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ON A MULTIPLIER OF THE PROGRESSIVE MEANS AND

CONVEX MAPS OF THE UNIT DISC

ZIAD S. ALI

Abstract. In this paper we are concerned with a multiplier ω(n) of the
Progressive means, and convex maps of the unit disc. With this concern we
would have brought up in a rather unified approach the results of G. Pólya
and I. J. Schoenberg in [7], T. Başgöze, J. L. Frank, and F. R. Keogh
in [3], and Ziad S. Ali in [1]. More theorems on the properties of the multi-
plier ω(n) are given, and a key lemma showing combinatorial trigonometric
identities whose offsprings are: Several combinatorial, and combinatorial
trigonometric identities, and a new method for generating the Chebyshev’s
polynomials. Finally we present a different form of ω(n) as well as relating
ω(n) to the subordination principle.

1. Introduction

Let
∞
∑

k=0

uk be a given series, and let {Sn}
∞
0 denote the sequence of its partial

sums. Let {qn}
∞
0 be a sequence of real numbers with q0 > 0, and qn ≥ 0 for

all n > 0, and let Qn =
n
∑

k=0

qk. By G. H. Hardy [6] the sequence-to-sequence

transformation

Tn =
1

Qn

n
∑

k=0

qn−kSk

is called the Norlund means of {Sn}
∞
0 , and is denoted by (N, qn).

The (N, qn) is regular if and only if qn = o(Qn) as n → ∞; furthermore, the
sequence-to-sequence transformation

Tn =
1

Qn

n
∑

k=0

qkSk
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is called the progressive means of {Sn}
∞
0 , and is denoted by (N, qn). The

(N, qn) is regular if and only if Qn → ∞ as n → ∞. By Peter L. Duren [4] a
function f analytic in a domain D is said to be simple, schlicht, or univalent
if f is one-to-one mapping of D onto another domain. A domain E of the
complex plane is said to be convex if and only if the line segment joining any
two points of E lies entirely in E. A function f which is analytic, univalent in
the unit disc D = {z : z < 1}, and is normalized by f(0) = f ′(0) − 1 = 0 is
said to belong to the class S. Now f ∈ S is said to belong to the class K if
and only if it is a conformal mapping of the unit disc D = {z : z < 1} onto a
convex domain. An analytic function g is said to be subordinate to an analytic
function f (written g ≺ f) if

g(z) = f
(

ω(z)
)

|z| < 1

for some analytic function ω with |ω(z)| ≤ |z|. It is known by the Koebe-One-
Quarter theorem that the range of every function of the class S contains the
disc {w : |w| < 1

4
}, i.e. 1

4
z ≺ f . The strengthened version of the Koebe-One-

Quarter theorem says that the range of every convex functionf ∈ K contains
the disc |w| < 1

2
, i.e. 1

2
z ≺ f . The Chebychev’s polynomials of the first kind

Tn(x), and of the second kind Un(x) are respectively defined by:

Tn(x) = cosnθ, Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ.

2. Means connected with power series

Suppose that f(z) =
∞
∑

k=0

akz
k is regular for |z| < 1. Let

• Sn(z, f) =
n
∑

k=0

akz
k be the sequence of partial sums of f ,

• σn(z, f) =
1

n+1

n
∑

k=0

Sk(z, f) be the Cesaro means or (C, 1) means of f ,

• Tn(z, f) =
1
Qn

n
∑

k=0

qn−kSk(z, f) be the Norlund means of f ,

• Tn(z, f) =
1
Qn

n
∑

k=0

qkSk(z, f) be the Progressive means of f ,

• Vn(z, f) =
1

(2n
n
)

n
∑

k=1

(

2n
n+k

)

akz
k be the de la Vallee Poussin means of f .

3. Known results

In [7] G. Pólya and I. J. Schoenberg proved the following theorem, and
corollary:

Theorem 3.1. For f(z) ∈ K, it is necessary and sufficient that Vn(z, f) ∈ K

for n = 1, 2 . . . .

Corollary 3.2. For f(z) ∈ K, Vn(z, f) ≺ f for n = 1, 2, . . . .
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In [3] T. Başgöze, J. L. Frank, and F. R. Keogh proved the following theorem:

Theorem 3.3. (i) Suppose that the values taken by f(z) for z in D lie in

a convex domain Dw. Then the values taken by σn(z, f) also lie in Dw

for all n, and all z in D.

