Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011), 119-125 www.emis.de/journals ISSN 1786-0091

SEMI-INVARIANT PRODUCTS OF A NEARLY SASAKIAN MANIFOLD

WAN YONG AND RUIZHI GUO

ABSTRACT. In this paper, we give some sufficient conditions for semiinvariant product of a nearly Sasakian manifold, and generalize Bejancu's result.

1. INTRODUCTION

Let \overline{M} be a real (2n + 1)-dimensional almost contact metric manifold with the structure tensors (Φ, ξ, η, g) , then

(1.1)
$$\Phi\xi = 0, \eta(\xi) = 1, \Phi^2 = -I + \eta \otimes \xi, \eta(X) = g(X,\xi),$$

(1.2)
$$g(\Phi X, \Phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta \circ \Phi = 0,$$

for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1.1 ([1]). The Nijenhuis tensor field of Φ on an almost contact metric manifold is defined by

(1.3)
$$[\Phi, \Phi](X, Y) = [\Phi X, \Phi Y] + \Phi^2[X, Y] - \Phi[\Phi X, Y] - \Phi[X, \Phi Y],$$

for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1.2 ([1]). An almost contact metric manifold \overline{M} is called a nearly Sasakian manifold, if we have

(1.4)
$$(\overline{\nabla}_X \Phi)Y + (\overline{\nabla}_Y \Phi)X = 2g(X,Y)\xi - \eta(Y)X - \eta(X)Y,$$

for any $X, Y \in \Gamma(T\overline{M})$.

²⁰⁰⁰ Mathematics Subject Classification. 53C25.

Key words and phrases. nearly Sasakian manifold, semi-invariant product, distribution, connection.

The first author is supported by Foundation of Educational Committee of Hunan Province (No. 05C267).

Definition 1.3 ([1]). An almost contact metric manifold \overline{M} is called a Sasakian manifold, if we have

(1.5)
$$(\overline{\nabla}_X \Phi)Y = g(X, Y)\xi - \eta(Y)X,$$

for any $X, Y \in \Gamma(T\overline{M})$.

Obviously, a Sasakian manifold is a nearly Sasakian manifold.

Let M be an m-dimensional submanifold of an n-dimensional almost contact metric manifold \overline{M} . We denote by $\overline{\nabla}$ the Levi-Civita connection on \overline{M} , denote by ∇ the induced connection on M, and denote by ∇^{\perp} the normal connection on M. Thus, for any $X, Y \in \Gamma(TM)$, we have

(1.6)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

where $h : \Gamma(TM) \times \Gamma(TM) \longrightarrow \Gamma(TM^{\perp})$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.6) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^{\perp})$, we denote by $-A_V X$ and $\nabla_X^{\perp} V$ the tangent part and normal part of $\overline{\nabla}_X V$ respectively. Then we have

(1.7)
$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V.$$

Thus, for any $V \in \Gamma(TM^{\perp})$, we have a linear operator, satisfying

(1.8)
$$g(A_V X, Y) = g(X, A_V Y) = g(h(X, Y), V)$$

The equation (1.7) is called the Weingarten formula.

An *m*-dimensional distribution on a manifold \overline{M} is a mapping D defined on \overline{M} , which assigns to each point x of \overline{M} an *m*-dimensional linear subspace D_x of $T_x\overline{M}$. A vector field X on \overline{M} belongs to D if we have $X_x \in D_x$ for each $x \in \overline{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \overline{M}$ there exist m differentiable linearly independent vector fields $X_i \in \Gamma(D)$ in a neighborhood of x. From now on, all distribution are supposed to be differentiable of class C^{∞} .

The distribution D is said to be involutive if for all vector fields $X, Y \in \Gamma(D)$ we have $[X, Y] \in \Gamma(D)$. A submanifold M of \overline{M} is said to be an integral manifold of D if for every point $x \in M$, D_x coincides with the tangent space to M at x. If there exists no integral manifold of D which contains M, then M is called a maximal integral manifold or a leaf of D. The distribution D is said to be integrable if for every $x \in \overline{M}$ there exists an integral manifold of Dcontaining x.

