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OPERATIONAL RULES AND ARBITRARY ORDER

TWO-INDEX TWO-VARIABLE HERMITE MATRIX

GENERATING FUNCTIONS

M. S. METWALLY

Abstract. The main aim of this paper is to introduce generalized forms of
operational rules associated with operators corresponding to a generalized
Hermite matrix polynomials expansions. The associated generating func-
tions is reformulated within the framework of an operational formalism and
the theory of exponential operators. We obtain to unilateral and bilateral
generating functions by using the same procedure. Possible extensions of
the technique are also discussed.

1. Introduction and preliminaries

An extension to the matrix framework of the classical families of Hermite,
Jacobi, Laguerre, Legendre and Tchebicheff polynomials have been introduced
and studied in a number of previous papers [1, 14, 13, 15, 16, 18, 17, 20] in
CN×N . The Hermite matrix polynomials of the associated generating functions
is reformulated within the framework of an operational formalism. In [4, 3],
by using the monomiality principle, by exploiting operational methods, many
properties of ordinary are easily derived and framed in a more general context
and to study the properties of new families of special functions. This approach
has indeed allowed the derivation of the Burchnall identity and of its extension
to the Hermite matrix polynomials [2, 7].
The use of operational identities [6, 8, 12, 21], currently exploited in the

theory of algebraic decomposition of exponential operators, may significantly
simplify the study of Hermite matrix generating functions and the discovery of
new relations, hardly achievable by conventional means. Infinite sums, involv-
ing Hermite polynomials, notwithstanding the fact that a systematic investi-
gation on this subject is still lacking and the relevant knowledge is limited [11].
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Before entering into more technical details, we will introduce some identities
that will be largely exploited in this work.
If D0 is the complex plane cut along the negative real axis and log(z) denotes

the principal logarithm of z, then z
1
2 represents exp(1

2
log(z)). If A is a matrix

in CN×N , its two-norm denoted ||A||2 is defined by

||A||2 = sup
x 6=0

||Ax||2
||x||2

,

where for a vector y in CN , ||y||2 denotes the usual Euclidean norm of y,

||y||2 = (yTy)
1
2 . The set of all the eigenvalues of A is denoted by σ(A). If

f(z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set Ω of the complex plane, and if A is a matrix in CN×N

such that σ(A) ⊂ Ω, then from the properties of the matrix functional calculus,
it follows that

f(A)g(A) = g(A)f(A).(1.1)

we say that a matrix A in CN×N is a positive stable matrix if [13, 16, 18, 17]

Re(z) > 0, for all z ∈ σ(A).(1.2)

A sequence of polynomial pn(x) (n ∈ N, x ∈ C) is said a quasi monomial when-

ever two operators M̂ and P̂ , called multiplication and derivative operators on
[4, 3, 8, 12], can be defined three operators in such a way that

M̂pn(x) = pn+1(x),

P̂ pn(x) = npn−1(x).
(1.3)

By combining the above recurrences, we also find

(1.4) M̂P̂pn(x) = npn(x),

where M̂ , P̂ and M̂P̂ are called respectively the lowering, the raising and
the transfer operators associated to the polynomial set pn(x) and which can

be interpreted as the differential equation defining pn(x) if M̂ and P̂ have a
differential realization.
Furthermore, if p0(x) = 1 from the first of (1.5) it follows that

(1.5) M̂n1 = pn(x).

We define the Burchnall identity [2]

(1.6) exp

(
y
∂m

∂xm

)
xn =

(
x+my

∂m−1

∂xm−1

)n

.

This paper is devoted to a more substantive effort in proofs of some known
properties as well as new expansions formulae related to these Hermite matrix
polynomials. Many properties of these polynomials have been straight for-
wardly derived within this new framework, which has allowed the possibility
of introducing two-index two-variable generating Hermite function.
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2. Operational identities and properties of two-index
two-variable Hermite matrix polynomials

One of the most direct ways of exploring generalized classes of Hermite
matrix polynomials is to start from modified forms of the ordinary Hermite
matrix polynomials generating function. We consider therefore the generalized
Hermite matrix polynomials Hn,m(x, y, A) defined a two-index two-variable by
the generating function

(2.1)
∞∑

n=0

tn

n!
Hn,m(x, y, A) = exp

(
xt
√
mA− ytmI

)

with m must be a positive integer. We obtain an explicit representation for
the two-variable Hermite matrix polynomials in the form

(2.2) Hn,m(x, y, A) = n!

[ n
m
]∑

k=0

(−1)kyk(x
√
mA)n−mk

k!(n−mk)!
.

