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27 (2011), 23–30
www.emis.de/journals

ISSN 1786-0091

ON SOME ALGEBRAIC PROPERTIES OF GENERALIZED

GROUPS

J. O. ADÉNÍRAN, J. T. AKINMOYEWA, A. R. T. S. ÒLÁRÌN, AND T. G. JAIYÉO. LÁ

Abstract. Some results that are true in classical groups are investigated in
generalized groups and are shown to be either generally true in generalized
groups or true in some special types of generalized groups. Also, it is shown
that a Bol groupoid and a Bol quasigroup can be constructed using a non-
abelian generalized group.

1. Introduction

A generalized group is an algebraic structure which has a deep physical back-
ground in the unified gauge theory and has direct relation with isotopes. Math-
ematicians and Physicists have been trying to construct a suitable unified the-
ory for twistor theory, isotopes theory and so on. It was known that generalized
groups are tools for constructions in unified geometric theory and electroweak
theory. Electorweak theories are essentially structured on Minkowskian axioms
and gravitational theories are constructed on Riemannian axioms. According
to Araujo et. al. [4], generalized group is equivalent to the notion of completely
simple semigroup.
Some of the structures and properties of generalized groups have been stud-

ied by Vagner [23], Molaei [17], [18], Mehrabi, Molaei and Oloomi [16], Molaei
and Hoseini [21] and Agboola [1]. Smooth generalized groups were introduced
in Agboola [2] and later on, Agboola [3] also presented smooth generalized
subgroups while Molaei [19] and Molaei and Tahmoresi [20] considered the
notion of topological generalized groups. Solarin and Sharma [22] were able
to construct a Bol loop using a group with a non-abelian subgroup and re-
cently, Chein and Goodaire [6] gave a new construction of Bol loops for odd
case. Kuku [14] and Jacobson [11] contain most of the results on classical
groups while for more on loops and their properties, readers should check
[21, 5, 7, 8, 9, 12, 13]. The aim of this study is to investigate if some results
that are true in classical group theory are also true in generalized groups and
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to find a way of constructing a Bol structure (i.e Bol loop or Bol quasigroup
or Bol groupoid) using a non-abelian generalized group.
It is shown that in a generalized group G, (a−1)−1 = a for all a ∈ G. In

a normal generalized group G, it is shown that the anti-automorphic inverse
property (ab)−1 = b−1a−1 for all a, b ∈ G holds under a necessary condition.
A necessary and sufficient condition for a generalized group(which obeys the
cancellation law and in which e(a) = e(ab−1) if and only if ab−1 = a) to
be idempotent is established. The basic theorem used in classical groups to
define the subgroup of a group is shown to be true for generalized groups. The
kernel of any homomorphism(at a fixed point) mapping a generalized group
to another generalized group is shown to be a normal subgroup. Furthermore,
the homomorphism is found to be an injection if and only if its kernel is
the set of the identity element at the fixed point. Given a generalized group
G with a generalized subgroup H , it is shown that the factor set G/H is a
generalized group. The direct product of two generalized group is shown to
be a generalized group. Furthermore, necessary conditions for a generalized
group G to be isomorphic to the direct product of any two abelian generalized
subgroups are shown. It is shown that a Bol groupoid can be constructed
using a non-abelian generalized group with an abelian generalized subgroup.
Furthermore, it is established that if the non-abelian generalized group obeys
the cancellation law, then a Bol quasigroup with a left identity element can be
constructed.

2. Preliminaries

Definition 2.1. A generalized group G is a non-empty set admitting a binary
operation called multiplication subject to the set of rules given below.

(i) (xy)z = x(yz) for all x, y, z ∈ G.
(ii) For each x ∈ G there exists a unique e(x) ∈ G such that xe(x) =

e(x)x = x (existence and uniqueness of identity element).
(iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x)

(existence of inverse element).

Definition 2.2. Let L be a non-empty set. Define a binary operation (·) on
L. If x · y ∈ L for all x, y ∈ L, (L, ·) is called a groupoid.
If the equations a · x = b and y · a = b have unique solutions relative to

x and y respectively, then (L, ·) is called a quasigroup. Furthermore, if there
exists a element e ∈ L called the identity element such that for all x ∈ L,
x · e = e · x = x, (L, ·) is called a loop.

