n

of distances from the hyperplanes Hi’s. Hypersurfaces of the form F (x) = const.
are just spheres with respect to the 1-norm because

F (x) =
|x1| + · · · + |xn|

n
,

where x = (x1, . . . , xn). They can be also considered as generalized conics in
this sense. For another exotic example see Example 3.

Definition 1. Let Γ be a bounded orientable submanifold in R
n such that

vol Γ < ∞ with respect to the induced Riemannian volume form dγ. The
average distance is measured as the integral

F (x) :=
1

vol Γ

∫

Γ

γ 7→ d(x, γ) dγ.

Hypersurfaces of the form F (x) = const. are called generalized conics with foci
γ ∈ Γ.

Remark 2. Let Γ ⊂ R
n be of dimension n. The integral

∫

Γ

γ 7→ d(x, γ) dγ

can be interpreted as the volume of the body C(x) ⊂ R
n+1 bounded by Γ in

the horizontal hyperplane R
n and the upper half of the right circular cone with

opening angle π
2 . It has a vertical axis to the horizontal hyperplane at the vertex

x. Instead of the n-dimensional measure we can use any other types of measure
of sets constructed from the set of foci and the points of the space. One of the
possible idea is presented in the following example.

Example 3. If we measure the area of generalized cones with a common directrix
as the set of foci then any set of vertices of cones with the same area can be also
considered as a generalization of conics, see [5].
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Figure 1. The body C(x).

Theorem 1. F is a convex function satisfying the growth condition

lim inf
|x|→∞

F (x)

|x| > 0,

where |x| is the Euclidean norm of x.

Proof. Convexity is clear because for any fixed element γ ∈ Γ the function

x 7→ d(x, γ)

is convex. Since Γ is bounded, we can define the constant K := supγ∈Γ |γ|.
Then

K + d(x, γ) ≥ |γ| + |x − γ| ≥ |x|, i.e d(x, γ) ≥ |x| − K

and the inequality

1 − K

|x| ≥ 1 − 1

n

is satisfied on the neighbourhood |x| > nK of ∞ for any γ ∈ Γ. Therefore

lim inf
|x|→∞

F (x)

|x| ≥ 1 > 0

as was to be stated. �

Corollary 1. The levels of the function F is bounded.
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For a proof see [5], see also [2].

Corollary 2. F has a global minimizer.

Proof. The statement follows from the Weierstrass’s theorem: if all the level sets
of a continuous function defined on a nonempty, closed set in R

n are bounded
then it has a global minimizer, see [2]. �

Let
γ : [0, 2π] → R

3, γ(t) := (cos t, sin t, 0)

be the unit circle in the xy-coordinate plane and

F (x, y, z) :=
1

2π

∫ 2π

0

√

(

x − cos t
)2

+
(

y − sin t
)2

+ z2 dt.

The surface of the form F (x, y, z) = 8
2π

is a generalized conics with foci S1.

Figure 2. The surface of the form F (x, y, z) = 8
2π

.

It is obviously a revolution surface with generatrix
∫ 2π

0

√

cos2 t +
(

y − sin t
)2

+ z2 dt = 8

in the yz-coordinate plane.
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Lemma 1. The surface F (x, y, z) = 8
2π

is not an ellipsoid.

Proof. It is enough to prove that the generatrix
∫ 2π

0

√

cos2 t +
(

y − sin t
)2

+ z2 dt = 8

is not an ellipse in the yz-coordinate plane. If y = 0 then we have that

z = ±

√

(

8

2π

)2

− 1.

On the other hand, if z = 0 then the solutions of the equation
∫ 2π

0

√

cos2 t +
(

y − sin t
)2

dt = 8

are just y = ±1. Therefore the only possible ellipse has the parametric form

y(s) = cos s and z(s) =

√

(

8

2π

)2

− 1 sin s.

Figure 3. The generatrix and its approximating ellipse.

