ON A MULTIPLIER OF THE PROGRESSIVE MEANS AND CONVEX MAPS OF THE UNIT DISC

ZIAD S. ALI

Abstract

In this paper we are concerned with a multiplier $\bar{\omega}(n)$ of the Progressive means, and convex maps of the unit disc. With this concern we would have brought up in a rather unified approach the results of G. Pólya and I. J. Schoenberg in [7], T. Başgöze, J. L. Frank, and F. R. Keogh in [3], and Ziad S. Ali in [1]. More theorems on the properties of the multiplier $\bar{\omega}(n)$ are given, and a key lemma showing combinatorial trigonometric identities whose offsprings are: Several combinatorial, and combinatorial trigonometric identities, and a new method for generating the Chebyshev's polynomials. Finally we present a different form of $\bar{\omega}(n)$ as well as relating $\bar{\omega}(n)$ to the subordination principle.

1. Introduction

Let $\sum_{k=0}^{\infty} u_{k}$ be a given series, and let $\left\{S_{n}\right\}_{0}^{\infty}$ denote the sequence of its partial sums. Let $\left\{q_{n}\right\}_{0}^{\infty}$ be a sequence of real numbers with $q_{0}>0$, and $q_{n} \geq 0$ for all $n>0$, and let $Q_{n}=\sum_{k=0}^{n} q_{k}$. By G. H. Hardy [6] the sequence-to-sequence transformation

$$
T_{n}=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{n-k} S_{k}
$$

is called the Norlund means of $\left\{S_{n}\right\}_{0}^{\infty}$, and is denoted by $\left(N, q_{n}\right)$.
The $\left(N, q_{n}\right)$ is regular if and only if $q_{n}=o\left(Q_{n}\right)$ as $n \rightarrow \infty$; furthermore, the sequence-to-sequence transformation

$$
\overline{T_{n}}=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} S_{k}
$$

[^0]is called the progressive means of $\left\{S_{n}\right\}_{0}^{\infty}$, and is denoted by $\left(\bar{N}, q_{n}\right)$. The (\bar{N}, q_{n}) is regular if and only if $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. By Peter L. Duren [4] a function f analytic in a domain D is said to be simple, schlicht, or univalent if f is one-to-one mapping of D onto another domain. A domain E of the complex plane is said to be convex if and only if the line segment joining any two points of E lies entirely in E. A function f which is analytic, univalent in the unit disc $D=\{z: z<1\}$, and is normalized by $f(0)=f^{\prime}(0)-1=0$ is said to belong to the class S. Now $f \in S$ is said to belong to the class K if and only if it is a conformal mapping of the unit disc $D=\{z: z<1\}$ onto a convex domain. An analytic function g is said to be subordinate to an analytic function f (written $g \prec f$) if
$$
g(z)=f(\omega(z)) \quad|z|<1
$$
for some analytic function ω with $|\omega(z)| \leq|z|$. It is known by the Koebe-OneQuarter theorem that the range of every function of the class S contains the disc $\left\{w:|w|<\frac{1}{4}\right\}$, i.e. $\frac{1}{4} z \prec f$. The strengthened version of the Koebe-OneQuarter theorem says that the range of every convex function $f \in K$ contains the disc $|w|<\frac{1}{2}$, i.e. $\frac{1}{2} z \prec f$. The Chebychev's polynomials of the first kind $T_{n}(x)$, and of the second kind $U_{n}(x)$ are respectively defined by:
$$
T_{n}(x)=\cos n \theta, \quad U_{n}(x)=\frac{\sin (n+1) \theta}{\sin \theta}, \quad x=\cos \theta
$$

2. Means connected with power series

Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is regular for $|z|<1$. Let

- $S_{n}(z, f)=\sum_{k=0}^{n} a_{k} z^{k}$ be the sequence of partial sums of f,
- $\sigma_{n}(z, f)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(z, f)$ be the Cesaro means or $(C, 1)$ means of f,
- $T_{n}(z, f)=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{n-k} S_{k}(z, f)$ be the Norlund means of f,
- $\overline{T_{n}}(z, f)=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} S_{k}(z, f)$ be the Progressive means of f,
- $V_{n}(z, f)=\frac{1}{\binom{2 n}{n}} \sum_{k=1}^{n}\binom{2 n}{n+k} a_{k} z^{k}$ be the de la Vallee Poussin means of f.

3. Known Results

In [7] G. Pólya and I. J. Schoenberg proved the following theorem, and corollary:

Theorem 3.1. For $f(z) \in K$, it is necessary and sufficient that $V_{n}(z, f) \in K$ for $n=1,2 \ldots$.

Corollary 3.2. For $f(z) \in K, V_{n}(z, f) \prec f$ for $n=1,2, \ldots$.

In [3] T. Başgöze, J. L. Frank, and F. R. Keogh proved the following theorem:
Theorem 3.3. (i) Suppose that the values taken by $f(z)$ for z in D lie in a convex domain D_{w}. Then the values taken by $\sigma_{n}(z, f)$ also lie in D_{w} for all n, and all z in D.
(ii) Conversely, suppose that the values taken by $\sigma_{n}(z, f)$ lie in a convex domain D_{w}; then the values taken by $f(z)$ lie in D_{w} for all z in D.