Definition 1.4 ([1]). Let M be a real (2m+1)-dimensional submanifold of a real (2n+1)-dimensional almost contact metric manifold \overline{M} with the structure tensors (Φ, ξ, η, g) . We assume that the structure tensor ξ is tangent to M, and denote by $\{\xi\}$ the 1-dimensional distribution spanned by ξ on M. Then M is called a semi-invariant submanifold of \overline{M} , if there exist two differentiable distributions D and D^{\perp} on M, satisfying

120

- (1) $TM = D \oplus D^{\perp} \oplus \{\xi\}$, where D, D^{\perp} and $\{\xi\}$ are mutually orthogonal to each other;
- (2) the distribution D is invariant by Φ , that is, $\Phi(D_x) = D_x$, for each $x \in M;$
- (3) the distribution D^{\perp} is anti-invariant by Φ , that is, $\Phi(D_x^{\perp}) \subset T_x M^{\perp}$, for each $x \in M$.

Let M be a semi-invariant submanifold of a nearly Sasakian Manifold \overline{M} . Then the normal bundle to M has the orthogonal decomposition

(1.9)
$$TM^{\perp} = JD^{\perp} \oplus \nu.$$

For each vector field X tangent to M, we put

(1.10)
$$\Phi X = \psi X + \omega X,$$

where ψX and ωX are respectively the tangent part and the normal part of ΦX . Also, for each vector field V normal to M, we put

(1.11)
$$\Phi V = BV + CV.$$

where BV and CV are respectively the tangent part and the normal part of ΦV .

We denote by P and Q the projection morphisms of TM on D and D^{\perp} respectively. Then

(1.12)
$$X = PX + QX + \eta(X)\xi,$$

for any $X \in \Gamma(TM)$.

Definition 1.5 ([1]). Let M be a semi-invariant submanifold of a nearly Sasakian Manifold \overline{M} . We say that M is a semi-invariant product if the distribution $D \oplus \{\xi\}$ and the distribution D^{\perp} are integrable and locally M is a Riemannian product $M_1 \times M_2$, where M_1 (resp. M_2) is a leaf of $D \oplus \{\xi\}$ (resp. D^{\perp})

In the references [1], we know that a distribution D on M is integrable if and only if $[X, Y] \in \Gamma(D)$ for all vector fields $X, Y \in \Gamma(D)$.

2. Main results

Lemma 2.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold M. Then

(2.1)
$$\nabla_X \psi Y - A_{\omega Y} X + \nabla_Y \psi X - A_{\omega X} Y =$$

= $2g(X,Y)\xi - \eta(Y)X - \eta(X)Y + \psi \nabla_X Y + \psi \nabla_Y X + 2Bh(X,Y),$

(2.2)
$$\eta(\nabla_X \psi Y) + \eta(\nabla_Y \psi X) = 2g(\Phi X, \Phi Y) + \eta(A_{\omega Y}X) + \eta(A_{\omega X}Y),$$

(2.3)
$$h(X,\psi Y) + \nabla_X^{\perp} \omega Y + h(Y,\psi X) + \nabla_Y^{\perp} \omega X = \omega \nabla_X Y + \omega \nabla_Y X + 2Ch(X,Y),$$

for any $X, Y \in \Gamma(TM)$.

Proof. Taking $X, Y \in \Gamma(TM)$ and using (1.4), (1.5), (1.7) and (1.8) we obtain

(2.4)
$$(\nabla_X \Phi)Y = \nabla_X \Phi Y - \Phi \nabla_X Y$$
$$= \nabla_X \psi Y + h(X, \psi Y) - A_{\omega Y} X + \nabla_X^{\perp} \omega Y - \psi \nabla_X Y$$
$$- \omega \nabla_X Y - Bh(X, Y) - Ch(X, Y).$$

Replacing X and Y we get

$$(\overline{\nabla}_Y \Phi)X = \nabla_Y \psi X + h(Y, \psi X) - A_{\omega X}Y + \nabla_Y^{\perp} \omega X - \psi \nabla_Y X - \omega \nabla_Y X - Bh(Y, X) - Ch(Y, X).$$

By using (2.4), (2.5), (1.2) and (1.4) we have

$$(2.5) \quad 2g(X,Y)\xi - \eta(Y)X - \eta(X)Y \\ = \nabla_X\psi Y + h(X,\psi Y) - A_{\omega Y}X + \nabla_X^{\perp}\omega Y - -\psi\nabla_X Y - \omega\nabla_X Y - Bh(X,Y) - Ch(X,Y) + \nabla_Y\psi X + h(Y,\psi X) - A_{\omega X}Y + \nabla_Y^{\perp}\omega X - \psi\nabla_Y X - \omega\nabla_Y X - Bh(Y,X) - Ch(Y,X).$$

By comparing to tangent part and normal part of (2.6) we obtain (2.1), (2.2) and (2.3).