Definition 2.3. A loop is called a Bol loop if and only if it obeys the identity

((xy)z)y = x((yz)y).

Remark 2.1. One of the most studied type of loop is the Bol loop.
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2.1. Properties of Generalized Groups. A generalized group G exhibits
the following properties:

(i) for each x ∈ G, there exists a unique x−1 ∈ G.
(ii) e(e(x)) = e(x) and e(x−1) = e(x) where x ∈ G. Then, e(x) is a unique

identity element of x ∈ G.

Definition 2.4. If e(xy) = e(x)e(y) for all x, y ∈ G, then G is called normal
generalized group.

Theorem 2.1. For each element x in a generalized group G, there exists a

unique x−1 ∈ G.

The next theorem shows that an abelian generalized group is a group.

Theorem 2.2. Let G be a generalized group and xy = yx for all x, y ∈ G.

Then G is a group.

Theorem 2.3. A non-empty subset H of a generalized group G is a generalized

subgroup of G if and only if for all a, b ∈ H, ab−1 ∈ H.

If G and H are two generalized groups and f : G → H is a mapping then
Mehrabi, Molaei and Oloomi [16] called f a homomorphism if f(ab) = f(a)f(b)
for all a, b ∈ G.
They also stated the following results on homomorphisms of generalized

groups. These results are established in this work.

Theorem 2.4. Let f : G → H be a homomorphism where G and H are two

distinct generalized groups. Then:

(i) f(e(a)) = e(f(a)) is an identity element in H for all a ∈ G.

(ii) f(a−1) = (f(a))−1.

(iii) If K is a generalized subgroup of G, then f(K) is a generalized subgroup

of H.

(iv) If G is a normal generalized group, then the set

{(e(g), f(g)) : g ∈ G}

with the product

(e(a), f(a))(e(b), f(b)) := (e(ab), f(ab))

is a generalized group denoted by ∪f(G).

3. Main Results

3.1. Results on Generalized Groups and Homomorphisms.

Theorem 3.1. Let G be a generalized group. For all a ∈ G, (a−1)−1 = a.

Proof. (a−1)−1a−1 = e(a−1) = e(a). Post multiplying by a, we obtain

(1) [(a−1)−1a−1]a = e(a)a.
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From the L. H. S.,

(a−1)−1(a−1a) = (a−1)−1e(a) = (a−1)−1e(a−1)

= (a−1)−1e((a−1)−1) = (a−1)−1.(2)

Hence from (1) and (2), (a−1)−1 = a. �

Theorem 3.2. Let G be a generalized group in which the left cancellation law

holds and e(a) = e(ab−1) if and only if ab−1 = a. G is a idempotent generalized

group if and only if e(a)b−1 = b−1e(a) ∀a, b ∈ G.

Proof. e(a)b−1 = b−1e(a) ⇔ (ae(a))b−1 = ab−1e(a) ⇔ ab−1 = ab−1e(a) ⇔
e(a) = e(ab−1) ⇔ ab−1 = a ⇔ ab−1b = ab ⇔ ae(b) = ab ⇔ a−1ae(b) =
a−1ab ⇔ e(a)e(b) = e(a)b ⇔ e(b) = b ⇔ b = bb. �

Theorem 3.3. Let G be a normal generalized group in which e(a)b−1 =
b−1e(a) ∀a, b ∈ G. Then, (ab)−1 = b−1a−1 ∀a, b ∈ G.

Proof. Since (ab)−1(ab) = e(ab), then by multiplying both sides of the equation
on the right by b−1a−1 we obtain

(3) [(ab)−1ab]b−1a−1 = e(ab)b−1a−1.

So,

[(ab)−1ab]b−1a−1 = (ab)−1a(bb−1)a−1 = (ab)−1a(e(b)a−1) = (ab)−1(aa−1)e(b)

= (ab)−1(e(a)e(b)) = (ab)−1e(ab) = (ab)−1e((ab)−1) = (ab)−1.(4)

Using (3) and (4), we get [(ab)−1ab]b−1a−1 = (ab)−1 ⇒ e(ab)(b−1a−1) =
(ab)−1 ⇒ (ab)−1 = b−1a−1. �

Theorem 3.4. Let H be a non-empty subset of a generalized group G. The

following are equivalent.