In [1] Ziad S. Ali proved the following theorems:
Theorem 3.4. (i) Let $\left(N, q_{n}\right)$ be a regular Norlund transformation such that $\left\{q_{n}\right\}_{0}^{\infty}$ is a non-decreasing sequence of positive numbers. Suppose that the values taken by $f(z)$, for z in D, lie in a convex domain D_{w}, then the values taken by $T_{n}(z, f)$, also lie in D_{w} for all n, and all z in D.
(ii) Conversely, suppose that the values taken by $T_{n}(z, f)$ lie in a convex domain D_{w}; then the values taken by $f(z)$ lie in D_{w} for all z in D.

Theorem 3.5. (i) Let $\left(\bar{N}, q_{n}\right)$ be a regular Progressive transformation such that $\left\{q_{n}\right\}_{0}^{\infty}$ is a non-increasing sequence of positive numbers. Sup-
 D_{w}, then the values taken by $\overline{T_{n}}(z, f)$, also lie in D_{w} for all n, and all z in D.
(ii) Conversely, suppose that the values taken by $\overline{T_{n}}(z, f)$ lie in a convex domain D_{w}; then the values taken by $f(z)$ lie in D_{w} for all z in D.

In [2] Ziad S. Ali proved the following theorem:
Theorem 3.6.
(i) Let $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k},\left(c_{1}=1\right)$ be regular in the unit disc $|z|<1$.
(ii) Let T_{n} be a transformation of the Norlund type. Let

$$
Q_{k}^{n}=\sum_{r=0}^{k} q_{r}^{n}=\sum_{r=0}^{k} \frac{(2 n-2 r+1)}{(2 n-r+1)}\binom{2 n}{r} q_{0}
$$

and

$$
\omega(n)=\frac{-2}{Q_{n}^{n}} \sum_{k=1}^{n}(-1)^{k} Q_{n-k}^{n},
$$

then $\frac{1}{\omega(n)} T_{n}(z, f) \in K$ if and only if $f \in K$.

4. The Main Theorems

In this section we prove the following theorems:

Theorem 4.1. (i) Let $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k},\left(a_{1}=1\right)$ be regular in the unit disc $|z|<1$, and let $\overline{T_{n}}(z, f)=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} S_{k}(z, f)$ be a transformation of the progressive type.
(ii) Let

$$
\begin{gathered}
Q_{n-k}=Q_{n-k}^{n}=\sum_{r=0}^{n-k} q_{r}^{n}, \text { and } Q_{n}=Q_{n}^{n}=\sum_{r=0}^{n} q_{r}^{n}, \\
q_{r}^{n}= \begin{cases}\frac{(2 n-2 r+1)}{(2 n-r+1)}\binom{2 n}{r} q_{0} & \text { if } r=0,1, \ldots,(n-k), \\
q_{n-r}^{n} & \text { if } r=(n-k)+1,(n-k)+2, \ldots, n-1, n .\end{cases}
\end{gathered}
$$

(iii) Let

$$
\bar{\omega}(n)=\frac{-2}{Q_{n}^{n}} \sum_{k=1}^{n}(-1)^{k}\left(Q_{n}^{n}-Q_{k-1}^{n}\right),
$$

then $\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f) \in K$ if and only if $f \in K$.
Proof. We begin first by noting that:

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{\frac{-2}{Q_{n}^{n}} \sum_{k=1}^{n}(-1)^{k}\left(Q_{n}^{n}-Q_{k-1}^{n}\right)} \frac{1}{Q_{n}^{n}} \sum_{k=1}^{n} q_{k}^{n} S_{k}(z, f)
$$

expanding $\sum_{k=1}^{n} q_{k}^{n} S_{k}(z, f)$, we can easily see:

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{-2 \sum_{k=1}^{n}(-1)^{k}\left(Q_{n}^{n}-Q_{k-1}^{n}\right)} \sum_{k=1}^{n}\left(Q_{n}^{n}-Q_{k-1}^{n}\right) a_{k} z^{k} .
$$

Since

$$
\begin{aligned}
Q_{n}^{n} & =Q_{(n-k)}^{n}+\left(q_{(n-k)+1}^{n}+q_{(n-k)+2)}^{n}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right), \quad \text { and } \\
Q_{k-1}^{n} & =q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)= \\
& \frac{\sum_{k=1}^{n}\left(\left(Q_{(n-k)}^{n}+\left(q_{(n-k)+1}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right)\right)-\left(q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n}\right)\right) a_{k} z^{k}}{-2 \sum_{k=1}^{n}(-1)^{k}\left(\left(Q_{(n-k)}^{n}+\left(q_{(n-k)+1}^{n}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right)\right)-\left(q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n}\right)\right)} .
\end{aligned}
$$

Equivalently we have:
$\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=$

$$
\frac{\sum_{k=1}^{n}\left(Q_{(n-k)}^{n}+\left(q_{n-(k-1)}^{n}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right)-\left(q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n}\right)\right) a_{k} z^{k}}{-2 \sum_{k=1}^{n}(-1)^{k}\left(Q_{(n-k)}^{n}+\left(q_{n-(k-1)}^{n}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right)-\left(q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n}\right)\right)} .
$$

