SEMI-INVARIANT PRODUCTS OF A NEARLY SASAKIAN MANIFOLD

WAN YONG AND RUIZHI GUO

Abstract

In this paper, we give some sufficient conditions for semiinvariant product of a nearly Sasakian manifold, and generalize Bejancu's result.

1. Introduction

Let \bar{M} be a real $(2 n+1)$-dimensional almost contact metric manifold with the structure tensors (Φ, ξ, η, g), then

$$
\begin{gather*}
\Phi \xi=0, \eta(\xi)=1, \Phi^{2}=-I+\eta \otimes \xi, \eta(X)=g(X, \xi), \tag{1.1}\\
g(\Phi X, \Phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta \circ \Phi=0, \tag{1.2}
\end{gather*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Definition 1.1 ([1]). The Nijenhuis tensor field of Φ on an almost contact metric manifold is defined by

$$
\begin{equation*}
[\Phi, \Phi](X, Y)=[\Phi X, \Phi Y]+\Phi^{2}[X, Y]-\Phi[\Phi X, Y]-\Phi[X, \Phi Y] \tag{1.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Definition 1.2 ([1]). An almost contact metric manifold \bar{M} is called a nearly Sasakian manifold, if we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y+\left(\bar{\nabla}_{Y} \Phi\right) X=2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y \tag{1.4}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.

[^0]Definition 1.3 ([1]). An almost contact metric manifold \bar{M} is called a Sasakian manifold, if we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{1.5}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Obviously, a Sasakian manifold is a nearly Sasakian manifold.
Let M be an m-dimensional submanifold of an n-dimensional almost contact metric manifold \bar{M}. We denote by $\bar{\nabla}$ the Levi-Civita connection on \bar{M}, denote by ∇ the induced connection on M, and denote by ∇^{\perp} the normal connection on M. Thus, for any $X, Y \in \Gamma(T M)$, we have

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.6}
\end{equation*}
$$

where $h: \Gamma(T M) \times \Gamma(T M) \longrightarrow \Gamma\left(T M^{\perp}\right)$ is a normal bundle valued symmetric bilinear form on $\Gamma(T M)$. The equation (1.6) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(T M)$ and $V \in \Gamma\left(T M^{\perp}\right)$, we denote by $-A_{V} X$ and $\nabla \frac{\perp}{X} V$ the tangent part and normal part of $\bar{\nabla}_{X} V$ respectively. Then we have

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{1.7}
\end{equation*}
$$

Thus, for any $V \in \Gamma\left(T M^{\perp}\right)$, we have a linear operator, satisfying

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g\left(X, A_{V} Y\right)=g(h(X, Y), V) \tag{1.8}
\end{equation*}
$$

The equation (1.7) is called the Weingarten formula.
An m-dimensional distribution on a manifold \bar{M} is a mapping D defined on \bar{M}, which assigns to each point x of \bar{M} an m-dimensional linear subspace D_{x} of $T_{x} \bar{M}$. A vector field X on \bar{M} belongs to D if we have $X_{x} \in D_{x}$ for each $x \in \bar{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \bar{M}$ there exist m differentiable linearly independent vector fields $X_{i} \in \Gamma(D)$ in a neighborhood of x. From now on, all distribution are supposed to be differentiable of class C^{∞}.

The distribution D is said to be involutive if for all vector fields $X, Y \in \Gamma(D)$ we have $[X, Y] \in \Gamma(D)$. A submanifold M of \bar{M} is said to be an integral manifold of D if for every point $x \in M, D_{x}$ coincides with the tangent space to M at x. If there exists no integral manifold of D which contains M, then M is called a maximal integral manifold or a leaf of D. The distribution D is said to be integrable if for every $x \in \bar{M}$ there exists an integral manifold of D containing x.

Definition 1.4 ([1]). Let M be a real ($2 m+1$)-dimensional submanifold of a real (2n+1)-dimensional almost contact metric manifold \bar{M} with the structure tensors (Φ, ξ, η, g). We assume that the structure tensor ξ is tangent to M, and denote by $\{\xi\}$ the 1 -dimensional distribution spanned by ξ on M. Then M is called a semi-invariant submanifold of \bar{M}, if there exist two differentiable distributions D and D^{\perp} on M, satisfying
(1) $T M=D \oplus D^{\perp} \oplus\{\xi\}$, where D, D^{\perp} and $\{\xi\}$ are mutually orthogonal to each other;
(2) the distribution D is invariant by Φ, that is, $\Phi\left(D_{x}\right)=D_{x}$, for each $x \in M$;
(3) the distribution D^{\perp} is anti-invariant by Φ, that is, $\Phi\left(D_{x}^{\perp}\right) \subset T_{x} M^{\perp}$, for each $x \in M$.