(i) H is a generalized subgroup of G.

(ii) For a, b ∈ H, ab−1 ∈ H.

(iii) For a, b ∈ H, ab ∈ H and for any a ∈ H, a−1 ∈ H.

Proof. (i)⇒ (ii) If H is a generalized subgroup of G and b ∈ G, then b−1 ∈ H .
So by closure property, ab−1 ∈ H ∀a ∈ H .
(ii)⇒ (iii) If H 6= φ, and a, b ∈ H , then we have bb−1 = e(b) ∈ H , e(b)b−1 =

b−1 ∈ H and ab = a(b−1)−1 ∈ H i.e ab ∈ H .
(iii)⇒ (i) H ⊆ G so H is associative since G is associative. Obviously, for

any a ∈ H , a−1 ∈ H . Let a ∈ H , then a−1 ∈ H . So, aa−1 = a−1a = e(a) ∈ H .
Thus, H is a generalized subgroup of G. �

Theorem 3.5. Let a ∈ G and f : G → H be an homomorphism. If ker f at a
is denoted by

ker fa = {x ∈ G : f(x) = f(e(a))}.

Then,

(i) ker fa ⊳ G.
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(ii) f is a monomorphism if and only if ker fa = {e(a) : ∀a ∈ G}.

Proof. (i) It is necessary to show that ker fa ≤ G. Let x, y ∈ ker fa ≤
G, then f(xy−1) = f(x)f(y−1) = f(e(a))(f(e(a)))−1 = f(e(a))f(e(a)−1) =
f(e(a))f(e(a)) = f(e(a)). So, xy−1 ∈ ker fa. Thus, ker fa ≤ G. To show
that ker fa ⊳ G, since y ∈ ker fa, then by the definition of ker fa, f(xyx

−1) =
f(x)f(y)f(x−1) = f(e(a))f(e(a))f(e(a))−1 = f(e(a))f(e(a))f(e(a)) = f(e(a))
⇒ xyx−1 ∈ ker fa. So, ker fa ⊳ G.
(ii) f : G → H . Let ker fa = {e(a) : ∀a ∈ G} and f(x) = f(y), this implies

that f(x)f(y)−1 = f(y)f(y)−1 ⇒ f(xy−1) = e(f(y)) = f(e(y)) ⇒ xy−1 ∈
ker fy ⇒

(5) xy−1 = e(y)

and f(x)f(y)−1 = f(x)f(x)−1 ⇒ f(xy−1) = e(f(x)) = f(e(x)) ⇒ xy−1 ∈
ker fx ⇒

(6) xy−1 = e(x).

Using (5) and (6), xy−1 = e(y) = e(x) ⇔ x = y. So, f is a monomorphism.
Conversely, if f is mono, then f(y) = f(x) ⇒ y = x. Let k ∈ ker fa ∀a ∈ G.

Then, f(k) = f(e(a)) ⇒ k = e(a). So, ker fa = {e(a) : ∀a ∈ G}. �

Theorem 3.6. Let G be a generalized group and H a generalized subgroup of

G. Then G/H is a generalized group called the quotient or factor generalized

group of G by H.

Proof. It is necessary to check the axioms of generalized group on G/H .
Associativity: Let a, b, c ∈ G and aH, bH, cH ∈ G/H . Then aH(bH · cH) =

(aH · bH)cH , so associativity law holds.
Identity: If e(a) is the identity element for each a ∈ G, then e(a)H is the

identity element of aH in G/H since e(a)H ·aH = e(a) ·aH = aH ·e(a) = aH .
Therefore identity element exists and is unique for each elements aH in G/H .
Inverse: (aH)(a−1H) = (aa−1)H = e(a)H = (a−1a)H = (a−1H)(aH)

shows that a−1H is the inverse of aH in G/H .
So the axioms of generalized group are satisfied in G/H . �

Theorem 3.7. Let G and H be two generalized groups. The direct product of

G and H denoted by

G×H = {(g, h) : g ∈ G and h ∈ H}

is a generalized group under the binary operation ◦ such that

(g1, h1) ◦ (g2, h2) = (g1g2, h1h2).