Since $q_{r}^{n}=q_{n-r}^{n}$ for $r=n-(k-1), n-(k-2), \ldots(n-1), n$, it follows easily that:

$$
\left(q_{n-(k-1)}^{n}+q_{n-(k-2)}^{n}+\cdots+q_{n-1}^{n}+q_{n}^{n}\right)-\left(q_{k-1}^{n}+q_{k-2}^{n}+\cdots+q_{1}^{n}+q_{0}^{n}\right)=0 .
$$

Hence

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{-2 \sum_{k=1}^{n}(-1)^{k} Q_{(n-k)}^{n}} \sum_{k=1}^{n} Q_{(n-k)}^{n} a_{k} z^{k} .
$$

Now we can easily show that:

$$
Q_{n-k}^{n}=\sum_{r=0}^{n-k} q_{r}^{n}=\sum_{r=0}^{n-k} \frac{(2 n-2 r+1)}{(2 n-r+1)}\binom{2 n}{r} q_{0}=\binom{2 n}{n-k} q_{0} .
$$

Hence

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{-2 \sum_{k=1}^{n}(-1)^{k}\binom{2 n}{n-k}} \sum_{k=1}^{n}\binom{2 n}{n-k} a_{k} z^{k} .
$$

Finally we can show that for n odd we have:

$$
-2 \sum_{k=1}^{n}(-1)^{k}\binom{2 n}{n-k}=\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}+\binom{2 n}{n},
$$

and for n even we have:

$$
-2 \sum_{k=1}^{n}(-1)^{k}\binom{2 n}{n-k}=-\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}+\binom{2 n}{n} .
$$

Now since:

$$
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}=0
$$

It follows that

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{\binom{2 n}{n}} \sum_{k=1}^{n}\binom{2 n}{n+k} a_{k} z^{k}=V_{n}(z, f),
$$

which are the de la Vallee Poussin means of f, and the theorem follows by G. Pólya and I. J. Schoenberg [7].

Theorem 4.2. (i) Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is regular for $|z|<1$, and suppose that $\overline{T_{n}}$ are the Progressive means.
(ii) Let $Q_{n}^{n}=n+1$, and let

$$
\bar{\omega}(n)=\left\{\begin{array}{l}
\frac{-2}{Q_{n}^{n}} \sum_{k=1}^{n}(-1)^{k}\left(Q_{n}^{n}-Q_{k-1}^{n}\right) \quad n \text { is odd } \\
\frac{-2}{Q_{n}^{n}} \sum_{k=1}^{n}(-1)^{k}\left(Q_{n}^{n}-Q_{k-1}^{n}\right)+1 n \text { is even },
\end{array}\right.
$$

then

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f) \in K \quad \text { if and only if } f \in K .
$$

Proof. Clearly $Q_{n}^{n}-Q_{k-1}^{n}=n-k+1$. Considering two separate cases for n even, and n odd we can easily see that

$$
n+1=\left\{\begin{array}{l}
-2 \sum_{k=1}^{n}(-1)^{k}(n-k+1) \quad n \text { is odd } \\
-2 \sum_{k=1}^{n}(-1)^{k}(n-k+1)+1 n \text { is even. }
\end{array}\right.
$$

Accordingly for any n we have:

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(z, f)=\sigma_{n}(z, f)
$$

which are the Cesaro means of f, and the result follows by T. Başgöze, J. L. Frank, and F. R. Keogh [3].

Theorem 4.3.
(i) Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be regular in the unit disc $D=\{z$: $|z|<1\}$.
(ii) Let $\overline{T_{n}}(z, f)$ be a regular Progressive type transformation defined by a non-increasing sequence $\left\{q_{r}^{n}\right\}_{r=1}$ of positive real numbers such that $\sum_{i \in \text { odd }} q_{i}^{n}=\sum_{i \in \text { even }} q_{i}^{n}$, where i is a non-negative integer then:

$$
\frac{1}{\bar{\omega}(n)} \overline{T_{n}}(z, f) \in K \quad \text { if and only if } \quad f \in K .
$$

Proof. For n odd integer, say $n=2 s+1$ we have:

$$
\begin{aligned}
-2 \sum_{i=1}^{n}(-1)^{i}\left(Q_{n}^{n}-Q_{i-1}^{n}\right) & =-2 \sum_{i=1}^{2 s+1}(-1)^{i}\left(Q_{2 s+1}^{2 s+1}-Q_{i-1}^{2 s+1}\right) \\
& =-2\left(-\sum_{t=0}^{s} q_{2 t+1}^{2 s+1}\right)=2 \sum_{i \in \mathrm{odd}}^{n} q_{i}^{n}, \quad i=1,3,5 \ldots
\end{aligned}
$$

Similarly for $n=2 s$ we have:

$$
\begin{aligned}
-2 \sum_{i=1}^{n}(-1)^{i}\left(Q_{n}^{n}-Q_{i-1}^{n}\right) & =-2 \sum_{i=1}^{2 s}(-1)^{i}\left(Q_{2 s}^{2 s}-Q_{i-1}^{2 s}\right) \\
& =-2\left(-\sum_{t=0}^{s-1} q_{2 t+1}^{2 s}\right)=2 \sum_{i \in \mathrm{odd}}^{n} q_{i}^{n}, \quad i=1,3,5 \ldots
\end{aligned}
$$

Therefore,

$$
\bar{\omega}(n)=\frac{-2}{Q_{n}^{n}} \sum_{i=1}^{n}(-1)^{i}\left(Q_{n}^{n}-Q_{i-1}^{n}\right)=\frac{1}{Q_{n}^{n}}\left(\sum_{i \in \text { odd }}^{n} q_{i}^{n}+\sum_{i \in \text { even }}^{n} q_{i}^{n}\right)=1 .
$$

Accordingly the result follows by Ziad S. Ali [1].

