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CHENG-MORDESON L-FUZZY NORMED SPACES AND

APPLICATION IN STABILITY OF FUNCTIONAL

EQUATION

R. SAADATI AND Y. J. CHO

Abstract. In this paper, we define and study Cheng-Mordeson L-fuzzy
normed spaces. Further, we consider the finite dimensional Cheng-Mordeson
L-fuzzy normed spaces and prove some theorems about completeness, com-
pactness and weak convergence in these spaces. As application, we get a
stability result in the setting of Cheng-Mordeson L-fuzzy normed spaces.

1. Introduction and Preliminaries

The theory of fuzzy sets was introduced by Zadeh in 1965 [44]. After the
pioneering work of Zadeh, there has been a great effort to obtain fuzzy ana-
logues of classical theories. Among other fields, a progressive development is
made in the field of fuzzy topology [2, 21, 15, 16, 18, 19, 20, 29, 39]. One of
the problems in L-fuzzy topology is to obtain an appropriate concept fuzzy
normed spaces. In 1984, Katsaras [26] defined a fuzzy norm on a linear space
and at the same year Wu and Fang [42] also introduced fuzzy normed space
and gave the generalization of the Kolmogoroff normalized theorem for fuzzy
topological linear space. Some mathematicians have defined fuzzy metrics and
norms on a linear space from various points of view [8, 9, 14, 28, 40, 43]. In
1994, Cheng and Mordeson introduced a definition of fuzzy norm on a lin-
ear space in such a manner that the corresponding induced fuzzy metric is of
Kramosil and Michalek type [27]. In 2003, Bag and Samanta [6] modified the
definition of Cheng and Mordeson [10] by removing a regular condition.
In this paper, we define the notion of Cheng-Mordeson L-fuzzy normed

spaces using [37]. Further, we consider finite dimensional Cheng-Mordeson
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L-fuzzy normed spaces and prove some theorems about completeness, com-
pactness and weak convergence in these spaces.
In this paper, L = (L,≥L) is a complete lattice, i.e. a partially ordered set in

which every nonempty subset admits supremum and infimum, and 0L = inf L,
1L = supL.

Definition 1.1 (see [17]). 1.1 Let L = (L,≤L) be a complete lattice and let
U be a non-empty set called the universe. An L-fuzzy set in U is defined as
a mapping A : U → L. For each u in U , A(u) represents the degree (in L) to
which u is an element of A.

Lemma 1.2 (see [12]). Consider the set L∗ and operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1, x2 ≥ y2

for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Definition 1.3 (see [4]). An intuitionistic fuzzy set Aζ,η in the universe U is
an object Aζ,η = {(u, ζA(u), ηA(u)) : u ∈ U}, where ζA(u) ∈ [0, 1] and ηA(u) ∈
[0, 1] for all u ∈ U are called the membership degree and the non-membership

degree, respectively, of u in Aζ,η and, furthermore, satisfy ζA(u) + ηA(u) ≤ 1.

We define mapping ∧ : L2 → L as

∧(x, y) =

{

x, if x ≤L y
y, if y ≤L x

.

For example,
∧(x, y) = (min(x1, y1),max(x2, y2)),

in which x = (x1, x2), y = (y1, y2) ∈ L∗.

Definition 1.4. A negator on L is any decreasing mapping N : L → L satis-
fying N (0L) = 1L and N (1L) = 0L. If N (N (x)) = x for all x ∈ L, then N is
called an involutive negator.

The negator Ns on ([0, 1],≤) defined as Ns(x) = 1 − x for all x ∈ [0, 1] is
called the standard negator on ([0, 1],≤). In this paper, the involutive negator
N is fixed.

Definition 1.5. The pair (V,P) is said to be an Cheng-Mordeson L-fuzzy
normed space (briefly, CML-fuzzy normed space) if V is vector space and P
is an L-fuzzy set on V × ]0,+∞[ satisfying the following conditions: for all
x, y ∈ V and t, s ∈ ]0,+∞[,

(a) P(x, t) = 0L for all t ≤ 0;
(b) P(x, t) = 1L if and only if x = 0;
(c) P(αx, t) = P

(

x, t
|α|

)

for each α 6= 0;

(d) ∧(P(x, t),P(y, s)) ≤L P(x+ y, t+ s);
(e) P(x, ·) : ]0,∞[→ L is continuous;
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(f) limt→0P(x, t) = 0L and limt→∞P(x, t) = 1L.

In this case P is called an L-fuzzy norm. If P = Pµ,ν is an intuitionistic fuzzy
set (see Definition 1.3), then the pair (V,Pµ,ν) is said to be an Cheng-Mordeson

intuitionistic fuzzy normed space.