(ii) Conversely, suppose that the values taken by σn(z, f) lie in a convex

domain Dw; then the values taken by f(z) lie in Dw for all z in D.

In [1] Ziad S. Ali proved the following theorems:

Theorem 3.4. (i) Let (N, qn) be a regular Norlund transformation such

that {qn}
∞
0 is a non-decreasing sequence of positive numbers. Suppose

that the values taken by f(z), for z in D, lie in a convex domain

Dw,then the values taken by Tn(z, f), also lie in Dw for all n, and

all z in D.

(ii) Conversely, suppose that the values taken by Tn(z, f) lie in a convex

domain Dw; then the values taken by f(z) lie in Dw for all z in D.

Theorem 3.5. (i) Let (N, qn) be a regular Progressive transformation

such that {qn}
∞
0 is a non-increasing sequence of positive numbers. Sup-

pose that the values taken by f(z), for z in D, lie in a convex domain

Dw,then the values taken by Tn(z, f), also lie in Dw for all n, and all

z in D.

(ii) Conversely, suppose that the values taken by Tn(z, f) lie in a convex

domain Dw; then the values taken by f(z) lie in Dw for all z in D.

In [2] Ziad S. Ali proved the following theorem:

Theorem 3.6. (i) Let f(z) =
∞
∑

k=1

akz
k, (c1 = 1) be regular in the unit disc

|z| < 1.
(ii) Let Tn be a transformation of the Norlund type. Let

Qn
k =

k
∑

r=0

qnr =
k
∑

r=0

(2n− 2r + 1)

(2n− r + 1)

(

2n

r

)

q0,

and

ω(n) =
−2

Qn
n

n
∑

k=1

(−1)kQn
n−k,

then 1
ω(n)

Tn(z, f) ∈ K if and only if f ∈ K.

4. The Main Theorems

In this section we prove the following theorems:



92 ZIAD S. ALI

Theorem 4.1. (i) Let f(z) =
∞
∑

k=1

akz
k, (a1 = 1) be regular in the unit

disc |z| < 1, and let Tn(z, f) =
1
Qn

n
∑

k=0

qkSk(z, f) be a transformation of

the progressive type.

(ii) Let

Qn−k = Qn
n−k =

n−k
∑

r=0

qnr , and Qn = Qn
n =

n
∑

r=0

qnr ,

qnr =

{

(2n−2r+1)
(2n−r+1)

(

2n
r

)

q0 if r = 0, 1, . . . , (n− k),

qnn−r if r = (n− k) + 1, (n− k) + 2, . . . , n− 1, n.

(iii) Let

ω(n) =
−2

Qn
n

n
∑

k=1

(−1)k
(

Qn
n −Qn

k−1

)

,

then 1
ω(n)

Tn(z, f) ∈ K if and only if f ∈ K.

Proof. We begin first by noting that:

1

ω(n)
Tn(z, f) =

1

−2
Qn

n

n
∑

k=1

(−1)k(Qn
n −Qn

k−1)

1

Qn
n

n
∑

k=1

qnkSk(z, f)

expanding
n
∑

k=1

qnkSk(z, f), we can easily see:

1

ω(n)
Tn(z, f) =

1

−2
n
∑

k=1

(−1)k(Qn
n −Qn

k−1)

n
∑

k=1

(Qn
n −Qn

k−1)akz
k .

Since

Qn
n = Qn

(n−k) + (qn(n−k)+1 + qn(n−k)+2) + · · ·+ qnn−1 + qnn), and

Qn
k−1 = qnk−1 + qnk−2 + · · ·+ qn1 + qn0 .

Hence
1

ω(n)
Tn(z, f) =

n
∑

k=1

(

(Qn
(n−k) + (q(n−k)+1 + · · ·+ qnn−1 + qnn))− (qnk−1 + qnk−2 + · · ·+ qn1 + qn0 )

)

akz
k

−2
n
∑

k=1

(−1)k
(

(Qn
(n−k) + (qn(n−k)+1 + · · ·+ qnn−1 + qnn))− (qnk−1 + qnk−2 + · · ·+ qn1 + qn0 )

)
.