5. Theorems on $\bar{\omega}(n)$

In this section we see more of the properties of $\bar{\omega}(n)$ through the following theorems.

Theorem 5.1. Let $\left\{q_{r}^{n}\right\}_{r=1}^{n}$ be a sequence of positive real numbers, then

$$
\bar{\omega}(n)=1 \quad \text { if and only if } \sum_{r \in \text { odd }} q_{r}^{n}=\sum_{r \in \text { even }} q_{r}^{n} .
$$

Proof. Let $\bar{\omega}(n)=1$, then

$$
-2 \sum_{r=1}^{n}(-1)_{r}\left(Q_{n}^{n}-Q_{r}^{n}\right)=Q_{n}^{n} \quad 2 \sum_{r \in \text { odd }} q_{r}^{n}=\left(\sum_{r \in \text { odd }}^{n} q_{r}^{n}+\sum_{r \in \text { even }}^{n} q_{r}^{n}\right) .
$$

Now assume $\sum_{r \in \text { odd }}^{n} q_{r}^{n}=\sum_{r \in \text { even }}^{n} q_{r}^{n}$, then

$$
\bar{\omega}(n)=\frac{1}{Q_{n}^{n}}\left(\sum_{r \in \text { even }}^{n} q_{r}^{n}+\sum_{r \in \text { odd }}^{n} q_{r}^{n}\right)=1 .
$$

Theorem 5.1 can be used as a tool to generate or prove new Combinatorial identities as seen by the following theorems:

Theorem 5.2. Let $q_{r}^{n}=\binom{n}{r}$, then

$$
\sum_{r \in \text { odd }} q_{r}^{n}=\sum_{r \in \text { even }} q_{r}^{n}, \quad \text { and } \quad-\frac{1}{2^{n-1}} \sum_{r=1}^{n}(-1)^{r}\left(2^{n}-\sum_{j=0}^{r-1}\binom{n}{j}\right)=1 .
$$

Proof. With $q_{r}^{n}=\binom{n}{r}$, we have:
$\bar{\omega}(n)=-\frac{2}{Q_{n}^{n}}\left(\sum_{r=1}^{n}(-1)^{r}\left(Q_{n}^{n}-Q_{r-1}^{n}\right)\right)=\frac{1}{Q_{n}^{n}}\left(\sum_{r \in \text { odd }}\binom{n}{r}+\sum_{r \in \text { even }}^{n}\binom{n}{r}\right)=1$.

Accordingly by theorem 5.1 we have the following combinatorial identity:

$$
-\frac{1}{2^{n-1}} \sum_{r=1}^{n}(-1)^{r}\left(2^{n}-\sum_{j=0}^{r-1}\binom{n}{j}\right)=1 .
$$

The above newly generated combinatorial identity is implicitly saying for example when n is even: The sum of all combinations of n elements taken r at a time with $r=1,3,5, \ldots$ is 2^{n-1}.

Theorem 5.3. Let $q_{r}^{n}=\frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r} q_{0}$, and $Q_{n}^{n}=\sum_{r=0}^{n} q_{r}^{n}$. Then we have:

$$
\sum_{r \in \text { odd }}^{n} q_{r}^{n}=\sum_{r \in \text { even }}^{n} q_{r}^{n}
$$

Proof. With $q_{r}^{n}=\frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r} q_{0}$, we can show:

$$
\begin{aligned}
\bar{\omega}(n) & =\frac{-2}{Q_{n}^{n}}\left(\sum_{r=1}^{n}(-1)^{r}\left(Q_{n}^{n}-Q_{r-1}^{n}\right)\right)=\frac{2}{Q_{n}^{n}} \sum_{r \in \text { odd }}^{n} \frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r} \\
& =\frac{2}{Q_{n}^{n}} \sum_{r \in \text { even }}^{n} \frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r}=1 .
\end{aligned}
$$

Now we may apply theorem 5.1. Moreover for n even we have:

$$
\begin{aligned}
& \sum_{r \in \text { even }}^{n} \frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r}=\sum_{r=0}^{\frac{n}{2}}\binom{2 n}{2 r}-\sum_{r=0}^{\frac{n}{2}-1}\binom{2 n}{2 r+1}=\frac{1}{2}\binom{2 n}{n} \\
& \sum_{r \in \text { odd }}^{n} \frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r}=\sum_{r=0}^{\frac{n}{2}-1}\binom{2 n}{2 r+1}-\sum_{r=0}^{\frac{n}{2}-1}\binom{2 n}{2 r}=\frac{1}{2}\binom{2 n}{n} .
\end{aligned}
$$