Example 1.6. Let (V, ‖ · ‖) be a normed space. We define ∧(a, b) by ∧(a, b) :=
(min(a1, b1),max(a2, b2)) for all a = (a1, a2), b = (b1, b2) ∈ L∗ and let Pµ,ν be
the intuitionistic fuzzy set on V× ]0,+∞[ defined as follows:

Pµ,ν(x, t) =

(

t

t+ ‖x‖
,

‖x‖

t+ ‖x‖

)

for all t ∈ R
+. Then (V,Pµ,ν) is a Cheng-Mordeson intuitionistic fuzzy normed

space.

Definition 1.7. (1) A sequence (xn)n∈N in a CML-fuzzy normed space (V,P)
is called a Cauchy sequence if, for each ε ∈ L \ {0L} and t > 0, there exists
n0 ∈ N such that, for all n,m ≥ n0,

P(xn − xm, t) >L N (ε),

where N is a negator on L.
(2) A sequence (xn)n∈N is said to be convergent to x ∈ V in the CML-

fuzzy normed space (V,P), which is denoted by xn
P
→ x if P(xn − x, t) → 1L,

whenever n → +∞ for all t > 0.
(3) A CML-fuzzy normed space (V,P) is said to be complete if and only if

every Cauchy sequence in V is convergent.

Lemma 1.8 (see [37]). Let P be a CML-fuzzy norm on V . Then we have the

following:

(i) P(x, t) is nondecreasing with respect to t for all x ∈ V ;

(ii) P(x− y, t) = P(y − x, t) for all x, y ∈ V and t ∈ ]0,+∞[.

Definition 1.9. Let (V,P) be an CML-fuzzy normed space and let N be a
negator on L. For all t ∈ ]0,+∞[, we define the open ball B(x, r, t) with center
x ∈ V and radius r ∈ L \ {0L, 1L} as follows:

B(x, r, t) = {y ∈ V | P(x− y, t) >L N (r)}

and define the unit ball of V by

B(0, r, 1) = {x : P(x, 1) >L N (r)}.

A subset A ⊆ V is said to be open if, for each x ∈ A, there exist t > 0 and
r ∈ L \ {0L, 1L} such that B(x, r, t) ⊆ A. Let τP denote the family of all open
subsets of V . Then τP is called the topology induced by the CML-fuzzy norm
P.

Definition 1.10. Let (V,P) be a CML-fuzzy normed space and let N be a
negator on L. A subset A of V is said to be LF -bounded if there exist t > 0
and r ∈ L \ {0L, 1L} such that P(x, t) >L N (r) for all x ∈ A.
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Theorem 1.11. In a CML-fuzzy normed space (V,P), every compact set is

closed and LF -bounded.

Lemma 1.12 (see [13]). Let (V,P) be a CML-fuzzy normed space. Let N be

a continuous negator on L. If we define Eλ,P : V → R
+ ∪ {0} by

Eλ,P(x) = inf{t > 0 : P(x, t) >L N (λ)}

for all λ ∈ L \ {0L, 1L} and x ∈ V . Then we have the following:

(i) Eλ,P(αx) = |α|Eλ,P(x) for all x ∈ A and α ∈ R.

(ii) Eλ,P(x+ y) ≤ Eλ,P(x) + Eλ,P(y) for all x, y ∈ V .

(iii) A sequence (xn)n∈N is convergent with respect to the CML-fuzzy norm

P if and only if Eλ,P(xn − x) → 0. Also, the sequence (xn)n∈N is a

Cauchy sequence with respect to the CML-fuzzy norm P if and only if

it is a Cauchy sequence with respect to Eλ,P .

Lemma 1.13 (see [13]). A subset A of R is LF -bounded in (R,P) if and only

if it is bounded in R.

Corollary 1.14 (see [13]). If the real sequence (βn)n∈N is LF -bounded, then

it has at least one limit point.

Definition 1.15. Let V be a vector space and let f be a real functional on
V . We define

Ṽ = {f : P0(f(x), t) ≥L P(cx, t), c 6= 0}

for all t > 0.

Lemma 1.16 (see [38]). If (V,P) is a CML-fuzzy normed space, then we have

(a) the function (x, y) → x+ y is continuous.

(b) the function (α, x) → αx is continuous.

By the above lemma, a CML-fuzzy normed space is Hausdorff Topological
Vector Space.

2. CML-Fuzzy Finite Dimensional Normed Spaces

Theorem 2.1. Let {x1, · · · , xn} be a linearly independent set of vectors in

vector space V and let (V,P) be a CML-fuzzy normed space. Then there exist

c 6= 0 and a CML-fuzzy normed space (R,P0) such that, for every choice of

the n real scalars α1, · · · , αn,

(2.1) P(α1x1 + · · ·+ αnxn, t) ≤L P0(c

n
∑

j=1

|αj|, t).