Equivalently we have:

1

ω(n)
Tn(z, f) =
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n
∑

k=1

(

Qn
(n−k) + (qnn−(k−1) + · · ·+ qnn−1 + qnn)− (qnk−1 + qnk−2 + · · ·+ qn1 + qn0 )

)

akz
k

−2
n
∑

k=1

(−1)k
(

Qn
(n−k) + (qn

n−(k−1) + · · ·+ qnn−1 + qnn)− (qnk−1 + qnk−2 + · · ·+ qn1 + qn0 )
)

.

Since qnr = qnn−r for r = n− (k − 1), n− (k − 2), . . . (n− 1), n, it follows easily
that:

(qnn−(k−1) + qnn−(k−2) + · · ·+ qnn−1 + qnn)− (qnk−1 + qnk−2 + · · ·+ qn1 + qn0 ) = 0 .

Hence
1

ω(n)
Tn(z, f) =

1

−2
n
∑

k=1

(−1)kQn
(n−k)

n
∑

k=1

Qn
(n−k)akz

k .

Now we can easily show that:

Qn
n−k =

n−k
∑

r=0

qnr =

n−k
∑

r=0

(2n− 2r + 1)

(2n− r + 1)

(

2n

r

)

q0 =

(

2n

n− k

)

q0 .

Hence
1

ω(n)
Tn(z, f) =

1

−2
n
∑

k=1

(−1)k
(

2n
n−k

)

n
∑

k=1

(

2n

n− k

)

akz
k .

Finally we can show that for n odd we have:

−2

n
∑

k=1

(−1)k
(

2n

n− k

)

=

2n
∑

k=0

(−1)k
(

2n

k

)

+

(

2n

n

)

,

and for n even we have:

−2

n
∑

k=1

(−1)k
(

2n

n− k

)

= −

2n
∑

k=0

(−1)k
(

2n

k

)

+

(

2n

n

)

.

Now since:
2n
∑

k=0

(−1)k
(

2n

k

)

= 0.

It follows that

1

ω(n)
Tn(z, f) =

1
(

2n
n

)

n
∑

k=1

(

2n

n+ k

)

akz
k = Vn(z, f),

which are the de la Vallee Poussin means of f , and the theorem follows by
G. Pólya and I. J. Schoenberg [7]. �

Theorem 4.2. (i) Suppose that f(z) =
∞
∑

k=0

akz
k is regular for |z| < 1, and

suppose that Tn are the Progressive means.
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(ii) Let Qn
n = n+ 1, and let

ω(n) =



















−2
Qn

n

n
∑

k=1

(−1)k(Qn
n −Qn

k−1) n is odd

−2
Qn

n

n
∑

k=1

(−1)k(Qn
n −Qn

k−1) + 1 n is even,

then
1

ω(n)
Tn(z, f) ∈ K if and only if f ∈ K.

Proof. Clearly Qn
n − Qn

k−1 = n − k + 1. Considering two separate cases for n
even, and n odd we can easily see that

n+ 1 =



















−2
n
∑

k=1

(−1)k(n− k + 1) n is odd

−2
n
∑

k=1

(−1)k(n− k + 1) + 1 n is even.

Accordingly for any n we have:

1

ω(n)
Tn(z, f) =

1

n + 1

n
∑

k=0

Sk(z, f) = σn(z, f),

which are the Cesaro means of f , and the result follows by T. Başgöze,
J. L. Frank, and F. R. Keogh [3]. �

Theorem 4.3. (i) Let f(z) =
∞
∑

k=0

akz
k be regular in the unit disc D = {z :

|z| < 1}.
(ii) Let Tn(z, f) be a regular Progressive type transformation defined by

a non-increasing sequence {qnr }r=1 of positive real numbers such that
∑

i∈odd
qni =

∑

i∈even
qni , where i is a non-negative integer then:

1

ω(n)
Tn(z, f) ∈ K if and only if f ∈ K.

Proof. For n odd integer, say n = 2s+ 1 we have:

−2

n
∑

i=1

(−1)i(Qn
n −Qn

i−1) = −2

2s+1
∑

i=1

(−1)i(Q2s+1
2s+1 −Q2s+1

i−1 )

= −2
(

−

s
∑

t=0

q2s+1
2t+1

)

= 2

n
∑

i∈odd

qni , i = 1, 3, 5 . . . .