For $n \in$ odd we have:

$$
\begin{aligned}
& \sum_{r \in \text { even }} \frac{2 n-2 r+1}{2 n-r+1}\binom{2 n}{r}=\sum_{r=0}^{\frac{n-1}{2}}\binom{2 n}{2 r}-\sum_{r=0}^{\frac{n-3}{2}}\binom{2 n}{2 r+1}=\frac{1}{2}\binom{2 n}{n} \\
& \sum_{r \in \text { odd }} \frac{2 n-2 r+1}{2-r+1}\binom{2 n}{r}=\sum_{r=0}^{\frac{n-1}{2}}\binom{2 n}{2 r+1}-\sum_{r=0}^{\frac{n-1}{2}}\binom{2 n}{2 r}=\frac{1}{2}\binom{2 n}{n} .
\end{aligned}
$$

This completes the proof of theorem 5.3.
We note from theorem 5.3. above that for n even

$$
\sum_{r=0}^{\frac{n}{2}}\binom{2 n}{2 r}=\sum_{r=0}^{\frac{n}{2}-1}\binom{2 n}{2 r+1}+\binom{2 n-1}{n} \quad ; \quad \sum_{r=0}^{\frac{n}{2}}\binom{2 n}{2 r}=2^{2 n-2}+\binom{2 n-1}{n}
$$

For n odd we can show

$$
\sum_{r=0}^{\frac{n}{2}}\binom{2 n}{2 r}=2^{2 n-2}
$$

Accordingly for any n we have:

$$
\sum_{r=0}^{\left[\frac{n}{2}\right]}\binom{2 n}{2 r}=2^{2 n-2}+\frac{1+(-1)^{n}}{2}\binom{2 n-1}{n}, \quad n \geq 1
$$

which is identity 1.92 of Henry W. Gould [5]. Similarly for n even we have from theorem 5.3:

$$
\sum_{r=0}^{\frac{n}{2}-1}\binom{2 n}{2 r+1}=2^{2 n-2}
$$

Now for n odd we have:

$$
\sum_{r=0}^{\frac{n-1}{2}}\binom{2 n}{2 r+1}=\sum_{r=0}^{\frac{n-1}{2}}\binom{2 n}{2 r}+\binom{2 n-1}{n}=2^{2 n-2}+\binom{2 n-1}{n}
$$

Accordingly for any n we have:

$$
\sum_{r=0}^{\left[\frac{n-1}{2}\right]}\binom{2 n}{2 r+1}=2^{2 n-2}+\frac{1-(-1)^{n}}{2}\binom{2 n-1}{n}
$$

which is identity 1.98 of Henry W. Gould [5].
Theorem 5.4. For $n>1$ we have:

$$
-2\left(\sum_{k=1}^{n}(-1)^{k} \cdot\left(\sum_{r=k}^{n} r^{2}\binom{2 n}{n-r}\right)\right)=\sum_{r=1}^{n} r^{2}\binom{2 n}{n-r} .
$$

Proof. Follows by theorem 5.1 and noting that for $n>1$ we have:

$$
\sum_{\substack{r \in \text { odd } \\ r \geq 1}}^{n} r^{2}\binom{2 n}{n-r}=\sum_{\substack{r \in \text { even } \\ r \geq 2}}^{n} r^{2}\binom{2 n}{n-r}
$$

6. A KEY LEMMA

In this section we have the following lemma:
Lemma 6.1. For $1 \leq r \leq n$, and θ real we have:
(i) $\quad \sum_{r=1}^{n}\binom{2 n}{n-r}\left(\cos r \theta+(-1)^{r+1}\right)=2^{n-1}(1+\cos \theta)^{n}$.
(ii) $\quad \sum_{r=1}^{n}(-1)^{r}\binom{2 n}{n-r} \cos r \theta+\frac{1}{2}\binom{2 n}{n}=2^{n-1}(1-\cos \theta)^{n}$.

Proof. (i) Using induction on n, and by repeated application of the recurrence formula

$$
\binom{n+1}{r+1}=\binom{n}{r}+\binom{n}{r+1},
$$

the above lemma follows.Note now that the proof of the lemma also follows by noting that:

$$
\cos ^{2 n} \frac{\theta}{2}=\frac{1}{2^{n}}\binom{2 n}{n}+\frac{1}{2^{2 n-1}} \sum_{r=0}^{n-1}\binom{2 n}{r} \cos (n-r) \theta,
$$

and where

$$
\sum_{r=1}^{n}(-1)^{r+1}\binom{2 n}{n-r}=\frac{1}{2}\binom{2 n}{n} .
$$

Furthermore note that the above lemma also follows from the following:

$$
\operatorname{Re} .\left(e^{i n \theta}\left(1+e^{-i \theta}\right)^{2 n}\right)=\sum_{r=0}^{2 n}\binom{2 n}{r} \cos (n-r) \theta=2^{2 n} \cos ^{2 n} \frac{\theta}{2} .
$$