Consider the auxiliary function

v(s) :=

∫ 2π

0

√

cos2 t +
(

y(s) − sin t
)2

+ z2(s) dt.
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Then

v

(

π

3

)

=
2

π

√
2
√

3
√

8 + π2 E

(

2
√

3π

3
√

8 + π2

)

,

where

E(r) :=

∫ π

2

0

√

1 − r2 sin2 t dt

is the standard elliptic integral. In 1997 the Vuorinen’s conjecture

E(r) ≥ π

2

(

1 + (
√

1 − r2
)

3

2

2

)
2

3

was proved [1] and, consequently, the inequality

√
3
√

2
√

8 + π2

(

1

2
+

1

18

√
3

(

9 − 12π2

8 + π2

)
3

4

)
2

3

> 8

shows that v(s) is not a constant function. Let

f : x 7→ 9 − 12x2

8 + x2
x ∈ [2, 4] .

According to Taylor’s formula there exists ξ ∈ ] 3, π [ such that

f(π) = f(3) + f ′(3)(π − 3) +
f ′′(3)

2
(π − 3)2 +

f ′′′(3)

6
(π − 3)3 +

f (4)(ξ)

24
(π − 3)4.

Further simple calculation gives that f (4)(x) is strictly increasing on the interval
[2, 4] and, consequently,

f (4)(ξ) > f (4)(3) = − 578304

1419857
.

Therefore

f(π) >
45

17
− 576

289

1416

10000
+

1

2

3648

4913

(

1415

10000

)2

− 1

6

6912

83521

(

1416

10000

)3

−

− 1

24

578304

1419857

(

1416

10000

)4

=
4111599143905029057

1733223876953125000
,

Since
4
√

4111599143905029057 > 45030,
4
√

1733223876953125000 < 36284

and √
3 >

173205

100000
,

it follows that

1

2
+

√
3

18
f(π)

3

4 >
1

2
+

173205

1800000

(

45030

36284

)3

=
1306820588093503

1910757030172160
.
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Here
3
√

1306820588093503 > 109329 and
3
√

1910757030172160 < 124090.

On the other hand

6(8 + π2) > 6

(

8 +

(

314159

100000

)2
)

=
536087631843

5000000000
,

where √
536087631843 > 732180 and

√
5000000000 < 70711.

Thus

√

6(8 + π2)

(

1

2
+

√
3

18
f(π)

3

4

)
2

3

>
732180

70711

(

109329

124090

)2

=

=
437581162292769

54441558913955
> 8

as was to be proved. �

Corollary 3. The generalized conic F (x, y, z) = 8
2π

induces a not Euclidean
Minkowski functional containing the Euclidean isometries leaving the curve S1

invariant in its linear isometry group.

In what follows we are going to illustrate how to use generalized conics in the
problem of metrizability of subgroups G ⊂ O(n) in the sense of Corollary 3.

2. The case of reducible subgroups

If G is reducible and n = 2 we can always find a finite invariant set of points
Γ = {±x1,±x2, } under G. It is clear because the invariant subspace must
be of dimension 1 together with its orthogonal complement. Their Euclidean
unit vectors form the set of Γ. We can choose the origin as one of the foci
too. Therefore any polyellipse with foci Γ induces a not Euclidean norm (in an
equivalent terminology: Minkowski functional) L such that G is the subgroup
of the linear isometries with respect to L.

If the dimension is great or equal than 3 then, by the reducibility of G we can
take one of the Euclidean unit spheres

S1 ⊂ S2 ⊂ . . . ⊂ Sn−2

as the invariant set under G. In case of Sn−1 the conics are invariant under
the whole orthogonal group because of the invariance of the set of their foci.
Therefore they are spheres of dimension n − 1. In case of S1 at least one of
the generalized conics is different from the ellipsoids centered at the origin as
Lemma 1 says by taking R

3 in R
n as a natural subspace. In what follows we

are going to discuss the case of Sk for some special value of k. Odd and even
integers give essentially different cases because elliptic integrals can be omitted
if k is even.
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Let n ≥ 4 and 2 ≤ k ≤ n − 2 be a fixed integer. To express Sk ⊂ R
n in a

parametric form consider the mapping

ρk−1 : H → Sk−1 ⊂ R
k × R

n−k

where H ⊂ R
k−1 and

ρk−1(u) = (ρ1(u), . . . , ρk(u), 0, . . . , 0)

gives the points of the sphere Sk−1 by taking R
k in R

n as a natural subspace.
Then

ρk : H × [−π

2
,
π

2
] → Sk ⊂ R

k+1 × R
n−(k+1),

ρk(u, v) = (ρ(u) cos(v), sin(v), 0, . . . , 0).