Let M be a semi-invariant submanifold of a nearly Sasakian Manifold \bar{M}. Then the normal bundle to M has the orthogonal decomposition

$$
\begin{equation*}
T M^{\perp}=J D^{\perp} \oplus \nu \tag{1.9}
\end{equation*}
$$

For each vector field X tangent to M, we put

$$
\begin{equation*}
\Phi X=\psi X+\omega X \tag{1.10}
\end{equation*}
$$

where ψX and ωX are respectively the tangent part and the normal part of ΦX. Also, for each vector field V normal to M, we put

$$
\begin{equation*}
\Phi V=B V+C V \tag{1.11}
\end{equation*}
$$

where $B V$ and $C V$ are respectively the tangent part and the normal part of ΦV.

We denote by P and Q the projection morphisms of $T M$ on D and D^{\perp} respectively. Then

$$
\begin{equation*}
X=P X+Q X+\eta(X) \xi \tag{1.12}
\end{equation*}
$$

for any $X \in \Gamma(T M)$.
Definition 1.5 ([1]). Let M be a semi-invariant submanifold of a nearly Sasakian Manifold \bar{M}. We say that M is a semi-invariant product if the distribution $D \oplus\{\xi\}$ and the distribution D^{\perp} are integrable and locally M is a Riemannian product $M_{1} \times M_{2}$, where M_{1} (resp. M_{2}) is a leaf of $D \oplus\{\xi\}$ (resp. D^{\perp})

In the references [1], we know that a distribution D on M is integrable if and only if $[X, Y] \in \Gamma(D)$ for all vector fields $X, Y \in \Gamma(D)$.

2. Main Results

Lemma 2.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then

$$
\begin{align*}
& \nabla_{X} \psi Y-A_{\omega Y} X+\nabla_{Y} \psi X-A_{\omega X} Y= \tag{2.1}\\
& \quad=2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y+\psi \nabla_{X} Y+\psi \nabla_{Y} X+2 B h(X, Y)
\end{align*}
$$

$$
\begin{equation*}
\eta\left(\nabla_{X} \psi Y\right)+\eta\left(\nabla_{Y} \psi X\right)=2 g(\Phi X, \Phi Y)+\eta\left(A_{\omega Y} X\right)+\eta\left(A_{\omega X} Y\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
h(X, \psi Y)+\nabla_{X}^{\perp} \omega Y+h(Y, \psi X)+\nabla_{Y}^{\perp} \omega X=\omega \nabla_{X} Y+\omega \nabla_{Y} X+2 C h(X, Y), \tag{2.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.

Proof. Taking $X, Y \in \Gamma(T M)$ and using (1.4), (1.5), (1.7) and (1.8) we obtain

$$
\begin{align*}
\left(\bar{\nabla}_{X} \Phi\right) Y & =\bar{\nabla}_{X} \Phi Y-\Phi \bar{\nabla}_{X} Y \\
& =\nabla_{X} \psi Y+h(X, \psi Y)-A_{\omega Y} X+\nabla_{X}^{\perp} \omega Y-\psi \nabla_{X} Y \tag{2.4}\\
& -\omega \nabla_{X} Y-B h(X, Y)-C h(X, Y)
\end{align*}
$$

Replacing X and Y we get

$$
\begin{aligned}
\left(\bar{\nabla}_{Y} \Phi\right) X=\nabla_{Y} \psi X+h(Y, \psi X)-A_{\omega X} Y & +\nabla_{Y}^{\perp} \omega X-\psi \nabla_{Y} X \\
& -\omega \nabla_{Y} X-B h(Y, X)-C h(Y, X)
\end{aligned}
$$

By using (2.4), (2.5), (1.2) and (1.4) we have

$$
\begin{align*}
& 2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y \tag{2.5}\\
& \quad=\nabla_{X} \psi Y+h(X, \psi Y)-A_{\omega Y} X+\nabla_{X}^{\perp} \omega Y- \\
& -\psi \nabla_{X} Y-\omega \nabla_{X} Y-B h(X, Y)-C h(X, Y)+\nabla_{Y} \psi X+h(Y, \psi X) \\
& \quad-A_{\omega X} Y+\nabla_{Y}^{\perp} \omega X-\psi \nabla_{Y} X-\omega \nabla_{Y} X-B h(Y, X)-C h(Y, X)
\end{align*}
$$

By comparing to tangent part and normal part of (2.6) we obtain (2.1), (2.2) and (2.3).