Proof. Put s = |α1| + · · · + |αn|. If s = 0, all αj’s must be zero and so (2.1)
holds for any c. Let s > 0. Then (2.1) is equivalent to the inequality which we
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obtain from (2.1) by dividing by s and putting βj =
αj

s
, that is,

(2.2) P(β1x1 + · · ·+ βnxn, t
′) ≤ P0(c, t

′), (t′ =
t

s

n
∑

j=1

|βj| = 1).

Hence, it suffices to prove the existence of a c 6= 0 and L-fuzzy norm P0 such
that (2.2) holds. Suppose that this is not true. Then there exists a sequence
(ym)m∈N of vectors,

ym = β1,mx1 + · · ·+ βn,mxn, (

n
∑

j=1

|βj,m| = 1)

such that P(ym, t) → 1L as m → ∞ for all t > 0. Since
∑n

j=1 |βj,m| = 1, we

have |βj,m| ≤ 1 and so, by Lemma 1.13, the sequence of (βj,m) is LF -bounded.
By Corollary 1.14, (β1,m) has a convergent subsequence. Let β1 denote the
limit of that subsequence and let (y1,m) denote the corresponding subsequence
of (ym). By the same argument, (y1,m) has a subsequence (y2,m) for which the

corresponding subsequence β
(m)
2 of real scalars convergence. Let β2 denote the

limit. Continuing this process, after n steps, we obtain a subsequence (yn,m)m
of (ym) such that

yn,m =

n
∑

j=1

γj,mxj(

n
∑

j=1

|γj,m| = 1)

and γj,m → βj as m → ∞. By Lemma 1.12 (ii), for any µ ∈ L \ {0L, 1L}, we
have

Eµ,P(yn,m −
n
∑

j=1

βjxj) = Eµ,P(
n
∑

j=1

(γj,m − βj)xj)

≤
n
∑

j=1

|γj,m − βj|Eµ,P(xj) → 0

as m → ∞. By Lemma 1.12 (iii), we conclude

lim
m→∞

yn,m =
n
∑

j=1

βjxj(
n
∑

j=1

|βj| = 1),

so that not all βj can be zero. Put y =
∑n

j=1 βjxj . Since {x1, · · · , xn} is a

linearly independent set, we have y 6= 0. Since P(ym, t) → 1L by assumption,
we have P(yn,m, t) → 1L. Hence it follows that

P(y, t) = P((y − yn,m) + yn,m, t) ≥L ∧(P(y − yn,m, t/2),P(yn,m, t/2)) → 1L

and so y = 0, which is a contradiction. �
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Theorem 2.2. Every finite dimensional subspace W of a CML-fuzzy normed

space (V,P) is complete. In particular, every finite dimensional CML-fuzzy
normed space is complete.

Proof. Let (ym)m∈N be a Cauchy sequence in W such that y is its limit. Then
we show that y ∈ W . Let dimW = n and {x1, · · · , xn} any linearly indepen-
dent subset for Y . Then each ym has a unique representation of the form

ym = α
(m)
1 x1 + · · ·+ α(m)

n xn.

Since (ym)m∈N is a Cauchy sequence, for any ε ∈ L \ {0L}, there is a positive
integer n0 such that

N (ε) <L P(ym − yk, t),

whenever m, k > n0 and t > 0. From this and the last theorem, we have

N (ε) <L P(ym − yk, t) = P
(

n
∑

j=1

(α
(m)
j − α

(k)
j )xj , t

)

≤L P0

(

n
∑

j=1

|α(m)
j − α

(k)
j |c, t

)

≤L P0

(

1,
t
c

∑n

j=1 |α
(m)
j − α

(k)
j |

)

≤L P0

(

1,
t
c

|α(m)
j − α

(k)
j |

)

= P0

(

α
(m)
j − α

(k)
j ,

t

c

)

for some c 6= 0 and P0. This shows that each of the n sequences (α
(m)
j )m∈N

where j ∈ {1, 2, 3, · · · , n} is a Cauchy sequence in R. Hence these sequences
converge. Let αj denote the limit. Using these n limits α1, · · · , αn, we define

y = α1x1 + · · ·+ αnxn.

Clearly, y ∈ W . Furthermore, by Lemma 1.12 (ii), for any µ ∈ L \ {0L, 1L},
we have

Eµ,P(ym − y) = Eµ,P

(

n
∑

j=1

((α
(m)
j − αj)xj

)

≤
n
∑

j=1

|α(m)
j − αj |Eµ,P(xj) → 0

whenever m → ∞. This shows that the arbitrary sequence (ym)m∈N is conver-
gent in W . Hence W is complete. �

Corollary 2.3. Every finite dimensional subspace W of a CML-fuzzy normed

space (V,P) is closed in V .