Since the determinant of the first fundamental forms of Sk−1 and Sk are related

det gij(u, v) = (cos2(v))k−1 dethij(u),

we have that for all x ∈ R
n

Fk(x) :=

∫

Sk

γ 7→ d(x, γ) dγ =

∫

Sk−1

γ 7→
(

π

2
∫

−π

2

√

D(x, γ, v) cosk−1(v) dv

)

dγ,

where

D(x, γ, v) := (x1 − γ1 cos(v))2 + · · · + (xk − γk cos(v))2 + (xk+1 − sin(v))2

+ (xk+2)2 + · · · + (xn)2.

Consider the intersection of conics of the form Fk(x) = const. with the plane

x1 = . . . = xk−1 = 0 and xk+3 = . . . = xn = 0

we have the niveau’s of the function

fk(y, z) =

π

2
∫

−π

2

√

1 + y2 + z2 − 2y sin t cosk−1 t dt

with variables y := xk and z := xk+1, respectively.
For the sake of simplicity let l := k − 1; then

fk(1, 0) =

π

2
∫

−π

2

√

2(1 − sin t) cosl t dt =
√

2

π

2
∫

−π

2

(

cos
t

2
− sin

t

2

)

cosl t dt

=
√

2

π

2
∫

−π

2

(

cos
t

2
− sin

t

2

)(

cos2
t

2
− sin2 t

2

)l

dt
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= 2
√

2

π

4
∫

−π

4

(cosx − sinx)
(

cos2 x − sin2 x
)l

dx

= 2
√

2

π

4
∫

−π

4

cosx
(

cos2 x − sin2 x
)l

dx = 2
√

2

π

4
∫

−π

4

cosx
(

1 − 2 sin2 x
)l

dx

because of − sinx = sin(−x). Here

∫

cosx
(

1 − 2 sin2 x
)l

dx =

∫

cosx

l
∑

i=0

(

l

i

)

(−2)l−i(sin x)2(l−i) dx

=

l
∑

i=0

(

l

i

)

(−2)l−i

∫

cosx(sin x)2(l−i) dx

=

l
∑

i=0

1

2(l − i) + 1

(

l

i

)

(−2)l−i(sin x)2(l−i)+1

= sinx

l
∑

i=0

1

2l + 1 − 2i

(

l

i

)

(−2 sin2 x)l−i

and thus

fk(1, 0) = 2
√

2

[

sin x

l
∑

i=0

1

2l + 1 − 2i

(

l

i

)

(−2 sin2 x)l−i

]

π

4

−π

4

= 4

l
∑

i=0

1

2l + 1 − 2i

(

l

i

)

(−1)l−i = 4
1

2l + 1

l
∑

i=0

2l + 1

2l + 1 − 2i

(

l

i

)

(−1)l−i

= 4
1

2l + 1

l
∑

i=0

(

l

i

)

(−1)l−i + 4
1

2l + 1

l
∑

i=0

2i

2l + 1 − 2i

(

l

i

)

(−1)l−i

= 4
2

2l + 1

l
∑

i=1

i

2l + 1 − 2i

l!

i!(l − i)!
(−1)l−i

= 4
2l

2l + 1

l
∑

i=1

1

2l + 1 − 2i

(l − 1)!

(i − 1)!(l − i)!
(−1)l−i

= 4
2l

2l + 1

l−1
∑

i=0

1

2l + 1 − 2i − 2

(

l − 1

i

)

(−1)l−1−i

= 4
2l

2l + 1

2(l − 1)

2l + 1 − 2

l−2
∑

i=0

1

2l + 1 − 2i − 4

(

l − 2

i

)

(−1)l−2−i = . . .
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=
2l+2 · l!

1 · 3 · · · (2l + 1)

Consider the curve
π

2
∫

−π

2

√

1 + y2 + z2 − 2y sin t cosl t dt =
2l+2 · l!