Their recurrence properties can be derived either from (2.1) and (2.2). It is
indeed easy to prove that

∂

∂x
Hn,m(x, y, A) = n

√
mAHn−1,m(x, y, A),

∂

∂y
Hn,m(x, y, A) = − n!

(n−m)!
Hn−m,m(x, y, A), n ≥ m,

Hn+1,m(x, y, A) =

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]
Hn,m(x, y, A)

(2.3)

which once combined yield

(2.4)
∂m

∂xm
Hn,m(x, y, A) + (

√
mA)m

∂

∂y
Hn,m(x, y, A) = 0.

We use Hermite polynomials to show that the monomiality principle can be
exploited to study the properties of the polynomials. Furthermore, according
to (2.4), some times called heat polynomials, the Hn,m(x, y, A) are said to be
under the action of the operators

P̂ =
√
mA

−1 ∂

∂x
,

M̂ = x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

(2.5)

which act on Hn,m(x, y, A) according to the rules

P̂Hn,m(x, y, A) = nHn−1,m(x, y, A),

M̂Hn,m(x, y, A) = Hn+1,m(x, y, A).
(2.6)
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Whereas the identity

(2.7) M̂P̂Hn,m(x, y, A) = nHn,m(x, y, A)

holds using the explicit definition of M̂ and P̂ given by (2.5), we find that
Hn,m(x, y, A) satisfies the following differential equation of the m-th order in
the form

(2.8)

[
y
∂m

∂xm
− x

m
(
√
mA)m

∂

∂x
+

n

m
(
√
mA)m

]
Hn,m(x, y, A) = 0.

We also find

(2.9) Hn,m(x, y, A) = n!

[ n
m
]∑

k=0

(−1)kyk

k!
(
√
mA)−(mk) ∂

mk

∂xmk
(x
√
mA)n

which can be used as an alternative to the series (2.2) and which can be viewed
as an alternative to Rodrigues’s formula (2.9).
To this aim we remind that the Hn,m(x, y, A) are the natural solutions of

the heat partial differential equation

(
√
mA)−m ∂m

∂xm
F (x, y, A) +

∂

∂y
F (x, y, A) = 0,

F (x, 0, A) = (x
√
mA)n.

(2.10)

According to (2.10), we can define the Hn,m(x, y, A) through the operational
rule

(2.11) Hn,m(x, y, A) = exp

(
−y(

√
mA)−m ∂m

∂xm

)(
x
√
mA

)n

which can be used as an alternative to the series (2.1).
According to the previous discussion can be viewed as a differential problem

to

(2.12) x
∂

∂x
(x
√
mA)n = (x

√
mA)

√
mA

−1 ∂

∂x
(x
√
mA)n = n(x

√
mA)n,

where x
√
mA and

√
mA

(−1) ∂
∂x

are the multiplicative and derivative operators

for (x
√
mA)n. We also underline that (2.8) can be obtained from (2.12) by

just applying the previous exponential operator to both sides. Namely,

(2.13) exp

(
−y(

√
mA)−m ∂m

∂xm

)(
x
∂

∂x
(x
√
mA)n

)

= n exp

(
−y(

√
mA)−m ∂m

∂xm

)(
x
√
mA

)n
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from which (2.8) follows, after using (2.11) and after noting that

exp

(
−y(

√
mA)−m ∂m

∂xm

)(
x
∂

∂x
(x
√
mA)n

)
=

=

[
exp

(
−y(

√
mA)−m ∂m

∂xm

)
x
√
mA exp

(
y(
√
mA)−m ∂m

∂xm

)]

×
[
exp

(
−y(

√
mA)−m

∂m

∂xm

)√
mA

−1 ∂

∂x
exp

(
y(
√
mA)−m ∂m

∂xm

)]

×
[
exp

(
−y(

√
mA)−m ∂m

∂xm

)(
x
√
mA

)n
]

=

(
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

)√
mA

−1 ∂

∂x
Hn,m(x, y, A)

(2.14)

as a consequence of the fact that

exp

(
−y(

√
mA)−m ∂m

∂xm

)
x
√
mA exp

(
y(
√
mA)−m ∂m

∂xm

)

= x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

exp

(
−y(

√
mA)−m ∂m

∂xm

)√
mA

−1 ∂

∂x
exp

(
y(
√
mA)−m ∂m

∂xm

)

=
√
mA

(−1) ∂

∂x
.

(2.15)

We will complete the aforementioned analysis to infinite series of ordinary
Hermite matrix polynomials. Using (1.7) and (1.8), we get the Burchnall
identity in the form

(2.16) exp

(
−y(

√
mA)−m ∂m

∂xm

)
(x
√
mA)n

=

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
.

