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NEW ITERATIVE SCHEMES FOR EQUILIBRIUM

PROBLEMS AND FIXED POINT PROBLEMS OF

NONEXPANSIVE MAPPING

ZHENHUA HE AND FENG GU

Abstract. In this paper, two new iterative schemes are introduced in
Hilbert space. They can be used to find a common element of the set
of solutions of an equilibrium problem and the set of fixed point of the
nonexpansive mapping. Under suitable conditions, some weak and strong
convergence theorems are obtained.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let
K be a nonempty closed convex subset of H . We first recall some definitions
and conclusions:
f : H → H is said to be a contraction mapping with contraction constant

α ∈ (0, 1), if ∀ x, y ∈ H , ‖f(x)− f(y)‖ ≤ α‖x− y‖. T : K → K is said to be a
nonexpansive mapping, if ∀ x, y ∈ K, ‖Tx− Ty‖ ≤ ‖x− y‖. The set of fixed
points for T is denoted by F (T ) = {x ∈ K : Tx = x}. G : K → K is said to
be a L-Lipschitzian mapping, if ∀ x, y ∈ K, ‖Gx−Gy‖ ≤ L‖x− y‖, L > 0.
LetF be a bifunction of K ×K into R, where R is the set of real number.

The equilibrium problem for F : K ×K → R is to find x ∈ K such that

F (x, y) ≥ 0, ∀y ∈ K.(1.1)

Let EP (F ) denote the set of solutions of (1.1). In (1.1), if F (x, y) = 〈Tx, y−x〉
for all x, y ∈ K, where T : K → H is a mapping. Obviously, p ∈ EP (F ) if
and only if〈Tp, y − p〉 ≥ 0 for all y ∈ K, that is, p is a solution of the
variational inequality. This shows that equilibrium problem (1.1) includes
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some variational inequalities as especially cases. In addition, this equilibrium
problem contains also the fixed point problem, optimization problem and Nash
equilibrium problem as its special cases(for example,[1]).
For finding a common element of F (T ) ∩ EP (F ), Tada and Takahashi [6]

introduced the following iterative scheme by metric projection:

un ∈ K such that F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ K;

wn = (1− αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},

Dn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn∩Dn
(x), n ≥ 1.

(1.2)

For reducing the complexity of computation caused by the projection PK ,
Yamada [9], proposed an iteration method to solve the variational inequalities
V I(A,K). For arbitrary u0 ∈ H ,

un+1 = Tun − λn+1µA(Tun), n ≥ 0,(1.3)

where T : H → H is a nonexpansive mapping, A : H → H is a nonlinear
operator and VI(A,K) denote

〈Au∗, v − u∗〉 ≥ 0 ∀v ∈ K.(1.4)

Under suitable conditions, Yamada [9] proved that {un} converges strongly to
the unique solution of the V I(A,K).
Motivated by Yamada [9], in 2007, Wang [7] purposed an explicit scheme as

follows:

un+1 = αnun + (1− αn)(Tun − λn+1µA(Tun),(1.5)

where u0 ∈ H , T : H → H is a nonexpansive mapping, A : H → H is a
nonlinear operator. Wang studied convergence property of the sequence un

and obtained strong and weak convergence theorems.
Inspired by above results, in this paper, we introduce two iterative algo-

rithms to find a common element of F (T ) ∩ EP (F ).
Algorithm 1.1.

x1 ∈ H ; F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ K;

xn+1 = αnf(xn) + (1− αn)yn;

yn = (1− σ)xn + σTun − αnλn+1µG(Tun), n ≥ 1,

(1.6)

where σ ∈ (0, 1) is an arbitrarily real number(but fixed), µ > 0. {αn}, {λn} ⊂
[0, 1] and rn ⊂ (0,∞) satisfy the following conditions:

(C1) limn αn= 0, Σ∞
n=1αn=∞;

(C2) lim infn rn > 0, limn |rn+1−rn|=0;
(C3) Σ∞

n=0λn < ∞.
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Algorithm 1.2.

x1 ∈ H ; F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ K;

xn+1 = αnxn + (1− αn)yn;

yn = Tun − λn+1µG(Tun), n ≥ 1,

(1.7)

where µ > 0. {αn}, {λn} ⊂ [0, 1] and rn ⊂ (0,∞) satisfy conditions:

(C1′) αn ⊂ [α, β], α, β ∈ (0, 1);
(C2′) lim infn rn > 0;
(C3′) Σ∞

n=0λn < ∞.