1 · 3 · . . . · (2l + 1)

passing through the point y = 1 and z = 0. We are going to prove that it is
not an ellipse for some special value of l (:= k − 1) . The proof is similar as
in Lemma 1. First of all we determine the only possible ellipse by substituting
y = 0 into the equation. Then we have that

√

1 + z2

π

2
∫

−π

2

cosl t dt = c(l), where c(l) :=
2l+2 · l!

1 · 3 · . . . · (2l + 1)
.

I. case. If l is odd, i.e. k is even, then

π

2
∫

−π

2

cosl t dt = 2
(l − 1)!!

l!!
,

where

0!! := 1, (l − 1)!! := (l − 1) · (l − 3) · (l − 5) · . . . · 2 and

l!! := l · (l − 2) · (l − 4) · . . . · 1.

Therefore the only possible ellipse has the parametric form

y(s) = cos s and z(s) = b(l) sin s

with

b(l) :=

√

c2(l)l!!2

4(l − 1)!!2
− 1

Consider the auxiliary function

vl(s) :=

π

2
∫

−π

2

√

1 + y2(s) + z2(s) − 2y(s) sin t cosl t dt.

Then

vl

(

π

3

)

=

π

2
∫

−π

2

√

5

4
+

3

4
b2(l) − sin t cosl t dt
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=

π

2
∫

−π

2

√

5

4
+

3

4
b2(l) − sin t cosl−1 t cos t dt

=

π

2
∫

−π

2

√

5

4
+

3

4
b2(l) − sin t

(

1 − sin2 t
)

l−1

2 cos t dt.

Substituting s2 = 5 + 3b2(l) − 4 sin t

v

(

π

3

)

=
1

4

√
9+3b2(l)
∫

√
1+3b2(l)

s2

(

1 −
(

5 + 3b2(l) − s2

4

)2
)

l−1

2

ds

=
(−1)

l−1

2

4l

√
9+3b2(l)
∫

√
1+3b2(l)

s2

(

s2 − (1 + 3b2(l))

)

l−1

2

(

s2 − (9 + 3b2(l))

)

l−1

2

ds.

Taking m = l−1
2 we have that

vl

(

π

3

)

=
(−1)m

42m+1

m
∑

i,j=0

B2
ij(l)

√
9+3b2(l)
∫

√
1+3b2(l)

(

s2
)i+j+1

ds,

where

B2
ij(l) :=

(

m

i

)(

m

j

)

(−1)i+j(1 + 3b2(l))m−i(9 + 3b2(l))m−j .

Therefore

vl

(

π

3

)

= r1

√

9 + 3b2(l) − r2

√

1 + 3b2(l),

where r1 and r2 are rationals.

Lemma 2. If L ≡ 1 (mod 4) then
√

L + 3b2(l) is irrational.

Proof. Suppose in contrary, that

L + 3b2(l) =
m2

n2

for some integers m and n. Since L = 4K + 1,

L + 3b2(l) = 3
c2(l)l!!2

4(l − 1)!!2
+ 4K − 2

= 3
4l+1 · l!2l!!2

12 · 32 · · · (2l + 1)2 · (l − 1)!!2
+ 4K − 2
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= 3
4l+1 · (l − 1)!!2l!!4

12 · 32 · · · (2l + 1)2 · (l − 1)!!2
+ 4K − 2

= 3
4l+1 · l!!4

12 · 32 · · · (2l + 1)2
+ 4K − 2

= 2

(

6 · 4l · l!!4 + (2K − 1) · 12 · 32 · · · (2l + 1)2

12 · 32 · · · (2l + 1)2

)

.

Therefore

2n2

(

6 · 4l · l!!4 + (2K − 1) · 12 · 32 · · · (2l + 1)2
)

= m2 · 12 · 32 · · · (2l + 1)2

i. e. 2n2(2N + 1) = m2(2M + 1) which is obviously a contradiction because the
prime factorizations of the left and the right hand side are of the form

22α+1 · · · and 22β · · · ,

respectively. �

Lemma 3. For any odd integer l the hypersurface

Fl+1(x) = c(l)

in R
n, where n ≥ l + 3 is not an ellipsoid.