Lemma 2.2. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then

(2.6)
$$\psi \nabla_X \xi - P \nabla_\xi \Phi X + \psi \nabla_\xi X = X,$$

(2.7)
$$2Bh(X,\xi) = Q\nabla_{\xi}\Phi X,$$

(2.8)
$$\omega \nabla_X \xi + \omega \nabla_\xi X + 2Ch(X,\xi) = h(\xi, \Phi X),$$

for any $X \in \Gamma(D)$.

Proof. By using (1.1) and (1.3) we obtain

(2.9)
$$(\overline{\nabla}_X \Phi)Y + (\overline{\nabla}_Y \Phi)X = -X$$

for any $X \in \Gamma(D)$. On the other hand, by using (1.4), (1.6), (1.8), (1.10), (1.11) and (1.12) we have

(2.10)
$$(\overline{\nabla}_X \Phi)Y + (\overline{\nabla}_Y \Phi)X = -\psi \nabla_X \xi - \omega \nabla_X \xi - 2Bh(X,\xi) - 2Ch(X,\xi) + P \nabla_\xi \Phi X + Q \nabla_\xi \Phi X + h(\xi, \Phi X) - \psi \nabla_\xi X - \omega \nabla_\xi X.$$

From (2.10) and (2.11) we get

(2.11)
$$-X = -\psi \nabla_X \xi - \omega \nabla_X \xi - 2Bh(X,\xi) - 2Ch(X,\xi) + P \nabla_\xi \Phi X + Q \nabla_\xi \Phi X + h(\xi, \Phi X) - \psi \nabla_\xi X - \omega \nabla_\xi X.$$

By comparing to tangent part and normal part of (2.12) we obtain (2.7), (2.8) and (2.9).

122

Lemma 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . If

$$h(X,\xi) \in \Gamma(\nu),$$

for any $X \in \Gamma(D)$, then

(2.13) $\nabla_{\xi} X \in \Gamma(D \oplus \{\xi\}),$

(2.14)
$$\nabla_X \xi \in \Gamma(D \oplus \{\xi\})$$

Proof. For any $X \in \Gamma(D)$, $Z \in \Gamma(D^{\perp})$, by using (1.1), (1.2), (1.12), (2.8) and (2.13) we obtain

(2.15)
$$g(\nabla_{\xi}\Phi X, Z) = g(Q\nabla_{\xi}\Phi X, Z) = 2g(Bh(X,\xi), Z)$$

= $2g(\Phi^2 h(X,\xi), \Phi Z) = -2g(h(X,\xi), \Phi Z) = 0.$

From (2.16) we get (2.14).

On the other hand, by using (1.1), (1.2), (1.12), (2.9), (2.13) and (2.14) we have

(2.16)
$$g(\nabla_X \xi, Z) = g(\Phi \nabla_X \xi, \Phi Z) = g(\omega \nabla_X \xi, \Phi Z) = 0,$$

From (2.17) we obtain (2.15).

Lemma 2.4 (see [6]). Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable if and only if

(2.17)
$$g(A_{\Phi U}V - A_{\Phi V}U - 2\Phi \nabla_U V, \Phi Z) = \eta([U, V])\eta(Z),$$

for any $U, V \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$.

Theorem 2.1. Let M be a semi-invariant submanifold a nearly Sasakian manifold \overline{M} , and let condition (2.13) and condition (2.18) be satisfied. If

(2.18)
$$\nabla_Y X \in \Gamma(D \oplus \{\xi\})$$

for any $Y \in \Gamma(TM)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \overline{M} .

Proof. For any $X, Y \in \Gamma(D)$, from (2.13), (2.14), (2.15) and (2.19) we have

(2.19)
$$[X,Y] = \nabla_X Y - \nabla_Y X \in \Gamma(D \oplus \{\xi\})$$

(2.20)
$$[X,\xi] = \nabla_X \xi - \nabla_\xi X \in \Gamma(D \oplus \{\xi\})$$

From (2.20) and (2.21) we obtain

$$(2.21) [X,Y] \in \Gamma(D \oplus \{\xi\})$$

for any $X \in \Gamma(D)$ and $Y \in \Gamma(D \oplus \xi)$.

On the other hand, thinking about $[\xi, \xi] = 0$ and (2.21), we have

$$(2.22) [Y,\xi] \in \Gamma(D \oplus \{\xi\})$$

for any $Y \in \Gamma(D \oplus \xi)$.