Remark 1.1. We claim that Algorithm 1.1 and Algorithm 1.2 are two viscosity
iterative schemes with L-Lipschitzian mapping error. Obviously, the conditions
of coefficients in Algorithm 1.1 and Algorithm 1.2 are different.

In order to study convergence property of Algorithm 1.1-1.2, we need introduce
some preliminaries.

2. Preliminaries

For the sequence {xn} in H , we write xn ⇀ x to indicate that the sequence
{xn} converges weakly to x. xn → x implies that {xn} converges strongly to
x. ωw(xn) denotes the weak ω−limit set of {xn}, that is,

ωw(xn) := {x ∈ H : xnj
⇀ x for some subsequence {nj} of {n}}.

In a real Hilbert space H , we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ R. Let K be a closed convex subset of H , for each
point x ∈ H , there exists a unique nearest point in K, denoted by PKx, such
that

‖x− PKx‖ ≤ ‖x− y‖, ∀ y ∈ K.

PK is called the metric projection of H into K. It is well known that PK

satisfies

〈x− y, PKx− PKy〉 ≥ ‖PKx− PKy‖
2

for every x, y ∈ H . Moreover, PKx is characterized by the properties: for
x ∈ H , and z ∈ K,

z = PKx ⇔ 〈x− z, z − y〉 ≥ 0, ∀y ∈ K.(2.1)

For solving the equilibrium problem about a bifunction F : K ×K → R, let
us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ K;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K;
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(A3) for each x, y, z ∈ K,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semicontinuous.

In what follows, we shall make use of the following Lemmas.

Lemma 2.1 (demicloseness principle [3]). Let H be a real Hilbert space. K is

a closed convex subset of H and T : K → H is a nonexpansive mapping. Then

the mapping I − T is demiclosed on K, where I is the identity mapping, that

is, xn ⇀ x in H and (I − T )xn → y imply that x ∈ K and (I − T )x = y.

Lemma 2.2 (Suzuki [5]). Let {xn} and {yn} be bounded sequences in a Banach

space E and let {βn} be a sequence in [0, 1] with 0 < lim infn βn ≤ lim supn βn <

1. Suppose xn+1 = βnyn+(1−βn)xn for all integers n ≥ 0 and lim supn(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0, then, limn ‖yn − xn‖ = 0.

Lemma 2.3 ([1]). Let K be a nonempty convex subset of H and F be a

bifunction of K × K into R satisfying (A1) − (A4). Let r > 0 and x ∈ H.

Then, there exists z ∈ K such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, for all y ∈ K.

Lemma 2.4 (see [2]). Assume that F is a bifunction of K ×K onto R sat-

isfying (A1) − (A4). For r > 0 and x ∈ H, define a mapping Tr : H → K as

follows:

Tr(x) =

{

z ∈ K : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ K }

for all z ∈ H. Then the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Trx− Try‖
2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

Lemma 2.5. Let Tr be a mapping defined by Lemma 2.4. Let un = Trnxn. If

lim infn rn > 0, limn ‖un − xn‖ = 0 and un ⇀ z, then z ∈ EP (F ).

Proof. Since un = Trnxn, then from Lemma 2.4 we have that

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K.

By (A2), we have
1

rn
〈y − un, un − xn〉 ≥ F (y, un).
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Since limn ‖un − xn‖ = 0 and un ⇀ z, from (A4) we have

0 ≥ F (y, z) for all y ∈ K.