Lemma 2.2. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then

$$
\begin{gather*}
\psi \nabla_{X} \xi-P \nabla_{\xi} \Phi X+\psi \nabla_{\xi} X=X, \tag{2.6}\\
2 B h(X, \xi)=Q \nabla_{\xi} \Phi X, \tag{2.7}\\
\omega \nabla_{X} \xi+\omega \nabla_{\xi} X+2 C h(X, \xi)=h(\xi, \Phi X), \tag{2.8}
\end{gather*}
$$

for any $X \in \Gamma(D)$.
Proof. By using (1.1) and (1.3) we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y+\left(\bar{\nabla}_{Y} \Phi\right) X=-X \tag{2.9}
\end{equation*}
$$

for any $X \in \Gamma(D)$. On the other hand, by using (1.4), (1.6), (1.8), (1.10), (1.11) and (1.12) we have

$$
\begin{array}{r}
\left(\bar{\nabla}_{X} \Phi\right) Y+\left(\bar{\nabla}_{Y} \Phi\right) X=-\psi \nabla_{X} \xi-\omega \nabla_{X} \xi-2 B h(X, \xi)-2 C h(X, \xi) \tag{2.10}\\
+P \nabla_{\xi} \Phi X+Q \nabla_{\xi} \Phi X+h(\xi, \Phi X)-\psi \nabla_{\xi} X-\omega \nabla_{\xi} X .
\end{array}
$$

From (2.10) and (2.11) we get

$$
\begin{align*}
& -X=-\psi \nabla_{X} \xi-\omega \nabla_{X} \xi-2 B h(X, \xi) \tag{2.11}\\
& \quad-2 C h(X, \xi)+P \nabla_{\xi} \Phi X+Q \nabla_{\xi} \Phi X+h(\xi, \Phi X)-\psi \nabla_{\xi} X-\omega \nabla_{\xi} X
\end{align*}
$$

By comparing to tangent part and normal part of (2.12) we obtain (2.7), (2.8) and (2.9).

Lemma 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. If

$$
\begin{equation*}
h(X, \xi) \in \Gamma(\nu) \tag{2.12}
\end{equation*}
$$

for any $X \in \Gamma(D)$, then

$$
\begin{align*}
& \nabla_{\xi} X \in \Gamma(D \oplus\{\xi\}), \tag{2.13}\\
& \nabla_{X} \xi \in \Gamma(D \oplus\{\xi\}) \tag{2.14}
\end{align*}
$$

Proof. For any $X \in \Gamma(D), Z \in \Gamma\left(D^{\perp}\right)$, by using (1.1), (1.2), (1.12), (2.8) and (2.13) we obtain
(2.15) $g\left(\nabla_{\xi} \Phi X, Z\right)=g\left(Q \nabla_{\xi} \Phi X, Z\right)=2 g(B h(X, \xi), Z)$

$$
=2 g\left(\Phi^{2} h(X, \xi), \Phi Z\right)=-2 g(h(X, \xi), \Phi Z)=0 .
$$

From (2.16) we get (2.14).
On the other hand, by using (1.1), (1.2), (1.12), (2.9), (2.13) and (2.14) we have

$$
\begin{equation*}
g\left(\nabla_{X} \xi, Z\right)=g\left(\Phi \nabla_{X} \xi, \Phi Z\right)=g\left(\omega \nabla_{X} \xi, \Phi Z\right)=0 \tag{2.16}
\end{equation*}
$$

From (2.17) we obtain (2.15).
Lemma 2.4 (see [6]). Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
g\left(A_{\Phi U} V-A_{\Phi V} U-2 \Phi \nabla_{U} V, \Phi Z\right)=\eta([U, V]) \eta(Z) \tag{2.17}
\end{equation*}
$$

for any $U, V \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$.
Theorem 2.1. Let M be a semi-invariant submanifold a nearly Sasakian manifold \bar{M}, and let condition (2.13) and condition (2.18) be satisfied. If

$$
\begin{equation*}
\nabla_{Y} X \in \Gamma(D \oplus\{\xi\}) \tag{2.18}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \bar{M}.

Proof. For any $X, Y \in \Gamma(D)$, from (2.13), (2.14), (2.15) and (2.19) we have

$$
\begin{align*}
{[X, Y] } & =\nabla_{X} Y-\nabla_{Y} X \in \Gamma(D \oplus\{\xi\}) \tag{2.19}\\
{[X, \xi] } & =\nabla_{X} \xi-\nabla_{\xi} X \in \Gamma(D \oplus\{\xi\}) \tag{2.20}
\end{align*}
$$

From (2.20) and (2.21) we obtain

$$
\begin{equation*}
[X, Y] \in \Gamma(D \oplus\{\xi\}) \tag{2.21}
\end{equation*}
$$

for any $X \in \Gamma(D)$ and $Y \in \Gamma(D \oplus \xi)$.
On the other hand, thinking about $[\xi, \xi]=0$ and (2.21), we have

$$
\begin{equation*}
[Y, \xi] \in \Gamma(D \oplus\{\xi\}) \tag{2.22}
\end{equation*}
$$

for any $Y \in \Gamma(D \oplus \xi)$.