ON A MULTIPLIER OF THE PROGRESSIVE MEANS 95

Similarly for n = 2s we have:

−2
n
∑

i=1

(−1)i(Qn
n −Qn

i−1) = −2
2s
∑

i=1

(−1)i(Q2s
2s −Q2s

i−1)

= −2
(

−

s−1
∑

t=0

q2s2t+1

)

= 2

n
∑

i∈odd

qni , i = 1, 3, 5 . . . .

Therefore,

ω(n) =
−2

Qn
n

n
∑

i=1

(−1)i(Qn
n −Qn

i−1) =
1

Qn
n

(

n
∑

i∈odd

qni +

n
∑

i∈even

qni
)

= 1.

Accordingly the result follows by Ziad S. Ali [1]. �

5. Theorems on ω(n)

In this section we see more of the properties of ω(n) through the following
theorems.

Theorem 5.1. Let {qnr }
n
r=1 be a sequence of positive real numbers, then

ω(n) = 1 if and only if
∑

r∈odd

qnr =
∑

r∈even

qnr .

Proof. Let ω(n) = 1, then

−2

n
∑

r=1

(−1)r (Q
n
n −Qn

r ) = Qn
n 2

∑

r∈odd

qnr =





n
∑

r∈odd

qnr +

n
∑

r∈even

qnr



 .

Now assume
n
∑

r∈odd
qnr =

n
∑

r∈even
qnr , then

ω(n) =
1

Qn
n





n
∑

r∈even

qnr +

n
∑

r∈odd

qnr



 = 1. �

Theorem 5.1 can be used as a tool to generate or prove new Combinatorial
identities as seen by the following theorems:

Theorem 5.2. Let qnr =
(

n

r

)

, then

∑

r∈odd

qnr =
∑

r∈even

qnr , and −
1

2n−1

n
∑

r=1

(−1)r

(

2n −
r−1
∑

j=0

(

n

j

)

)

= 1.

Proof. With qnr =
(

n

r

)

, we have:

ω(n) = −
2

Qn
n

(

n
∑

r=1

(−1)r(Qn
n −Qn

r−1)

)

=
1

Qn
n





∑

r∈odd

(

n

r

)

+

n
∑

r∈even

(

n

r

)



 = 1.
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Accordingly by theorem 5.1 we have the following combinatorial identity:

−
1

2n−1

n
∑

r=1

(−1)r

(

2n −

r−1
∑

j=0

(

n

j

)

)

= 1.

The above newly generated combinatorial identity is implicitly saying for ex-
ample when n is even: The sum of all combinations of n elements taken r at
a time with r = 1, 3, 5, . . . is 2n−1. �

Theorem 5.3. Let qnr = 2n−2r+1
2n−r+1

(

2n
r

)

q0, and Qn
n =

n
∑

r=0

qnr . Then we have:

n
∑

r∈odd

qnr =
n
∑

r∈even

qnr .

Proof. With qnr = 2n−2r+1
2n−r+1

(

2n
r

)

q0, we can show:

ω(n) =
−2

Qn
n

(

n
∑

r=1

(−1)r(Qn
n −Qn

r−1)

)

=
2

Qn
n

n
∑

r∈odd

2n− 2r + 1

2n− r + 1

(

2n

r

)

=
2

Qn
n

n
∑

r∈even

2n− 2r + 1

2n− r + 1

(

2n

r

)

= 1.

Now we may apply theorem 5.1. Moreover for n even we have:

n
∑

r∈even

2n− 2r + 1

2n− r + 1

(

2n

r

)

=

n

2
∑

r=0

(

2n

2r

)

−

n

2
−1
∑

r=0

(

2n

2r + 1

)

=
1

2

(

2n

n

)

n
∑

r∈odd

2n− 2r + 1

2n− r + 1

(

2n

r

)

=

n

2
−1
∑

r=0

(

2n

2r + 1

)

−

n

2
−1
∑

r=0

(

2n

2r

)

=
1

2

(

2n

n

)

.

For n ∈ odd we have:

∑

r∈even

2n− 2r + 1

2n− r + 1

(

2n

r

)

=

n−1

2
∑

r=0

(

2n

2r

)

−

n−3

2
∑

r=0

(

2n

2r + 1

)

=
1

2

(

2n

n

)

∑

r∈odd

2n− 2r + 1

2− r + 1

(

2n

r

)

=

n−1

2
∑

r=0

(

2n

2r + 1

)

−

n−1

2
∑

r=0

(

2n

2r

)

=
1

2

(

2n

n

)

.