Let t ∈ (0, 1) and y ∈ K, yt = ty + (1 − t)z. Since y, z ∈ K, yt ∈ K and
F (yt, z) ≤ 0. Thus, using (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z) ≤ tF (yt, y),

this implies that 0 ≤ F (yt, y). From (A3), we have

0 ≤ F (z, y) for all y ∈ K,

this shows that z ∈ EP (F ). �

Next, it is well known about Lemma 2.6.

Lemma 2.6. Let ∀x, y ∈ H, then ‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉.

Lemma 2.7 (see [8]). Let {an} be a sequence of nonnegative real numbers

satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0.

If

(i) αn∈ [0, 1],
∑

αn=∞;

(ii) lim sup σn ≤ 0;
(iii) γn ≥ 0,

∑

γn<∞,

then an →0, as n → ∞.

Lemma 2.8 (see [4]). Let {an}, {bn}, {δn} be sequences of nonnegative real

numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn.

If Σ∞
n=1δn < ∞, Σ∞

n=1bn < ∞, then limn an exists.

3. Main results

In this section, we study the convergence property of Algorithm 1.1-1.2.

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H,

f : H → H is a contraction mapping with contraction constant α ∈ (0, 1),
T : K → K is a nonexpansive mapping, F is a bifunction of K × K onto

R satisfying (A1)− (A4). G : K → K is a L−Lipschitzian mapping. F (T ) ∩
EP (F ) 6= ∅, let {xn} and {un} be defined by Algorithm 1.1, then {xn} and {un}
converge strongly to a point p ∈ F (T ) ∩ EP (F ), where p = PF (T )∩EP (F )f(p).

Proof. First, we show that {xn} and {un} are bounded. Let p ∈ F (T )∩EP (F ),
from un = Trnxn, we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖, n ≥ 1.(3.1)
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From (1.6) and (3.1), it is easy to know

‖yn − p‖ ≤ (1− σ)‖xn − p‖+ σ‖Tun − p‖+ αnλn+1µ‖G(Tun)‖

≤ ‖xn − p‖+ αnλn+1µL‖xn − p‖+ λn+1µ‖G(p)‖

≤ (1 + αnλn+1µL)‖xn − p‖+ λn+1µ‖G(p)‖.

(3.2)

Again from (1.6) and (3.1)-(3.2), we have

‖xn+1 − p‖ ≤αn‖f(xn)− p‖+ (1− αn)(1 + αnλn+1)µL‖xn − p‖

+ λn+1µ‖G(p)‖

≤ (1− αn(1− α) + αnλn+1µL)‖xn − p‖+ αn‖f(p)− p‖

+ λn+1µ‖G(p)‖,

(3.3)

Since α ∈ (0, 1), there exists a constant ε > 0 such that 1 − α − ε > 0. On
the other hand, since λn → 0(n → ∞), there exists n0 such that n ≥ n0,
λnµL < ε. Thus, from (3.3) we have

(3.4) ‖xn+1 − p‖ ≤ (1− αn(1− α− ε))‖xn − p‖+ αn‖f(p)− p‖

+ λn+1µ‖G(p)‖,

for n ≥ n0. By mathematical induction and simply computation, from(3.4) we
have

(3.5) ‖xn − p‖ ≤ max{‖xn0
− p‖,

‖f(p)− p‖

1− α− ε
}+ µG(p)Σn

i=n0
λi, n ≥ n0.

The inequality (3.5) shows that {xn} is bounded, so are {un} and {yn}.
Second, we show that ‖xn+1 − xn‖ → 0 as n → ∞. Since {xn}, {un} and

{yn} are all bounded, there exists a constant M > 0 such that

max{‖f(xn)‖, ‖Tun‖, ‖xn‖, ‖xn − p‖, ‖un‖, ‖xn − un‖, ‖yn‖} ≤ M, n ≥ 1.