We can also see that

$$
\sum_{r=0}^{n}\binom{2 n}{r} \cos (n-r) \theta=\frac{1}{2} \sum_{r=0}^{2 n}\binom{2 n}{r} \cos (n-r) \theta+\frac{1}{2}\binom{2 n}{n} .
$$

Now with $k=n-r$ it follows that

$$
\sum_{k=1}^{n}\binom{2 n}{n-k} \cos k \theta+\frac{1}{2}\binom{2 n}{n}=2^{2 n-1} \cos ^{2 n} \frac{\theta}{2}
$$

Accordingly

$$
\sum_{r=1}^{n}\binom{2 n}{n-r}\left(\cos r \theta+(-1)^{r+1}\right)=2^{n-1}(\cos \theta+1)^{n}
$$

and the lemma follows again.
(ii) Follows since

$$
\begin{aligned}
\left(e^{-i n \theta}\left(1-e^{i \theta}\right)^{2 n}\right) & =2^{2 n} \sin ^{2 n} \frac{\theta}{2} \cdot(-1)^{n} \\
& =(-1)^{n}\left(\binom{2 n}{n}+2 \sum_{r=1}^{n}(-1)^{r}\binom{2 n}{n-r} \cos r \theta\right), \\
& =\sum_{r=0}^{2 n}(-1)^{r}\binom{2 n}{r} \cos (n-r) \theta .
\end{aligned}
$$

This completes the proof of lemma 6.1.

Remark 1. From above we have for $m=2 n$

$$
\sum_{r=0}^{m}\binom{m}{r} \cos \left(\frac{m}{2}-r\right) \theta=2^{m} \cos ^{m} \frac{\theta}{2} \cdot 1
$$

Accordingly we have:

$$
\begin{aligned}
& \sum_{r=0}^{m}\binom{m}{r} \cos r \theta=2^{m} \cos \frac{m \theta}{2} \cos ^{m} \frac{\theta}{2} \\
& \sum_{r=0}^{m}\binom{m}{r} \sin r \theta=2^{m} \sin \frac{m \theta}{2} \cos ^{m} \frac{\theta}{2} .
\end{aligned}
$$

For any m the above two combinatorial identities which are 1.26 , and 1.27 in the list of identities of Henry W. Gould [5] follow by considering $\left(1+e^{i \theta}\right)^{m}$.

Remark 2. Similarly for $m=2 n$ we have:

$$
\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \cos \left(\frac{m}{2}-r\right) \theta=(-1)^{\frac{m}{2}} 2^{m} \sin ^{m} \frac{\theta}{2} \cdot 1
$$

then we have:

$$
\begin{aligned}
& \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \cos r \theta=(-1)^{\frac{m}{2}} 2^{m} \sin ^{m} \frac{\theta}{2} \cos \frac{m \theta}{2} \\
& \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \sin r \theta=(-1)^{\frac{m}{2}} 2^{m} \sin ^{m} \frac{\theta}{2} \sin \frac{m \theta}{2}
\end{aligned}
$$

For any m the above two combinatorial identities which are 1.28 , and 1.29 of the identities of Henry W. Gould [5] follow by considering $\left(1-e^{i \theta}\right)^{m}$. Now for $\theta=0$ in lemma 6.1(i) we can show the following:

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{2 n}{r}=2^{2 n-1}+\binom{2 n-1}{n} \\
& \sum_{r=0}^{n}(-1)^{r}\binom{2 n}{r}=(-1)^{n}\binom{2 n-1}{n} \\
& \sum_{r=0}^{n}\binom{2 n+1}{r}=4^{n}
\end{aligned}
$$

which are $1.85,1.86$, and 1.83 of Henry W. Gould [5].

Corollary 6.2. For $\theta \in$ real, and $r \leq n$ we have the following combinatorial trigonometric identities:

$$
\begin{aligned}
& \sum_{r \in \text { even }}^{n}\binom{2 n}{n-r} \cos r \theta=2^{2 n-2}\left(\cos ^{2 n} \frac{\theta}{2}+\sin ^{2 n} \frac{\theta}{2}\right)-\frac{1}{2}\binom{2 n}{n} \\
& \sum_{r \in \text { odd }}^{n}\binom{2 n}{n-r} \cos r \theta=2^{2 n-2}\left(\cos ^{2 n} \frac{\theta}{2}-\sin ^{2 n} \frac{\theta}{2}\right) .
\end{aligned}
$$

Proof. Follows from lemma 6.1.
Corollary 6.3. For $r \leq n$ we have:

$$
\begin{aligned}
& \sum_{\substack{r \in \text { odd } \\
r \geq 1}}^{n}\binom{2 n}{n-r} r \cdot \sin r \theta=n 2^{n-1} \sin \theta \cdot\left(\begin{array}{c}
\left.\sum_{\substack{r \in \text { even } \\
r \geq 0}}^{n-1}\binom{n-1}{r} \cos ^{r} \theta\right), \\
n \geq 1 \\
\sum_{\substack{r \in \text { even } \\
r>1}}^{n}\binom{2 n}{n-r} r \cdot \sin r \theta=n 2^{n-1} \sin \theta \cdot\left(\begin{array}{c}
\left.\sum_{\substack{r \in \text { odd } \\
r \geq 1}}^{n-1}\binom{n-1}{r} \cos ^{r} \theta\right),
\end{array} \quad n \geq 1 .\right.
\end{array} .\right.
\end{aligned}
$$