This completes the proof of theorem 5.3. �

We note from theorem 5.3. above that for n even
n

2
∑

r=0

(

2n

2r

)

=

n

2
−1
∑

r=0

(

2n

2r + 1

)

+

(

2n− 1

n

)

;

n

2
∑

r=0

(

2n

2r

)

= 22n−2 +

(

2n− 1

n

)

.
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For n odd we can show
n

2
∑

r=0

(

2n

2r

)

= 22n−2 .

Accordingly for any n we have:

[n
2
]

∑

r=0

(

2n

2r

)

= 22n−2 +
1 + (−1)n

2

(

2n− 1

n

)

, n ≥ 1,

which is identity 1.92 of Henry W. Gould [5]. Similarly for n even we have
from theorem 5.3:

n

2
−1
∑

r=0

(

2n

2r + 1

)

= 22n−2 .

Now for n odd we have:
n−1

2
∑

r=0

(

2n

2r + 1

)

=

n−1

2
∑

r=0

(

2n

2r

)

+

(

2n− 1

n

)

= 22n−2 +

(

2n− 1

n

)

.

Accordingly for any n we have:

[n−1

2
]

∑

r=0

(

2n

2r + 1

)

= 22n−2 +
1− (−1)n

2

(

2n− 1

n

)

,

which is identity 1.98 of Henry W. Gould [5].

Theorem 5.4. For n > 1 we have:

−2

(

n
∑

k=1

(−1)k ·

(

n
∑

r=k

r2
(

2n

n− r

)

))

=

n
∑

r=1

r2
(

2n

n− r

)

.

Proof. Follows by theorem 5.1 and noting that for n > 1 we have:
n
∑

r∈odd
r≥1

r2
(

2n

n− r

)

=

n
∑

r∈even
r≥2

r2
(

2n

n− r

)

. �

6. A key lemma

In this section we have the following lemma:

Lemma 6.1. For 1 ≤ r ≤ n, and θ real we have:

(i)
n
∑

r=1

(

2n

n− r

)

(

cos rθ + (−1)r+1
)

= 2n−1(1 + cos θ)n.

(ii)
n
∑

r=1

(−1)r
(

2n

n− r

)

cos rθ +
1

2

(

2n

n

)

= 2n−1(1− cos θ)n .
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Proof. (i) Using induction on n, and by repeated application of the recurrence
formula

(

n+ 1

r + 1

)

=

(

n

r

)

+

(

n

r + 1

)

,

the above lemma follows.Note now that the proof of the lemma also follows by
noting that:

cos2n
θ

2
=

1

2n

(

2n

n

)

+
1

22n−1

n−1
∑

r=0

(

2n

r

)

cos(n− r)θ,

and where
n
∑

r=1

(−1)r+1

(

2n

n− r

)

=
1

2

(

2n

n

)

.

Furthermore note that the above lemma also follows from the following:

Re.
(

einθ
(

1 + e−iθ
)2n
)

=

2n
∑

r=0

(

2n

r

)

cos(n− r)θ = 22n cos2n
θ

2
.

We can also see that

n
∑

r=0

(

2n

r

)

cos(n− r)θ =
1

2

2n
∑

r=0

(

2n

r

)

cos(n− r)θ +
1

2

(

2n

n

)

.

Now with k = n− r it follows that
n
∑

k=1

(

2n

n− k

)

cos kθ +
1

2

(

2n

n

)

= 22n−1 cos2n
θ

2
.

Accordingly

n
∑

r=1

(

2n

n− r

)

(

cos rθ + (−1)r+1
)

= 2n−1(cos θ + 1)n,

and the lemma follows again.
(ii) Follows since

(

e−inθ(1− eiθ)2n
)

= 22n sin2n θ

2
· (−1)n

= (−1)n

(

(

2n

n

)

+ 2

n
∑

r=1

(−1)r
(

2n

n− r

)

cos rθ

)

,

=

2n
∑

r=0

(−1)r
(

2n

r

)

cos(n− r)θ.

This completes the proof of lemma 6.1. �
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Remark 1. From above we have for m = 2n

m
∑

r=0

(

m

r

)

cos(
m

2
− r)θ = 2m cosm

θ

2
· 1 .