We claim that ‖un+1 − un‖ ≤ ‖xn+1 − xn‖ +
1
rn
|rn+1 − rn|‖un − xn‖. Indeed,

it follows from Lemma 2.4 that

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ K(3.6)

and

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ K.(3.7)

Taking y = un in (3.6) and y = un+1 in (3.7), then

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0

and

F (un, un+1) +
1

rn
〈un+1 − un, un − xn〉 ≥ 0.
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Thus, it follows from (A2) that

〈un+1 − un,
un − xn

rn
−

un+1 − xn+1

rn+1
〉 ≥ 0.

Then

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1
(un+1 − xn+1)〉 ≥ 0,

which yields that

(3.8) ‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖.

Let γn = σ + (1− σ)αn. Since αn → 0 as n → ∞, we have

0 < lim inf
n

γn ≤ lim sup
n

γn < 1.

Let

vn =
xn+1 − xn + γnxn

γn
=

αnf(xn) + (1− αn)(σTun − αnλn+1µG(Tun))

γn
,

then

vn+1 − vn =
f(xn+1)αn+1

γn+1
−

f(xn)αn

γn
+

(1− αn+1)σ(Tun+1 − Tun)

γn+1

+

(

1− αn+1

γn+1
−

1− αn

γn

)

σTun −
(1− αn+1)αn+1λn+2µG(Tun+1)

γn+1

+
(1− αn)αnλn+1µG(Tun)

γn
,

which implies that

‖vn+1 − vn‖ ≤
αn+1 + αn

σ
2M +

(1− αn+1)σ‖un+1 − un‖

γn+1

+

∣

∣

∣

∣

1− αn+1

γn+1
−

1− αn

γn

∣

∣

∣

∣

M

≤
αn+1 + αn

σ
2M +

(1− αn+1)σ‖xn+1 − xn‖

γn+1

+
|rn+1 − rn|M

rn+1γn+1

+
|αn − αn+1|

σ2
M.

Hence,

lim sup
n→∞

{‖vn+1 − vn‖ − ‖xn+1 − xn‖} ≤ 0.(3.9)

By Lemma 2.2 and (3.9), we have that limn→∞ ‖vn − xn‖ = 0, which implies

lim
n→∞

‖xn+1 − xn‖ = 0.(3.10)



112 ZHENHUA HE AND FENG GU

Third, we prove ‖Tun − un‖ → 0 and ‖Txn − xn‖ → 0 as n → ∞. Since
‖xn+1 − yn‖ = αn‖f(xn)− yn‖ → 0, as n → ∞, we have

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0(n → ∞).

Furthermore, when n → ∞, we have

(3.11) ‖Tun − xn‖ =
1

σ
‖yn − xn + αnλn+1µG(Tun)‖

≤
1

σ
(‖yn − xn‖+ λn+1‖µG(Tun)‖) → 0.

On the other hand, let p ∈ F (T ) ∩ EP (F ), from Lemma 2.4 we have

‖un − p‖2 = ‖Trnxn − Trnp‖
2 ≤ 〈Trnxn − Trnp, x− y〉

= 〈un − p, xn − p〉 =
1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖

2),

i.e.,

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖
2.(3.12)

Since

‖yn − p‖2 = ‖(1− σ)(xn − p) + σ(Tun − p)− αnλn+1µG(Tun)‖
2

≤ (‖(1− σ)(xn − p) + σ(Tun − p)‖+ αnλn+1M)2

≤ ‖(1− σ)(xn − p) + σ(Tun − p)‖2 + αnλn+1M
′

= (1− σ)‖xn − p‖2 + σ‖Tun − p‖2 − (1− σ)σ‖Tun − xn‖
2

+ αnλn+1M
′

≤ (1− σ)‖xn − p‖2 + σ‖xn − p‖2 − (1− σ)σ‖Tun − xn‖
2

+ αnλn+1M
′

= ‖xn − p‖2 − (1− σ)σ‖Tun − xn‖
2 + αnλn+1M

′,

(3.13)

where M ′ is a constant such that 2M‖(1 − σ)(xn − p) + σ(Tun − p)‖ +
αnλn+1M

2 ≤ M ′, n ≥ 1, we have

‖xn+1 − p‖2 = ‖αn(f(xn)− p) + (1− αn)(yn − p)‖2

≤ αn‖f(xn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − (1− σ)σ‖xn − un‖
2 + λn+1M