Theorem 2.4. In a finite dimensional CML-fuzzy normed space (V,P), any
subset K ⊂ V is compact if and only if K is closed and LF -bounded.

Proof. By Theorem 1.11, compactness implies closedness and LF -boundedness.
Conversely, let K be closed and LF -bounded. Let dim V = n and {x1, . . . ,

xn} be a linearly independent set of V . We consider a sequence (x(m))m∈N in
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K. Each x(m) has a representation by

x(m) = α
(m)
1 x1 + · · ·+ α(m)

n xn.

Since, K is LF -bounded, so is (x(m))m∈N and so there exist t > 0 and r ∈
L \ {0L, 1L} such that P(x(m), t) >L N (r) for all m ∈ N.
On the other hand, by Theorem 2.1, there exist c 6= 0 and a L-fuzzy norm

P0 such that

N (r) <L P(x(m), t) = P
(

n
∑

j=1

α
(m)
j xj , t

)

≤L P0

(

c

n
∑

j=1

|α(m)
j |, t

)

≤L P0

(

1,
t

c
∑n

j=1 |α
(m)
j |

)

≤L P0

(

1,
t

c|α(m)
j |

)

= P0

(

α
(m)
j ,

t

c

)

.

Hence, the sequence (α
(m)
j )m∈N for any fixed j is LF -bounded and, by Corol-

lary 1.14, has a limit point αj, where 1 ≤ j ≤ n. We consider that (x(m))m∈N

has a subsequence (zm)m∈N which converges to z =
∑n

j=1 αjxj . Since K is

closed, z ∈ K. This shows that an arbitrary sequence (x(m))m∈N in K has a
subsequence which converges in K. Hence, K is compact. �

Remark 2.5. In a CML-fuzzy normed space (V,P) whenever P(x, t) >L N (r)
for all x ∈ V , t > 0 and r ∈ L \ {0L, 1L}, we can find t0 ∈ ]0, t[ such that
P(x, t0) >L N (r) (see [15]).

Lemma 2.6. Let (V,P) be a CML-fuzzy normed space and let A be a subspace

of V . Define

D(x1 −A, t) = sup{P(x1 − y, t) : y ∈ A}

for all x1 ∈ V and t > 0. Then, for any ε ∈ L \ {1L} and x1 ∈ V \ A, there
exists y1 ∈ A such that

∧(D(x1 −A, t), ε) <L P(x1 − y1, t) ≤L D(x1 − A, t).

The proof is straightforward.

Lemma 2.7. Let (V,P) be a CML-fuzzy normed space and let A be a subset

of V . If we define

p1 = inf{t > 0 : D(x1 − A, t) >L N (λ)}

and

p2 = inf{t > 0 : ∧(D(x1 − A, t), ε) >L N (λ)},

in which ε ∈ L \ {1L}. Then there exists δ ∈ ]0, t[ such that p2 ≥ p1 + δ.
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Proof. Since ∧(D(x1 − A, t), ε) <L D(x1 − A, t), by Remark 2.5, there exists
δ ∈ ]0, t[ such that ∧(D(x1 −A, t), ε) <L D(x1 − A, t− δ) and so

p2 = inf{t > 0 : ∧(D(x1 −A, t), ε) >L N (λ)}

≥ inf{t > 0 : D(x1 − A, t− δ) >L N (λ)}

= inf{t + δ > 0 : D(x1 −A, t) >L N (λ)} = p1 + δ. �

Lemma 2.8. Let (V,P) be a CML-fuzzy normed space and let A be a nonempty

closed subspace of V . Then x ∈ A if and only if D(x−A, t) = 1L for all t > 0.

Proof. Let D(x−A, t) = 1L. By definition, there exists a sequence (xn)n∈N in
A such that P(x−xn, t) → 1L. Hence x−xn → 0 or equivalently xn → x and,
since A is closed, x ∈ A. The converse is trivial. �

Theorem 2.9. Let (V,P) be a CML-fuzzy normed space and let A be a

nonempty closed subspace of V . Then, for any y ∈ A, there exist x0 ∈ V \A and

λ0 ∈ L such that x0 ∈ B(0, λ, 1) and Eλ,P(x0 − y) ≥ 1 for all λ0 <L λ ≤L 1L.

Proof. Since, A is a nonempty closed subspace of V , by Lemma 2.8, there
exists x1 ∈ V \ A such that D(x1 − A, t) <L 1L for all t > 0. Let

sup
t>0

D(x1 −A, t) = σ.

Let λ0 = N (σ). Then, for all λ0 <L λ ≤L 1L, we have

sup
t>0

D(x1 −A, t) >L N (λ).