From (2.22) and (2.23) we get that $[X, Y] \in \Gamma(D \oplus \{\xi\})$, for any $X, Y \in \Gamma(D \oplus \xi)$. Hence the distribution $D \oplus \{\xi\}$ is integrable. Moreover, if M_1 is a leaf of $(D \oplus \{\xi\})$, then from (2.19) and the Gauss formula for the immersion of M_1 in M it follows that M_1 is totally geodesic in M. For any $Y \in \Gamma(TM), X \in \Gamma(D)$ and $U \in \Gamma(D^{\perp})$, from (2.19) we have

(2.23)
$$g(\nabla_Y U, X) = -g(U, \nabla_Y X) = 0.$$

From (2.24) it follows that $\nabla_Y U \in \Gamma(D^{\perp})$ for any $Y \in \Gamma(TM)$ and $U \in \Gamma(D^{\perp})$. By using the equation of Gauss for a leaf M_2 of D^{\perp} we obtain that M_2 is totally geodesic in M. The proof is complete.

In the references [1], if M is a semi-invariant submanifold of a Sasakian manifold \overline{M} , then the distribution D^{\perp} is integrable and the condition (2.13) is automatically satisfied (p.102). So we have

Corollary 2.1 ([1]). Let M be a semi-invariant submanifold a Sasakian manifold \overline{M} . If the condition (2.19) holds, then M is a semi-invariant product of Sasakian manifold \overline{M} .

Theorem 2.2. Let M be a semi-invariant submanifold a nearly Sasakian manifold \overline{M} , and let condition (2.13) and condition (2.18) be satisfied. If

(2.24) $2Bh(X,Y) = \nabla_X \psi Y - A_{\omega Y} X$

for any $Y \in \Gamma(TM)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \overline{M} .

Proof. From (2.1) we have

(2.25)
$$\nabla_Y \Phi X = 2g(X,Y)\xi - \eta(Y)X + \psi \nabla_X Y + \psi \nabla_Y X + 2Bh(X,Y) - \nabla_X \psi Y + A_{\omega Y} X,$$

for any $Y \in \Gamma(TM)$ and $X \in \Gamma(D)$. Clearly, (2.25) and (2.26) imply that (2.19) holds. Thus, the proof is complete.

Theorem 2.3. Let M be a semi-invariant submanifold a nearly Sasakian manifold \overline{M} , and let condition (2.13) and condition (2.18) be satisfied. If

(2.26)
$$h(X,\psi Y) + \nabla_X^{\perp} \omega Y + h(Y,\Phi X) = \omega \nabla_X Y + 2Ch(X,Y),$$

for any $Y \in \Gamma(TM)$ and $X \in \Gamma(D)$, then M is a semi-invariant product of nearly Sasakian manifold \overline{M} .

Proof. From (2.3) we have

(2.27)
$$\omega \nabla_Y X = h(X, \psi Y) + \nabla_X^{\perp} \omega Y + h(Y, \Phi X) - \omega \nabla_X Y - 2Ch(X, Y),$$

for any $Y \in \Gamma(TM)$ and $X \in \Gamma(D)$. Clearly, (2.27) and (2.28) imply that (2.19) holds. Thus, the proof is complete.

References

- [1] A. Bejancu. Geometry of CR-submanifolds, volume 23 of Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht, 1986.
- [2] H. Endō. Invariant submanifolds in a K-contact Riemannian manifold. Tensor (N.S.), 28:154–156, 1974.
- [3] M. Okumura. Submanifolds of a kaehlerian manifold and a sasakian manifold. Lecture notes, Michigan State University, 1971.
- [4] Y. Wan. Integrabilities of distribution D⊕{ξ} on a nearly Sasakian manifold. J. Changsha Univ. Sci. Technol., Nat. Sci., 4(2):72–74, 2007.
- [5] K. Yano and S. Ishihara. Invariant submanifolds of an almost contact manifold. Kodai Math. Sem. Rep., 21:350–364, 1969.
- [6] W. Yong and D. H. Pei. Integrability of distribution D[⊥] on a nearly Sasakian manifold. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 25(2):271–276, 2009.

Received December 3, 2009.

WAN YONG, DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE, CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY, CHANGSHA, HUNAN, P. R. CHINA. *E-mail address*: wany@csust.edu.cn

RUIZHI GUO, College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan, P. R. China. *E-mail address*: Guorz6279@sohu.com