′,

i.e.,

(1− σ)σ‖xn − un‖
2 ≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 + λn+1M

′

≤ αn‖f(xn)− p‖2+ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+λn+1M
′,

which implies that ‖xn − un‖ → 0 as n → ∞. Then from (3.11), we have

‖Tun − un‖ ≤ ‖Tun − xn‖+ ‖xn − un‖ → 0 (n → ∞),
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and

(3.14) ‖Txn − xn‖ ≤ ‖Tun − xn‖+ ‖Txn − Tun‖

≤ ‖Tun − xn‖+ ‖xn − un‖ → 0 (n → ∞).

Fourth, we prove {xn} and {un} converge strongly to p ∈ F (S) ∩ EP (F ),
p = PF (S)∩EP (F )f(p). Since un = Trnxn and {un} is bounded, there ex-
ists a subsequence {uni

} of {un} such that uni
⇀ q. By Lemma 2.1 and

limn→∞ ‖Tun − un‖ = 0, we have q = Tq, i.e., q ∈ F (T ). On the other hand,
together Lemma 2.5 with limn→∞ ‖xn − un‖ = 0 and uni

⇀ q, we obtain
q ∈ EP (F ). Notice that limn→∞ ‖xn − un‖ = 0 and

p = PF (S)∩EP (F )f(p) ⇔ 〈f(p)− p, q − p〉 ≤ 0, ∀q ∈ F (S) ∩ EP (F ),

(see (2.1)) this shows that

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim sup
n→∞

〈f(p)− p, xni
− p〉

≤ lim sup
n→∞

〈f(p)− p, xni
− uni

〉+ lim sup
n→∞

〈f(p)− p, uni
− p〉

= lim sup
n→∞

〈f(p)− p, xni
− uni

〉+ 〈f(p)− p, q − p〉 ≤ 0.

It follows from Lemma 2.6 and (1.6) and (3.13) that

‖xn+1−p‖2 = ‖αn(f(xn)− p) + (1− αn)(yn − p)‖2

≤ (1− αn)
2‖yn − p‖2 + 2αn〈f(xn)− p, xn+1 − p〉

≤ (1− αn)
2‖yn − p‖2 + 2αn〈f(xn)− f(p), xn+1 − p〉

+ 2αn〈f(p)− p, xn+1 − p〉

≤ (1− αn)
2‖yn − p‖2 + 2αnα‖xn − p‖‖xn+1 − p‖

+ 2αn〈f(p)− p, xn+1 − p〉

≤ (1− αn)
2‖yn − p‖2 + αnα(‖xn − p‖2 + ‖xn+1 − p‖2)

+ 2αn〈f(p)− p, xn+1 − p〉

≤ (1− αn)
2‖xn − p‖2 + αnλn+1M

′ + αnα(‖xn − p‖2 + ‖xn+1 − p‖2)

+ 2αn〈f(p)− p, xn+1 − p〉,

which implies that

(3.15) ‖xn+1 − p‖2 ≤ (1−
2αn(1− α)

1− αnα
)‖xn − p‖2 +

αnλn+1M
′

1− αnα

+
α2
n

1− αnα
M2 +

2αn

1− αnα
〈f(p)− p, xn+1 − p〉.