By the property of sup, there exists t0 > 0 such that D(x1−A, t) >L N (λ) for
all t ≥ t0. By Lemma 2.6, there exists y1 ∈ A such that

∧(D(x1 −A, t), ε) <L P(x1 − y1, t)

for all ε ∈ L \ {1L} and t ≥ 0. Taking x0 =
x1−y1
p2

, by Lemma 2.7, we have

P(x0, 1) = P
(x1 − y1

p2
, 1
)

= P(x1 − y1, p2) ≥L ∧(D(x1 − A, p2), ε)

≥L ∧(D(x1 − A, p1 + δ), ε) >L ∧(N (λ), ε).

Since, ε ∈ L\{1L} is arbitrary, we have P(x0, 1) >L N (λ), i.e., x0 ∈ B(0, λ, 1)
for all λ0 <L λ ≤L 1L. Taking δ1 =

δ
p2
, by Lemma 2.7, we have

∧ (P(x0 − y,Ns(δ1)), ε) = ∧(P(x1 − (y1 + p2y), p2Ns(δ1)), ε)

≤L ∧(D(x1 −A, p2 − δ), ε) ≤L N (λ).

Letting ε → 1L and δ → 0, we have P(x0 − y, 1) ≤L N (λ) and so

Eλ,P(x0 − y) ≥ 1

for all y ∈ A and x0 ∈ B(0, λ, 1). �
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Lemma 2.10. Let {x1, · · · , xn} be a linearly independent set of vectors in

vector space V and (V,P) be a CML-fuzzy normed space. Then there exists

k 6= 0 such that, for every choice of the n real scalars α1, · · · , αn,

Eλ,P

(

n
∑

j=1

αjxj

)

≥ |k|
n
∑

j=1

|αj|.

Proof. By Theorem 2.1, there exist c 6= 0 and an L-fuzzy norm P0 such that

P
(

n
∑

j=1

αjxj , t
)

≤L P0

(

c
n
∑

j=1

|αj|, t
)

.

Therefore, we have

Eλ,P

(

n
∑

j=1

αjxj

)

≥ Eλ,P0

(

c

n
∑

j=1

|αj|
)

= |c|
n
∑

j=1

|αj|Eλ,P0
(1).

Taking k = cEλ,P0
(1), we have

Eλ,P

(

n
∑

j=1

αjxj

)

≥ |k|
n
∑

j=1

|αj|. �

Theorem 2.11. Let (V,P) be a CML-fuzzy normed space. Then (V,P) is

finite dimensional if and only if the unit ball B(0, λ, 1) is compact.

Proof. Let dimV = n and {x1, · · · , xn} a basis for V . We consider any se-
quence (x(m))m∈N in B(0, λ, 1). Each x(m) has the representation by

x(m) =

n
∑

j=1

α
(m)
j xj .

By Lemmas 2.7 and 2.10, we have

1 ≥ Eλ,P(x
(m)) ≥ |k|

n
∑

j=1

|α(m)
j |,

where k 6= 0. Hence the sequence (α
(m)
j )m∈N is bounded and has a limit point

αj (1 ≤ j ≤ n). Therefore, (x(m))m∈N has a subsequence (x(mk))k∈N which
converges to x =

∑n

j=1 αjxj .
On the other hand, for any ε 6= 0L, there exists k0 ∈ N such that, for all

k ≥ k0,

P(x, 1 + δ) ≥L ∧(P(x(mk) − x, δ),P(x(mk), 1)) ≥L ∧(N (ε),N (λ))

for all δ > 0. Since ε 6=L 0L and δ > 0 are arbitrary, it follows that

P(x, 1) ≥L ∧(1L,N (λ)) = N (λ)

and, consequently, x ∈ B(0, λ, 1). Hence, B(0, λ, 1) is compact.
Conversely, assume that the unit balls be compact, but (V,P) is not finite

dimensional. We choose x1 6= 0 in V , for any k1 ∈ R, let V1 = {k1x1 : x1 ∈
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V, k1 ∈ R}. By Theorem 2.9, for all λ0,1 <L λ ≤L 1L, there exist x2 ∈ V \ V1

and x2 ∈ B(0, λ, 1) such that Eλ,P(x2 − x1) ≥ 1.
In this case, x1 and x2 are linear independent. In fact, if x1 and x2 are

dependent, then there exists k1, k2 ∈ R (we might as well assume k2 6= 0) such
that k1x1 + k2x2 = 0 and x2 =

−k1
k2

x1 ∈ V1, which is a contradiction.