Proof. Follows from lemma 6.1.
Corollary 6.4. For $n \geq 2$ we have:

$$
\begin{aligned}
& \sum_{\substack{r \in \text { odd } \\
r \geq 1}}^{n}\binom{2 n}{n-r} r^{2} \cdot \cos r \theta \\
= & n \cdot 2^{n-1}\left(\left(1-n \sin ^{2} \theta\right) \cdot \sum_{\substack{r \in \text { odd } \\
r \geq 1}}^{n-2}\binom{n-2}{r} \cdot \cos ^{r} \theta+\sum_{\substack{r \in \text { even } \\
r \geq 0}}^{n-2}\binom{n-2}{r} \cos ^{r+1} \theta\right) \\
& \sum_{r \in \text { even }}^{n}\binom{2 n}{n-r} r^{2} \cdot \cos r \theta \\
= & n \cdot 2^{n-1}\left(\left(1-n \sin ^{2} \theta\right) \cdot \sum_{\substack{r \in \text { even } \\
r \geq 0}}^{n-2}\binom{n-2}{r} \cdot \cos ^{r} \theta+\sum_{\substack{r \in \text { odd } \\
r \geq 1}}^{n-2}\binom{n-2}{r} \cos ^{r+1} \theta\right) .
\end{aligned}
$$

Proof. Follows from lemma 6.1.

Corollary 6.5. For $0 \leq r \leq n$ we have:

$$
\begin{aligned}
& \sum_{r=0}^{n} r\binom{2 n}{r}=n \cdot 2^{2 n-1} \\
& \sum_{r=0}^{n} r^{2}\binom{2 n}{r}=n \cdot 2^{2 n-2}+n^{2} 2^{2 n-1}-n^{2}\binom{2 n-1}{n}
\end{aligned}
$$

Proof. Since from lemma 6.1 we have:

$$
\sum_{r=1}^{n} r^{2}\binom{2 n}{n-r}=n \cdot 2^{2 n-2}
$$

Furthermore since we can also show that

$$
\sum_{r=0}^{n} r\binom{2 n}{n+r}=\frac{n}{2}\binom{2 n}{n}
$$

the corollary follows.

7. Generating the Chebyshev's polynomials

Using lemma 6.1(i), then by the definition of the Chebyshev's polynomials of the first kind $T_{n}(x)$, we see that $T_{n}(x)$ satisfies the following formula:

$$
\sum_{r=1}^{n}\binom{2 n}{n-r}\left(T_{r}(x)+(-1)^{r+1}\right)=2^{n-1}(x+1)^{n}, \quad x=\cos \theta
$$

Now by letting $r=1, r=2, r=3, \ldots$ etc. we can respectively obtain

$$
T_{1}(x)=x, T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, \ldots
$$

hence generating the Chebyshev's polynomials of the first kind of degrees $1,2,3, \ldots$ etc. We can similarly see that $U_{n}(x)$, the Chebyshev's polynomials of the second kind satisfy:

$$
\sum_{r=1}^{n}\binom{2 n}{n-r} \cdot r \cdot U_{r-1}(x)=n \cdot 2^{n-1}(x+1)^{n-1}, \quad x=\cos \theta .
$$

Again now for $r=1, r=2, r=3, \ldots$ etc. we can respectively obtain

$$
U_{0}(x)=1, \quad U_{1}(x)=2 x, \quad U_{2}(x)=4 x^{2}-1, \ldots
$$

and hence generating the Chebyshev's polynomials of the second kind of degrees $0,1,2, \ldots$ etc.

8. An application on probabilities

Using lemma 6.1(i), we can show that the probability of n successes in $2 n$ trials of a symmetric binomial distribution is given by:

$$
\begin{align*}
& \frac{\binom{2 n}{n}}{2^{2 n}}=\frac{1}{2^{2 n-1}} \sum_{r=0}^{n}\binom{2 n}{r} \cos \frac{(n-r) \pi}{2}-\frac{1}{2^{n}} \tag{1}\\
& \frac{\binom{2 n}{n}}{2^{2 n}}=\frac{2 \sum_{r=0}^{n}\binom{2 n}{r}}{2^{2 n}}-1 \\
& \frac{\binom{2 n}{n}}{2^{2 n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2 n} t d t \\
& \frac{\binom{2 n}{n}}{2^{2 n}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} .
\end{align*}
$$

9. A different form of $\bar{\omega}(n)$

A different form of $\bar{\omega}(n)$ is presented in this section, and this is seen by the following:

Theorem 9.1. (i) Let $f(z)=\sum_{k=1}^{\infty} c_{k} z^{k}\left(c_{1}=1\right)$ be regular in the unit disc $|z|<1$.
(ii) Let

$$
\begin{gathered}
Q_{n-k}=Q_{n-k}^{n}=\sum_{r=0}^{n-k} q_{r}^{n}, \text { and } Q_{n}=Q_{n}^{n}=\sum_{r=0}^{n} q_{r}^{n}, \\
q_{r}^{n}=\left\{\begin{array}{l}
\frac{(2 n-2 r+1)}{(2 n-r+1)}\binom{2 n}{r} q_{0} r=0,1, \ldots,(n-k), \\
q_{n-r}^{n} \quad r=(n-k)+1,(n-k)+2, \ldots, n-1, n .
\end{array}\right.
\end{gathered}
$$