Proof. Suppose that

vl

(

π

3

)

= c(l).

This means that

r1

√

9 + 3b2(l) − r2

√

1 + 3b2(l) = r3,

where r1, r2 and r3 = c(l) are rationals. In view of Lemma 2 both of the
coefficients r1 and r2 are different from zero. Taking the square of both side of
the equation we have that

√

9 + 3b2(l) =
r

√

1 + 3b2(l)

for some rational number r. Therefore

r1r − r2(1 + 3b2(l))

r3
=
√

1 + 3b2(l)

which contradicts to Lemma 2. �

Corollary 4. For any odd integer l the generalized conic

Fl+1(x) = c(l)

in R
n, where n ≥ l+3 induces a not Euclidean Minkowski functional containing

the Euclidean isometries leaving the surface Sl+1 invariant in its linear isometry
group.
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II. case. If l is even, i.e. k is odd then
π

2
∫

−π

2

cosl t dt = π
(l − 1)!!

l!!

and the only possible ellipse has the parametric form

y(s) = cos s and z(s) = b(l) sin s

with

b(l) :=

√

c2(l)l!!2

π2(l − 1)!!2
− 1.

The following figure shows the difference ∆l := vl

(

π
3

)

− c(l) in cases of l =
2, 4, . . . , 10. The auxiliary function involves elliptic integrals which can not be
calculated by using standard calculus.

Figure 4. The case of l = 2, 4, . . . , 10.

3. The case of irreducible subgroups

Surprisingly this case is almost trivial in view of the following Lemma. As
we have seen above the key step of the construction is to find an invariant set
under G as the foci of a generalized conic. It is natural to consider the orbits of
the points with respect to G.
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Lemma 4. Let G be a closed subgroup of O(n); it is irreducible if and only if
the origin is the interior point of the convex hull of any non-trivial orbit (the
only trivial orbit is that of the origin – it is a singleton).

Proof. First of all note that the convex hulls of the orbits are closed and invariant
under G. If G is irreducible and the origin is not a point of the convex hull of
a non-trivial orbit then we can use a simple nearest-point-type argumentation
as follows: taking the uniquely determined nearest point of the convex hull to
the origin it can be easily seen that it must be a fixed point of any element of
G. This contradicts to the irreducibility. If the origin is not in the interior of
the convex hull we can consider the common part H of supporting hyperplanes
at this point. It is not a singleton because the origin doesn’t belong to any
non-trivial orbit and thus it can not be one of the extremal points of the convex
hull. H is obviously an invariant linear subspace under G which contradicts to
the irreducibility. The converse is trivial. �

Note that if one of the convex hull of a non-trivial orbit is an ellipsoid (as
a body) centered at the origin then it must be a ball in the Euclidean sense
according to the irreducibility of G. By the Krein Milmann theorem the convex
hull (as a convex compact set) K of the orbit is equal to the convex hull of the
extremal points in K. Therefore they form a whole Euclidean sphere. It can be
easily seen that the extremals must be in the orbit itself (because in the opposite
case the punctured set K \ {p} would be the convex hull instead of K) thus G is
transitive on the Euclidean spheres and all of the possible Minkowski functionals
must be Euclidean. In any other case Lemma 4 shows that themselves the convex
hulls of the orbits induce possible Minkowski functionals.

Corollary 5. If G is not transitive, closed and irreducible then the convex hull
of any non-trivial orbit induces a not Euclidean Minkowski functional L such
that G is the subgroup of the linear isometries with respect to L.

Integration can be used to avoid singularities as the following example shows.

Example 4. Consider the group of the symmetries of the square

[−1, 1]× [−1, 1]

centered at the origin in the Euclidean plane. The convex hull of all of non-trivial
orbits are polygons, i.e. the boundary always has singularities. The orbit

Γ = {(−1,−1), (1,−1), (1, 1), (−1, 1)}

induces the supremum norm

|(x, y)| :=
1√
2

max {|x|, |y|}.
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To avoid the singularities at the vertices consider the function

F (x, y) :=
1

4

∫ 1

−1

∫ 1

−1

√

(x − t)2 + (y − s)2 ds dt.