Let V2 = {k1x1 + k2x2 : x1 ∈ V1, x2 ∈ V \ V1, k1, k2 ∈ R}. By Theorem 2.9,
for all λ0,2 <L λ ≤L 1L, there exist x3 ∈ V \ V2 and x3 ∈ B(0, λ, 1) such that
Eλ,P(x3 − y) ≥ 1 where y ∈ V2. In particular, if we choose y = x1 and y = x2,
then Eλ,P(x3 − x1) ≥ 1 and Eλ,P(x3 − x2) ≥ 1. By the same way, we can
choose (xn)n∈N ⊂ B(0, λ, 1) such that Eλ,P(xm − xn) ≥ 1 where m 6= n for all
λ0,n−1 <L λ ≤L 1L. If we put λ0 = ∨1≤i≤n−1λ0,i, then the sequence (xn)n≥2 lie
in B(0, λ, 1) and Eλ,P(xm − xn) ≥ 1 for all λ0 <L λ ≤L 1L. By Lemma 1.12,
(ii), the sequence (xn)n≥2 has not any convergent subsequence in V , which is
a contradiction. This completes the proof. �

Theorem 2.12. Let (V,P) be a finite dimensional CML-fuzzy normed space

and let A be a closed subspace of V . Then, for all λ >L λ0, there exists

x0 ∈ B(0, λ, 1) such that

inf
y∈A

Eλ,P(x0 − y) = 1.

Proof. By Theorem 2.9, for any yn ∈ A, there exist xn ∈ V \ A and λ0 ∈ L
such that

(2.3) xn ∈ B(0, λ, 1), Eλ,P(xn − yn) ≥ 1

for all λ >L λ0. Since V is finite dimensional, by Theorem 2.11, B(0, λ, 1) is
compact and so there exists x0 ∈ B(0, λ, 1) such that

P(xnk
− x0, t) → 1L

for all t > 0, where (xnk
)k∈N is a subsequence of (xn)n∈N. Since x0 ∈ B(0, λ, 1),

Eλ,P(x0) ≤ 1. Since the null element 0 ∈ A, we have

1 ≥ Eλ,P(x0) = Eλ,P(x0 − 0) ≥ inf
y∈A

Eλ,P(x0 − y).

Next, we prove that infy∈AEλ,P(x0 − y) ≥ 1. By (2.1), P(xn − yn, 1) ≤L

N (λ). Let P(x0 − y, 1) >L N (λ) for all y ∈ A. Then, by continuity of CML-
fuzzy norm P and Remark 2.5, we can find λ1 ∈ L such that, for δ ∈ ]0, 1[,

P(x0 − y,Ns(δ)) >L N (λ1),

and

N (λ1) >L N (λ).

Since xnk
→ x0, there exists k0 ∈ N such that, for every k ≥ k0,

P(xnk
− x0, t) >L N (λ1)
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for all t > 0. By triangle inequality 1.5, (d), we have

N (λ) ≥L P(xnk
− ynk

, t) ≥L ∧(P(xnk
− x0, t/2),P(x0 − ynk

, t/2))

≥L ∧(N (λ1),N (λ1)) >L N (λ),

which is a contradiction. Then, for any y ∈ A, we have P(x0 − y, 1) ≤L N (λ),
which implies infy∈A Eλ,P(x0 − y) ≥ 1. This completes the proof. �

Definition 2.13. A sequence (xm)m∈N in a CML-fuzzy normed space (V,P)
is said to be weakly convergent if there exists x ∈ V such that, for all f ∈ Ṽ
and t > 0,

P(f(xm)− f(x), t) → 1L.

This is written by

xm
W
→ x.

Theorem 2.14. Let (V,P) be a CML-fuzzy normed space and let (xm)m∈N be

a sequence in V . Then we have the following:

(i) Convergence implies weak convergence with the same limit.

(ii) If dimV < ∞, then weak convergence implies convergence.

Proof. (i) Let xm → x. Then, for all t > 0, we have

P(xm − x, t) → 1L.

By Definition 1.15, for every f ∈ Ṽ ,

P0(f(xm)− f(x), t) = P0(f(xm − x), t) ≥L P(xm − x, t/c)(c 6= 0).

Then xm
W
→ x.

(ii) Let xm
W
→ x and dimV = n. Let {x1, . . . , xn} be a linearly independent

set of V . Then xm = α
(m)
1 x1 + · · · + α

(m)
n xn and x = α1x1 + · · · + αnxn. By

assumption, for all f ∈ Ṽ and t > 0, we have

P0(f(xm)− f(x), t) → 1L.

We take in particular f1, · · · , fn defined by fjxj = 1 and fjxi = 0 (i 6= j).