Proof. This is achieved by investigating the axioms of generalized group for
the pair (G×H, ◦). �

Theorem 3.8. Let G be a generalized group with two abelian generalized sub-

groups N and H of G such G = NH. If N ⊆ COM(H) or H ⊆ COM(N)
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where COM(N) and COM(H) represent the commutators of N and H re-

spectively, then G ∼= N ×H.

Proof. Let a ∈ G. Then a = nh for some n ∈ N and h ∈ H . Also, let a = n1h1

for some n1 ∈ N and h1 ∈ H . Then nh = n1h1 so that e(nh) = e(n1h1),
therefore n = n1 and h = h1. So that a = nh is unique.
Define f : G → H by f(a) = (n, h) where a = nh. This function is well

defined in the previous paragraph which also shows that f is a one-one corre-
spondence. It remains to check that f is a group homomorphism.
Suppose that a = nh and b = n1h1, then ab = nhn1h1 and hn1 = n1h.

Therefore, f(ab) = f(nhn1h1) = f(nn1hh1) = (nn1, hh1) = (n, h)(n1, h1) =
f(a)f(b). So, f is a group homomorphism. Hence a group isomorphism since
it is a bijection. �

3.2. Construction of Bol Algebraic Structures.

Theorem 3.9. Let H be a subgroup of a non-abelian generalized group G and

let A = H ×G. For (h1, g1), (h2, g2) ∈ A, define

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1h
−1

2
g2)

then (A, ◦) is a Bol groupoid.

Proof. Let x, y, z ∈ A. By checking, it is true that x ◦ (y ◦ z) 6= (x ◦ y) ◦ z. So,
(A, ◦) is non-associative. H is a quasigroup and a loop(groups are quasigroups
and loops) but G is neither a quasigroup nor a loop(generalized groups are
neither quasigroups nor a loops) so A is neither a quasigroup nor a loop but
is a groupoid because H and G are groupoids.
Let us now verify the Bol identity:

((x ◦ y) ◦ z) ◦ y = x ◦ ((y ◦ z) ◦ y)

L.H.S. = ((x ◦ y) ◦ z) ◦ y = (h1h2h3h2, h2h3h2g1h
−1

2
g2h

−1

3
g3h

−1

2
g2).

R.H.S. = x ◦ ((y ◦ z) ◦ y)

= (h1h2h3h2, h2h3h2g1h
−1

2
(h−1

3
h−1

2
h2h3)g2h

−1

3
g3h

−1

2
g2)

= (h1h2h3h2, h2h3h2g1h
−1

2
g2h

−1

3
g3h

−1

2
g2).

So, L.H.S.=R.H.S. Hence, (A, ◦) is a Bol groupoid. �

Corollary 3.1. Let H be a abelian generalized subgroup of a non-abelian gen-

eralized group G and let A = H ×G. For (h1, g1), (h2, g2) ∈ A, define

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1h
−1

2
g2)

then (A, ◦) is a Bol groupoid.

Proof. By Theorem 2.2, an abelian generalized group is a group, so H is a
group. The rest of the claim follows from Theorem 3.9. �
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Corollary 3.2. Let H be a subgroup of a non-abelian generalized group G such

that G has the cancellation law and let A = H ×G. For (h1, g1), (h2, g2) ∈ A,
define

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1h
−1

2
g2)

then (A, ◦) is a Bol quasigroup with a left identity element.

Proof. The proof of this goes in line with Theorem 3.9. A groupoid which
has the cancellation law is a quasigroup, so G is quasigroup hence A is a
quasigroup. Thus, (A, ◦) is a Bol quasigroup with a left identity element since
by Kunen [15], every quasigroup satisfying the right Bol identity has a left
identity. �

Corollary 3.3. Let H be a abelian generalized subgroup of a non-abelian gen-

eralized group G such that G has the cancellation law and let A = H ×G. For

(h1, g1), (h2, g2) ∈ A, define

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1h
−1

2
g2)

then (A, ◦) is a Bol quasigroup with a left identity element.

Proof. By Theorem 2.2, an abelian generalized group is a group, so H is a
group. The rest of the claim follows from Theorem 3.2. �
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