(iii) Let $\overline{T_{n}}$ be the Progressive means. With $z=\rho e^{i \theta}$, let

$$
\begin{aligned}
& \bar{\omega}_{m}(n, \theta)=\frac{-2}{Q_{n}^{n}} \min _{|z| \leq 1} \text { Re. } \sum_{r=1}^{n}\left(Q_{n}^{n}-Q_{r-1}^{n}\right) \cdot z^{r}, \text { then } \\
& \frac{1}{\bar{\omega}_{m}(n, \theta)} \bar{T}_{n}(z, f) \in K \text { if and only if } f \in K .
\end{aligned}
$$

Proof. $u(\rho, \theta)=\sum_{k=1}^{n}\binom{2 n}{n-k} \rho^{k} \cos k \theta$ is harmonic in

$$
D=\{z:|z|<1\} \quad \text { as } \quad \nabla^{2} u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}=0 .
$$

Furthermore u is continuous on $\bar{D}:\{z:|z| \leq 1\}$. Accordingly by the minimum principle for harmonic functions u attains its minimum on the boundary of D. Now the proof of theorem 9.1 follows from lemma 6.1(i), and theorem 4.1.

Note that from lemma 6.1(i), or $-\sum_{k=1}^{n}\binom{2 n}{n-k} k \sin k \theta$ guarantees a minimum at $\theta=\pi \in[0,2 \pi]$.
10. The subordination principle and $\bar{\omega}_{m}(n, \theta)$

In this section we relate $\bar{\omega}(n)$ to the subordination principle by the following theorem.

Theorem 10.1. (i) Let K denote the class of "Schlicht" power series which map $|z|<1$ onto some convex domain, and let $f \in K$.
(ii) Let

$$
\begin{gathered}
Q_{n-k}=Q_{n-k}^{n}=\sum_{r=0}^{n-k} q_{r}^{n}, \text { and } Q_{n}=Q_{n}^{n}=\sum_{r=0}^{n} q_{r}^{n}, \\
q_{r}^{n}=\left\{\begin{array}{l}
\frac{(2 n-2 r+1)}{(2 n-r+1)}\binom{2 n}{r} q_{0} r=0,1, \ldots,(n-k), \\
q_{n-r}^{n} \quad r=(n-k)+1,(n-k)+2, \ldots, n-1, n .
\end{array}\right.
\end{gathered}
$$

(iii) Let $\overline{T_{n}}$ be a transformation of the Progressive type. With $z=\rho e^{i \theta}$, let

$$
\begin{aligned}
& \bar{\omega}_{m}(n, \theta)=\frac{-2}{Q_{n}^{n}} \min _{|z| \leq 1} \operatorname{Re} . \sum_{r=1}^{n}\left(Q_{n}^{n}-Q_{r-1}^{n}\right) \cdot z^{r} \text {, then } \\
& \frac{1}{\bar{\omega}_{m}(n, \theta)} \bar{T}_{n}(z, f) \prec f .
\end{aligned}
$$

Proof. Follows from the proof of 9.1, and corollary 3.2 of G. Pólya and I. J. Schoenberg [7]. Note that

$$
\frac{1}{\bar{\omega}_{m}(1, \theta)} \overline{T_{1}}(z, f)=\frac{1}{2} z \prec f,
$$

which is the strengthened version of the Koebe-One-Quarter theorem, and

$$
\frac{1}{\bar{\omega}_{m}(2, \theta)} \overline{T_{2}}(z, f)=\frac{2}{3} z+\frac{a_{2}}{6} z^{2}=V_{2}(z, f) \prec f .
$$

Acknowledgement

I would like to thank Mrs Louise Wolf, former secretary at the University of Fribourg, Switzerland. Former Professor at the American College of Switzerland, CH-1854 Leysin.

References

[1] Z. S. Ali. Convexity of Nörlund and progressive means. Indian J. Math., 15:133-136, 1973.
[2] Z. S. Ali. A note on a multiplier of the Norlund means and convex maps of the unit disc. Int. J. Math. Math. Sci., (20):3351-3357, 2005.
[3] T. Başgöze, J. L. Frank, and F. R. Keogh. On convex univalent functions. Canad. J. Math., 22:123-127, 1970.
[4] P. L. Duren. Univalent functions, volume 259 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.
[5] H. W. Gould. Combinatorial identities. Henry W. Gould, Morgantown, W.Va., 1972. A standardized set of tables listing 500 binomial coefficient summations.
[6] G. H. Hardy. Divergent Series. Oxford, at the Clarendon Press, 1949.
[7] G. Pólya and I. J. Schoenberg. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pacific J. Math., 8:295-334, 1958.

Received August 19, 2009.

E-mail address: alioppp@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 40G05, 40C15, 30C45, 05A19.
 Key words and phrases. Progressive, Norlund, Cesaro, de la Vallee Poussin means, Convex maps, Combinatorial identities.