Therefore, fj(xm) = α
(m)
j and fj(x) = αj. Hence fj(xm) → fj(x) implies

α
(m)
j → αj. From this and Lemma 1.12 (ii), we obtain

Eµ,P(xm − x) = Eµ,P

(

n
∑

j=1

(α
(m)
j − αj)xj

)

≤
n
∑

j=1

|α(m)
j − αj|Eλ,P(xj) → 0

as m → ∞. This shows that (xm)m∈N convergence to x. �

Theorem 2.15. A CML-fuzzy normed space (V,P) is locally convex.
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Proof. It suffices to consider the family of neighborhoods of the origin, B(0, r, t),
with t > 0 and r ∈ L \ {0L, 1L}. Let t > 0, r ∈ L \ {0L, 1L}, x, y ∈ B(0, r, t)
and α ∈ [0, 1]. Then we have

P(αx+ (1− α)y, t) ≥L ∧(P(αx, αt),P((1− α)y, (1− α)t))

= ∧(P(x, t),P(y, t)) >L N (r).

Thus, αx+ (1− α)y belongs to B(0, r, t) for all α ∈ [0, 1]. �

3. Stability of Cubic Functional Equations in L-Fuzzy Normed

Spaces

The study of stability problems for functional equations is related to a ques-
tion of Ulam [41] concerning the stability of group homomorphisms and af-
firmatively answered for Banach spaces by Hyers [22]. Subsequently, the re-
sult of Hyers was generalized by T. Aoki [3] for additive mappings and by
Th.M. Rassias [34] for linear mappings by considering an unbounded Cauchy
difference. The paper [34] of Th.M. Rassias has provided a lot of influence in
the development of what we now call Hyers–Ulam–Rassias stability of func-
tional equations. We refer the interested readers for more information on such
problems to e.g. [5, 11, 23, 35, 36].
The functional equation

3f(x+ 3y) + f(3x− y) = 15f(x+ y) + 15f(x− y) + 80f(y)(3.1)

is said to be the cubic functional equation since the function f(x) = cx3 is its
solution. Every solution of the cubic functional equation is said to be a cubic
mapping. The stability problem for the cubic functional equation was proved
by Jun and Kim [24] for mappings f : X → Y , where X is a real normed
space and Y is a Banach space. Later a number of mathematicians worked
on the stability of some types of the cubic equation [25, 34]. In addition,
Mirmostafaee, Mirzavaziri and Moslehian [33, 32], Alsina [1], Miheţ and Radu
[30], Miheţ et. al. [31] and Baktash et. al. [7] investigated the stability in the
settings of fuzzy, probabilistic and random normed spaces.
The aim of this note, is to provide a result on the stability of the cubic

functional equation (3.1) in fuzzy normed spaces and give a better error esti-
mation.
Now, we state our main result.

Theorem 3.1. Let X be a linear space, (Z,P ′) be a CML-fuzzy normed space,

ϕ : X ×X → Z be a function such that for some 0 < α < 27,

P ′(ϕ(3x, 0), t) ≥L P ′(αϕ(x, 0), t) (x, y ∈ X, t > 0)(3.2)
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and limn→∞P ′(ϕ(3nx, 3ny), 27nt) = 1L for all x, y ∈ X and t > 0. Let (Y,P)
be a complete fuzzy normed space. If f : X → Y is a mapping such that

(3.3) P(3f(x+ 3y) + f(3x− y)− 15f(x+ y)− 15f(x− y)− 80f(y), t)

≥L P ′(ϕ(x, y), t)

where x, y ∈ X, t > 0. Then there exists a unique cubic mapping C : X → Y
such that

(3.4) P(f(x)− C(x), t) ≥L P ′(ϕ(x, 0), (27− α)t)).

Proof. Putting y = 0 in (3.3) we get

(3.5) P(
f(3x)

27
− f(x), t) ≥L P(ϕ(x, 0), 27t) (x ∈ X, t > 0).

Replacing x by 3nx in (3.5), and using (3.2) we obtain

(3.6) P(
f(3n+1x)

27n+1
−

f(3nx)

27n
, t) ≥L P ′(ϕ(3nx, 0), 27× 27nt)

≥L P ′(ϕ(x, 0),
27× 27n

αn
t).

Since f(3nx)
27n

− f(x) =
∑n−1

k=0(
f(3k+1x)
27k+1 − f(3kx)

27k
), by (3.6) we have

P

(

f(3nx)

27n
− f(x), t

n−1
∑

k=0

αk

27× 27k

)

≥L ∧n−1
k=0P

′(ϕ(x, 0), t) = P ′(ϕ(x, 0), t),

that is,

P(
f(3nx)

27n
− f(x), t) ≥L P ′

(

ϕ(x, 0),
t

∑n−1
k=0

αk

27×27k

)

.(3.7)

By replacing x with 3mx in (3.7) we observe that:

P(
f(3n+mx)

27n+m
−

f(3mx)

27m
, t) ≥L P ′

(

ϕ(x, 0),
t

∑n+m

k=m
αk

27×27k

)