By the condition (C1) and Lemma 2.7, {xn} converges strongly to p. Notice
that ‖un − p‖ ≤ ‖xn − p‖, hence {un} also converges strongly to p. This
completes the proof of Theorem 3.1. �
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Theorem 3.2. Let K be a closed convex subset of a real Hilbert space H,

f : H → H is a contraction mapping with contraction constant α ∈ (0, 1),
T : K → K is a nonexpansive mapping, F is a bifunction of K × K onto R

satisfying (A1) − (A4). G : K → K is a L−Lipschitzian mapping. F (T ) ∩
EP (F ) 6= ∅, let {xn} and {un} be defined by Algorithm 1.2, then {xn} and

{un} converge weakly to a point p ∈ F (T ) ∩ EP (F ).

Proof. Let p ∈ F (T ) ∩ EP (F ). Since un = Trnxn, we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖.

It follows from (1.7) that

‖yn − p‖ ≤ ‖un − p‖+ λn+1µ‖G(Tun)‖

≤ ‖xn − p‖+ λn+1µ‖G(Tun)‖

≤ (1 + λn+1µL)‖xn − p‖+ λn+1µ‖G(p)‖,

(3.16)

and

(3.17) ‖xn+1 − p‖ ≤ αn‖xn − p‖+ (1− αn)‖yn − p‖

≤ (1 + λn+1µL)‖xn − p‖+ λn+1µ‖G(p)‖

Based on Lemma 2.8 and (3.17), we have that limn ‖xn − p‖ exists. This also
shows that {xn} is bounded, so are {un} and {yn}. Let M be a constant such
that

max{‖xn‖, ‖un‖, µ‖G(Tun)‖} ≤ M, n ≥ 1.

From (1.7) and (3.16), we have

‖xn+1 − p‖2 = ‖αnxn + (1− αn)yn − p‖2

= αn‖xn − p‖2 + (1− αn)‖yn − p‖2 − αn(1− αn)‖yn − xn‖
2

≤ αn‖xn − p‖2 + (1− αn)‖xn − p‖2 + λn+1M1

− αn(1− αn)‖yn − xn‖
2

= ‖xn − p‖2 + λn+1M1 − αn(1− αn)‖yn − xn‖
2,

(3.18)

where M1 is a constant such that

2µ‖G(Tun)‖‖xn − p‖+ λn+1µ
2‖G(Tun)‖

2 ≤ M1, n ≥ 1.

Hence,

(3.19) αn(1− αn)‖yn − xn‖
2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + λn+1M1 → 0,

as n → ∞. i.e., limn ‖yn − xn‖ = 0. Further, we have that

‖xn − Tun‖ ≤ ‖xn − yn‖+ λn+1M → 0 (n → ∞).(3.20)
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By inequality (3.12) and (3.16) and convexity of ‖ · ‖2, we have

‖xn+1 − p‖2 = ‖αnxn + (1− αn)yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)(‖un − p‖+ λn+1µ‖G(Tun)‖)
2

≤ αn‖xn − p‖2 + (1− αn)‖un − p‖2 + λn+1M2

≤ αn‖xn − p‖2 + (1− αn)‖xn − p‖2 − (1− αn)‖xn − un‖
2

+ λn+1M2

= ‖xn − p‖2 + λn+1M2 − (1− αn)‖xn − un‖
2,

(3.21)

where M2 is a constant such that

2µ‖un − p‖‖G(Tun)‖+ λn+1µ
2‖G(Tun)‖

2 ≤ M2, n ≥ 1,

then

(3.22) (1− αn)‖xn − un‖
2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + λn+1M → 0

as n → ∞. i.e., limn ‖xn − un‖ = 0, which implies that

‖Tun − un‖ ≤ ‖Tun − xn‖+ ‖un − xn‖ → 0 (n → ∞),(3.23)

Next, we show that ωw(xn) ⊂ F (T ) ∩ EP (F ). Indeed, let ∀z ∈ ωw(xn), then
there exists subsequence {xnj

} of {xn} such that xnj
⇀ z.