From (2.22) and (2.23) we get that $[X, Y] \in \Gamma(D \oplus\{\xi\})$, for any $X, Y \in$ $\Gamma(D \oplus \xi)$. Hence the distribution $D \oplus\{\xi\}$ is integrable. Moreover, if M_{1} is a leaf of $(D \oplus\{\xi\})$, then from (2.19) and the Gauss formula for the immersion of M_{1} in M it follows that M_{1} is totally geodesic in M. For any $Y \in \Gamma(T M), X \in \Gamma(D)$ and $U \in \Gamma\left(D^{\perp}\right)$, from (2.19) we have

$$
\begin{equation*}
g\left(\nabla_{Y} U, X\right)=-g\left(U, \nabla_{Y} X\right)=0 \tag{2.23}
\end{equation*}
$$

From (2.24) it follows that $\nabla_{Y} U \in \Gamma\left(D^{\perp}\right)$ for any $Y \in \Gamma(T M)$ and $U \in \Gamma\left(D^{\perp}\right)$. By using the equation of Gauss for a leaf M_{2} of D^{\perp} we obtain that M_{2} is totally geodesic in M. The proof is complete.

In the references [1], if M is a semi-invariant submanifold of a Sasakian manifold \bar{M},then the distribution D^{\perp} is integrable and the condition (2.13) is automatically satisfied (p.102). So we have

Corollary 2.1 ([1]). Let M be a semi-invariant submanifold a Sasakian manifold \bar{M}. If the condition (2.19) holds, then M is a semi-invariant product of Sasakian manifold \bar{M}.

Theorem 2.2. Let M be a semi-invariant submanifold a nearly Sasakian manifold \bar{M}, and let condition (2.13) and condition (2.18) be satisfied. If

$$
\begin{equation*}
2 B h(X, Y)=\nabla_{X} \psi Y-A_{\omega Y} X \tag{2.24}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \bar{M}.

Proof. From (2.1) we have

$$
\begin{align*}
& \nabla_{Y} \Phi X=2 g(X, Y) \xi-\eta(Y) X+\psi \nabla_{X} Y \tag{2.25}\\
&+\psi \nabla_{Y} X+2 B h(X, Y)-\nabla_{X} \psi Y+A_{\omega Y} X,
\end{align*}
$$

for any $Y \in \Gamma(T M)$ and $X \in \Gamma(D)$. Clearly, (2.25) and (2.26) imply that (2.19) holds. Thus, the proof is complete.

Theorem 2.3. Let M be a semi-invariant submanifold a nearly Sasakian manifold \bar{M}, and let condition (2.13) and condition (2.18) be satisfied. If

$$
\begin{equation*}
h(X, \psi Y)+\nabla_{X}^{\perp} \omega Y+h(Y, \Phi X)=\omega \nabla_{X} Y+2 C h(X, Y), \tag{2.26}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \bar{M}.

Proof. From (2.3) we have

$$
\begin{equation*}
\omega \nabla_{Y} X=h(X, \psi Y)+\nabla_{X}^{\perp} \omega Y+h(Y, \Phi X)-\omega \nabla_{X} Y-2 C h(X, Y), \tag{2.27}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$ and $X \in \Gamma(D)$. Clearly, (2.27) and (2.28) imply that (2.19) holds. Thus, the proof is complete.

References

[1] A. Bejancu. Geometry of CR-submanifolds, volume 23 of Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht, 1986.
[2] H. Endō. Invariant submanifolds in a K-contact Riemannian manifold. Tensor (N.S.), 28:154-156, 1974.
[3] M. Okumura. Submanifolds of a kaehlerian manifold and a sasakian manifold. Lecture notes, Michigan State University, 1971.
[4] Y. Wan. Integrabilities of distribution $D \oplus\{\xi\}$ on a nearly Sasakian manifold. J. Changsha Univ. Sci. Technol., Nat. Sci., 4(2):72-74, 2007.
[5] K. Yano and S. Ishihara. Invariant submanifolds of an almost contact manifold. Kōdai Math. Sem. Rep., 21:350-364, 1969.
[6] W. Yong and D. H. Pei. Integrability of distribution D^{\perp} on a nearly Sasakian manifold. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 25(2):271-276, 2009.

Received December 3, 2009.

Wan Yong,
Department of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha, Hunan,
P. R. China.
E-mail address: wany@csust.edu.cn
RUIZHI GUO,
College of Mathematics and Computer Science, Hunan Normal University,
Changsha, Hunan,
P. R. China.
E-mail address: Guorz6279@sohu.com

[^0]: 2000 Mathematics Subject Classification. 53C25.
 Key words and phrases. nearly Sasakian manifold, semi-invariant product, distribution, connection.

 The first author is supported by Foundation of Educational Committee of Hunan Province (No. 05C267).