.(3.8)

Then { f(3nx)
27n

} is a Cauchy sequence in (Y,P). Since (Y,P) is a complete
CML-fuzzy normed space this sequence convergent to some point C(x) ∈ Y .
Fix x ∈ X and put m = 0 in (3.8) to obtain

P(
f(3nx)

27n
− f(x), t) ≥L P ′

(

ϕ(x, 0),
t

∑n−1
k=0

αk

27×27k

)

,(3.9)
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and so for every δ > 0 we have

(3.10)

P(C(x)− f(x), t+ δ) ≥L ∧

(

P(C(x)−
f(3nx)

27n
, δ),P(

f(3nx)

27n
− f(x), t)

)

≥L ∧

(

P

(

C(x)−
f(3nx)

27n
, δ

)

,P ′

(

ϕ(x, 0),
t

∑n−1
k=0

αk

27×27k

))

.

Taking the limit as n → ∞ and using (3.10) we get

P(C(x)− f(x), t+ δ) ≥L P ′(ϕ(x, 0), t(27− α)).(3.11)

Since δ was arbitrary, by taking δ → 0 in (3.11) we get

P(C(x)− f(x), t) ≥L P ′(ϕ(x, 0), t(27− α)).

Replacing x, y by 3nx, 3ny in (3.3) to get

P

(

f(3n(x+ 3y))

27n
+

f(3n(3x− y))

27n
−

15f(3n(x+ y))

27n
−

15f(3n(x− y))

8n
−

−
80f(3n(y))

27n
, t

)

≥L P ′(ϕ(3nx, 3ny), 27nt),

for all x, y ∈ X and for all t > 0. Since limn→∞P ′(ϕ(3nx, 3ny), 27nt) = 1 we
conclude that C fulfills (3.1). To Prove the uniqueness of the cubic function
C, assume that there exists a cubic function D : X → Y which satisfies (3.4).
Fix x ∈ X . Clearly C(3nx) = 27nC(x) and D(3nx) = 27nD(x) for all n ∈ N.
It follows from (3.4) that

P(C(x)−D(x), t) = P

(

C(3nx)

27n
−

D(3nx)

27n
, t

)

≥L ∧

(

P

(

C(3nx)

27n
−

f(3nx)

27n
,
t

2

)

,P

(

D(3nx)

27n
−

f(3nx)

27n
,
t

2

))

≥L P ′

(

ϕ(3nx, 0), 27n(27− α)
t

2

)

≥L P ′

(

ϕ(x, 0),
27n(27− α) t

2

αn

)

.

Since

lim
n→∞

27n(27− α)t

2αn
= ∞,

we get

lim
n→∞

P ′(ϕ(x, 0),
27n(27− α)t

2αn
) = 1L.

Therefore P(C(x)−D(x), t) = 1L for all t > 0, whence C(x) = D(x). �



CHENG-MORDESON L-FUZZY NORMED SPACES 141

Corollary 3.2. Let X be a linear space, L = [0, 1], (Z,P ′) be a CML-fuzzy
normed space, (Y,P) be a complete CML-fuzzy normed space, p, q be nonneg-

ative real numbers and let z0 ∈ Z. If f : X → Y is a mapping such that

(3.12) P(3f(x+ 3y) + f(3x− y)− 15f(x+ y)− 15f(x− y)− 80f(y), t)

≥ P ′((‖x‖p + ‖y‖q)z0, t) (x, y ∈ X, t > 0),

f(0) = 0 and p, q < 3, then there exists a unique cubic mapping C : X → Y
such that

(3.13) P(f(x)− C(x), t) ≥ P ′(‖x‖pz0, (27− 3p)t)).

for all x ∈ X and t > 0.

Proof. Let ϕ : X ×X → Z be defined by ϕ(x, y) = (‖x‖p + ‖y‖q)z0. Then the
corollary is followed from Theorem 3.1 by α = 3p. �

Corollary 3.3. Let X be a linear space, L = [0, 1], (Z,P ′) be a CML-fuzzy
normed space, (Y,P) be a complete CML-fuzzy normed space and let z0 ∈ Z.
If f : X → Y is a mapping such that

(3.14) P(3f(x+3y)+f(3x−y)−15f(x+y)−15f(x−y)−80f(y), t) ≥ P ′(εz0, t)

for x, y ∈ X, t > 0 and f(0) = 0, then there exists a unique cubic mapping

C : X → Y such that

(3.15) P(f(x)− C(x), t) ≥ P ′(εz0, 26t).

for all x ∈ X and t > 0.

Proof. Let ϕ : X ×X → Z be defined by ϕ(x, y) = εz0. Then the corollary is
followed from Theorem 3.1 by α = 1. �
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