The following examples to illustrate the usefulness of the above procedure.
The property allows us to derive the identity

Hn+r,m(x, y, A) =

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n

×
[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]r

=

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
Hr,m(x, y, A)

(2.17)
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which can be exploited to investigate further properties of Hermite matrix
polynomials

(2.18) Hn,m(x, y, A) =

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
H0,m(x, y, A)

=

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
exp

(
−y(

√
mA)−m ∂m

∂xm

)

allows us to write (2.18) as the generating function

(2.19)

∞∑

n=0

tn

n!

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
exp

(
−y(

√
mA)−m ∂m

∂xm

)

= exp

[
t

(
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

)]

× exp

(
−y(

√
mA)−m ∂m

∂xm

)
.

From (2.17) and putting r = n

(2.20) H2n,m(x, y, A) =

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
Hn,m(x, y, A)

By recalling that Hermite matrix polynomials Hn,m(x, y, A) are also defined
through the operational identity. The use of the inverse of (2.11) allows to
conclude that

(2.21) (x
√
mA)n = exp

(
y(
√
mA)−m ∂m

∂xm

)
Hn,m(x, y, A).

The second of the identities in (2.1) and (2.11) allows us to obtain the following
results

∞∑

n=0

tn

n!
H2n,m(x, y, A) =

∞∑

n=0

tn

n!
exp

(
−y(

√
mA)−m ∂m

∂xm

)
(x
√
mA)2n

= exp

(
−y(

√
mA)−m ∂m

∂xm

)
exp

(
(x
√
mA)2t

)

=
∞∑

n=0

tn

n!

[
x
√
mA−my(

√
mA)−(m−1) ∂

∂x

]2n

= exp

[
t

(
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

)2
]
.

(2.22)

In this paper, we have touched many points and examples that deserve a deeper
analysis to the generating functions.
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Example 2.1. Let us now consider the infinite sum, involving Hermite matrix
polynomials, namely

(2.23) F (x, y, t, A) =

∞∑

n=0

tnHn,m(x, y, A).

By following the same procedure, leading to (2.3), we can write the sum with
the series (2.23)

F (x, y, t, A) =
∞∑

n=0

tn
[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n

= [I − t(x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1
)]−1(2.24)

=

∫ ∞

0

e−sest(x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1 )ds.

Example 2.2. Let A be a matrix in CN×N satisfying the condition (1.2), we
discuss is the generating function in the elegant form

(2.25) W (x, y, t, A) =

∞∑

n=0

tn

n!
Hn+r,m(x, y, A).

By exploiting the identity (2.17), we can write (2.25) as

W (x, y, t, A)

=
∞∑

n=0

tn

n!

[
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

]n
Hr,m(x, y, A)

= exp

[
t

(
x
√
mA−my(

√
mA)−(m−1) ∂

m−1

∂xm−1

)]
Hr,m(x, y, A).

(2.26)

Now, we give genuine examples of how operational calculus applies to the
generating function for products of generalized Hermite matrix polynomials.

Example 2.3. We will discuss involves products, namely

∞∑

n=0

tn

n!
Hn,m(x, y, A)Hn,m(z, w, A) =

=
∞∑

n=0

tn

n!
exp

(
−y(

√
mA)−m ∂m

∂xm

)

× exp

(
−w(

√
mA)−m ∂m

∂zm

)(
x
√
mA

)n (
z
√
mA

)n

= exp

(
−y(

√
mA)−m ∂m

∂xm
− w(

√
mA)−m ∂m

∂zm

)
exp

(
xzt(

√
mA)2

)
.

(2.27)



48 M. S. METWALLY

Example 2.4. It is important to underline that the present operational method
indicates that infinite series of the type

∞∑

n=0

tn

n!
H2n,m(x, y, A)Hn,m(z, w, A)

= exp

(
−y(

√
mA)−m ∂m

∂xm
− w(

√
mA)−m ∂m

∂zm

)

∞∑

n=0

tn

n!
(x
√
mA)2n(z

√
mA)n

= exp

(
−y(

√
mA)−m ∂m

∂xm
− w(

√
mA)−m ∂m

∂zm

)
exp

(
tzx2(

√
mA)3

)
.

(2.28)

Hence, the generating function of products (2.27) and (2.28) are established.

Further examples proving the usefulness of the present method can be eas-
ily worked out, but are not reported here for conciseness. The results we
have obtained, show the flexibility of the operational methods associated with
the theory of generalized polynomials. The general results established in the
previous section lead to a number of special cases for selected values of the
parameters.
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