The curves of the form F (x, y) = const. are just generalized conics with foci
conv Γ. They are illustrated in the following figure in case of the constants 2,
1.5 and 1.3.

Figure 5. Curves of the form F (x, y) = 2, 1.5 and 1.3.

The following lemma states that they are not circles (according to the irre-
ducibility of G the invariant ellipses must be circles). Therefore not Euclidean
Minkowski functionals L’s without singularities are induced such that G is the
subgroup of the linear isometries with respect to L’s.

Lemma 5. The curve of the form F (x, y) = c passing through the point (2, 1)
is not a circle.

Proof. According to the symmetric role of the variables x, t and y, s, respectively,
we can calculate the coordinates

D1F (x, y) =
1

4

∫ 1

−1

∫ 1

−1

x − t
√

(x − t)2 + (y − s)2
ds dt,

D2F (x, y) =
1

4

∫ 1

−1

∫ 1

−1

y − s
√

(x − t)2 + (y − s)2
ds dt.
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of the gradient vector field. Here

D1F (x, y) = −1

8

[

(s − y)
√

(x − 1)2 + (y − s)2

+ (x − 1)2 ln

(

(s − y) +
√

(x − 1)2 + (y − s)2
)

+ (s − y)
√

(x + 1)2 + (y − s)2 + (x + 1)2×

× ln

(

(s − y) +
√

(x + 1)2 + (y − s)2
)]1

−1

and

D2F (x, y) = D1F (y, x).

Using these formulas consider the auxiliary function

v(x, y) := yD1F (x, y) − xD2F (x, y)

to measure the difference between the gradient vectors of the family of general-
ized conics and circles. We have

v(2, 1) = −2
√

13 +
9

2
ln 3 − 9

2
ln(−2 +

√
13) +

1

2
ln(−2 +

√
5) − 8 ln 2

+ 4 ln(−3 +
√

13) + 4 ln(
√

5 + 1) + 8

which is obviously different from zero. �

Let now (M, g) be a connected Riemannian manifold and consider a point
p ∈ M . If the holonomy group at p is not transitive on the unit sphere in TpM

we can use the technic presented here to construct a convex body (a generalized
conic) containing the origin in its interior such that it is invariant under the
element of the holonomy group at p. This induces a not Euclidean norm Lp

in TpM having the elements of the holonomy group as linear isometries. Ex-
tending this functional by the help of the parallel transport with respect to the
Riemannian structure we have a Finsler manifold because Finsler geometry is a
non-Riemannian geometry in a finite number of dimensions. The differentiable
structure is the same as the Riemannian one but distance is not uniform in
all directions. Instead of the Euclidean spheres in the tangent spaces, the unit
vectors form the boundary of general convex sets containing the origin in their
interiors. (M. Berger). Moreover this Finsler manifold has the same canoni-
cal connection as the original Riemannian one. In a precise terminology it is a
(non-Riemannian) Berwald manifold.

Theorem 2. If the holonomy group of a connected Riemannian manifold is
closed and not transitive on the unit sphere in the tangent space then its Lvi-
Civita connection is strictly Berwald metrizable.
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As it is well-known this is just the summary of Z. Szabó’s result [7] on the
characterization of the canonical connections of Berwald manifolds which is the
first step to the classification theorem, see also [9]. He successfully used the
results on the holonomy of Riemannian manifolds together with the standards of
symmetric Lie algebras in the theory of Berwald manifolds. Recall them cite here
some thoughts by J. Simons: Several years ago M. Berger gave a classification of
possible candidates for holonomy groups of manifolds having affine connections
with zero torsion.. . .The most striking of his result is the list he determines of
possible holonomy groups of a Riemannian manifold. These groups all turn out
to be transitive on the unit sphere in the tangent space of the manifold except
in the case that the manifold is a symmetric space of rank ≥ 2. It is natural
to ask for an intrinsic proof of this rather startling fact, one which avoids the
classification theorem. Simons successfully realized the idea of such an intrinsic
proof [6] established the theory of holonomy systems. Here we have made an
attempt to give another way to the theory of Berwald manifolds, one which
avoids both Simons’s theory and the theory of symmetric Lie algebras.
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