Accordingly we have:

m
∑

r=0

(

m

r

)

cos rθ = 2m cos mθ
2
cosm θ

2

m
∑

r=0

(

m

r

)

sin rθ = 2m sin mθ
2
cosm θ

2
.

For any m the above two combinatorial identities which are 1.26, and 1.27
in the list of identities of Henry W. Gould [5] follow by considering (1+ eiθ)m.

Remark 2. Similarly for m = 2n we have:

m
∑

r=0

(−1)r
(

m

r

)

cos(
m

2
− r)θ = (−1)

m

2 2m sinm θ

2
· 1

then we have:

m
∑

r=0

(−1)r
(

m

r

)

cos rθ = (−1)
m

2 2m sinm θ

2
cos

mθ

2

m
∑

r=0

(−1)r
(

m

r

)

sin rθ = (−1)
m

2 2m sinm θ

2
sin

mθ

2
.

For any m the above two combinatorial identities which are 1.28, and 1.29 of
the identities of Henry W. Gould [5] follow by considering (1− eiθ)m. Now for
θ = 0 in lemma 6.1(i) we can show the following:

n
∑

r=0

(

2n

r

)

= 22n−1 +

(

2n− 1

n

)

n
∑

r=0

(−1)r
(

2n

r

)

= (−1)n
(

2n− 1

n

)

n
∑

r=0

(

2n+ 1

r

)

= 4n

which are 1.85, 1.86, and 1.83 of Henry W. Gould [5].
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Corollary 6.2. For θ ∈ real, and r ≤ n we have the following combinatorial

trigonometric identities:

n
∑

r∈even

(

2n

n− r

)

cos rθ = 22n−2

(

cos2n
θ

2
+ sin2n θ

2

)

−
1

2

(

2n

n

)

n
∑

r∈odd

(

2n

n− r

)

cos rθ = 22n−2

(

cos2n
θ

2
− sin2n θ

2

)

.

Proof. Follows from lemma 6.1. �

Corollary 6.3. For r ≤ n we have:

n
∑

r∈odd
r≥1

(

2n

n− r

)

r · sin rθ = n2n−1 sin θ ·







n−1
∑

r∈even
r≥0

(

n− 1

r

)

cosr θ






, n ≥ 1

n
∑

r∈even
r>1

(

2n

n− r

)

r · sin rθ = n2n−1 sin θ ·







n−1
∑

r∈odd
r≥1

(

n− 1

r

)

cosr θ






, n ≥ 1 .

Proof. Follows from lemma 6.1. �

Corollary 6.4. For n ≥ 2 we have:

n
∑

r∈odd
r≥1

(

2n

n− r

)

r2 · cos rθ

= n · 2n−1
(

(

1− n sin2 θ
)

·

n−2
∑

r∈odd
r≥1

(

n− 2

r

)

· cosr θ +

n−2
∑

r∈even
r≥0

(

n− 2

r

)

cosr+1 θ
)

n
∑

r∈even
r≥2

(

2n

n− r

)

r2 · cos rθ

= n · 2n−1
(

(

1− n sin2 θ
)

·
n−2
∑

r∈even
r≥0

(

n− 2

r

)

· cosr θ+
n−2
∑

r∈odd
r≥1

(

n− 2

r

)

cosr+1 θ
)

.

Proof. Follows from lemma 6.1. �
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Corollary 6.5. For 0 ≤ r ≤ n we have:

n
∑

r=0

r

(

2n

r

)

= n · 22n−1

n
∑

r=0

r2
(

2n

r

)

= n · 22n−2 + n222n−1 − n2

(

2n− 1

n

)

.

Proof. Since from lemma 6.1 we have:

n
∑

r=1

r2
(

2n

n− r

)

= n · 22n−2 .

Furthermore since we can also show that

n
∑

r=0

r

(

2n

n+ r

)

=
n

2

(

2n

n

)

,

the corollary follows. �

7. Generating the Chebyshev’s polynomials

Using lemma 6.1(i), then by the definition of the Chebyshev’s polynomials
of the first kind Tn(x), we see that Tn(x) satisfies the following formula:

n
∑

r=1

(

2n

n− r

)

(

Tr(x) + (−1)r+1
)

= 2n−1(x+ 1)n, x = cos θ.