From (3.21), we know that unj
⇀ z. Notice that un = Trnxn is bounded,

hence from (3.22) and Lemma 2.5 and Lemma 2.1, we have that unj
⇀ z ∈

EP (F ) and z ∈ F (T ).
Finally, we claim that {xn} and {un} converge weakly to an element of

F (T ) ∩ EP (F ). For this purpose, we prove that ωw(xn) is a single-point set.
Indeed, ∀ p1, p2 ∈ ωw(xn), let xni

and xmk
be subsequence of {xn} such that

xni
⇀ p1 and xmk

⇀ p2, respectively. Obviously, p1, p2 ∈ F (T ) ∩ EP (F ).
Since limn ‖xn − p‖ exists, by Opical’s condition, if p1 6= p2, we obtain that

(3.24) lim sup
i

‖xni
− p1‖ < lim sup

i

‖xni
− p2‖ = lim sup

k

‖xmk
− p2‖

< lim sup
k

‖xmk
− p1‖ = lim sup

i

‖xni
− p1‖,

contradictory, hence ωw(xn) is a single-point set. This completes the proof of
Theorem 3.2. �

Theorem 3.3. Let K be a closed convex subset of a real Hilbert space H,

f : H → H is a contraction mapping with contraction constant α ∈ (0, 1),
T : K → K is a nonexpansive mapping, F is a bifunction of K × K onto

R satisfying (A1)− (A4). G : K → K is a L−Lipschitzian mapping. F (T ) ∩
EP (F ) 6= ∅, let {xn} and {un} be defined by Algorithm 1.2, then {xn} and {un}
converge strongly to a point q ∈ F (T )∩EP (F ) if and only if lim infn d(xn, F (T )∩
EP (F )) = 0.
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Proof. ∀p ∈ F (T )∩EP (F ), by Theorem 3.2 we have that limn ‖xn−p‖ exists,
limn ‖un − xn‖ = 0 and {xn}, {un} are bounded.
It is obvious that if xn → p and un → p, then lim infn d(xn, F (T )∩EP (F )) =

0. Conversely, it follows from (3.17) that

‖xn+1 − p‖ ≤ ‖xn − p‖+ λn+1M
′,(3.25)

where M ′ is a constant such that

µL‖xn − p‖+ µ‖G(p)‖ ≤ M ′, n ≥ 1.

Thus, we have

d(xn+1, F (T ) ∩ EP (F )) ≤ d(xn, F (T ) ∩ EP (F )) + λn+1M
′.(3.26)

Further by Lemma 2.8 we obtain that limn d(xn+1, F (T ) ∩ EP (F )) exists.
Moreover,

(3.27) lim
n

d(xn+1, F (T ) ∩ EP (F )) = lim inf
n

d(xn+1, F (T ) ∩ EP (F )) = 0.

Next, we prove {xn} is a Cauchy sequence. Let N > 1 be a nonnegative
integer. Suppose that n > m > N , it follows from (3.25) that

‖xn − xm‖ ≤ ‖xn − p‖+ ‖xm − p‖

≤ ‖xn−1 − p‖+ ‖xm−1 − p‖+M ′(λn + λm)

≤ ‖xN − p‖+ ‖xN − p‖+ 2M ′Σn
i=N+1λi

= 2‖xN − p‖+ 2M ′Σn
i=N+1λi,

(3.28)

this implies that

‖xn − xm‖ ≤ 2d(xN , F (T ) ∩ EP (F )) + 2M ′Σn
i=N+1λi.(3.29)

The inequality (3.29) shows that {xn} is a Cauchy sequence. Therefore, there
exists q ∈ H such that {xn} converge strongly to q. Since limn ‖xn−Txn‖ = 0,
we have q ∈ F (T ). Since limn ‖xn − un‖ = 0, {un} also converge strongly to
q. Again from Lemma 2.5, we have that q ∈ EP (F ). Consequently, q ∈
F (T ) ∩ EP (F ). This completes the proof of Theorem 3.3. �
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