Now by letting r = 1, r = 2, r = 3, . . . etc. we can respectively obtain

T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, . . .

hence generating the Chebyshev’s polynomials of the first kind of degrees
1, 2, 3, . . . etc. We can similarly see that Un(x), the Chebyshev’s polynomials
of the second kind satisfy:

n
∑

r=1

(

2n

n− r

)

· r · Ur−1(x) = n · 2n−1(x+ 1)n−1, x = cos θ.

Again now for r = 1, r = 2, r = 3, . . . etc. we can respectively obtain

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, . . . ,

and hence generating the Chebyshev’s polynomials of the second kind of de-
grees 0, 1, 2, . . . etc.
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8. An application on probabilities

Using lemma 6.1(i), we can show that the probability of n successes in 2n
trials of a symmetric binomial distribution is given by:

(

2n
n

)

22n
=

1

22n−1

n
∑

r=0

(

2n

r

)

cos
(n− r)π

2
−

1

2n
(1)

(

2n
n

)

22n
=

2
n
∑

r=0

(

2n
r

)

22n
− 1(2)

(

2n
n

)

22n
=

1

2π

∫ 2π

0

cos2n t dt(3)

(

2n
n

)

22n
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · ·2n
.(4)

9. A different form of ω(n)

A different form of ω(n) is presented in this section, and this is seen by the
following:

Theorem 9.1. (i) Let f(z) =
∞
∑

k=1

ck z
k (c1 = 1) be regular in the unit disc

|z| < 1.
(ii) Let

Qn−k = Qn
n−k =

n−k
∑

r=0

qnr , and Qn = Qn
n =

n
∑

r=0

qnr ,

qnr =







(2n−2r+1)
(2n−r+1)

(

2n
r

)

q0 r = 0, 1, . . . , (n− k),

qnn−r r = (n− k) + 1, (n− k) + 2, . . . , n− 1, n.

(iii) Let Tn be the Progressive means. With z = ρeiθ, let

ωm(n, θ) =
−2
Qn

n

min
|z|≤1

Re.
n
∑

r=1

(

Qn
n −Qn

r−1

)

· zr, then

1
ωm(n,θ)

T n(z, f) ∈ K if and only if f ∈ K.

Proof. u(ρ, θ) =
n
∑

k=1

(

2n
n−k

)

ρk cos kθ is harmonic in

D = {z : |z| < 1} as ▽2 u =
∂2u

∂ρ2
+

1

ρ2
∂2u

∂θ2
+

1

ρ

∂u

∂ρ
= 0.

Furthermore u is continuous onD : {z : |z| ≤ 1}. Accordingly by the minimum
principle for harmonic functions u attains its minimum on the boundary of D.
Now the proof of theorem 9.1 follows from lemma 6.1(i), and theorem 4.1.
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Note that from lemma 6.1(i), or −
n
∑

k=1

(

2n
n−k

)

k sin kθ guarantees a minimum at

θ = π ∈ [0, 2π]. �

10. The subordination principle and ωm(n, θ)

In this section we relate ω(n) to the subordination principle by the following
theorem.

Theorem 10.1. (i) Let K denote the class of “Schlicht” power series

which map |z| < 1 onto some convex domain, and let f ∈ K.

(ii) Let

Qn−k = Qn
n−k =

n−k
∑

r=0

qnr , and Qn = Qn
n =

n
∑

r=0

qnr ,

qnr =







(2n−2r+1)
(2n−r+1)

(

2n
r

)

q0 r = 0, 1, . . . , (n− k),

qnn−r r = (n− k) + 1, (n− k) + 2, . . . , n− 1, n.

(iii) Let Tn be a transformation of the Progressive type. With z = ρeiθ, let

ωm(n, θ) =
−2
Qn

n

min
|z|≤1

Re.
n
∑

r=1

(

Qn
n −Qn

r−1

)

· zr, then

1
ωm(n,θ)

T n(z, f) ≺ f.

Proof. Follows from the proof of 9.1, and corollary 3.2 of G. Pólya and
I. J. Schoenberg [7]. Note that

1

ωm(1, θ)
T1(z, f) =

1

2
z ≺ f,

which is the strengthened version of the Koebe-One-Quarter theorem, and

1

ωm(2, θ)
T2(z, f) =

2

3
z +

a2

6
z2 = V2(z, f) ≺ f. �
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