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CHENG-MORDESON £-FUZZY NORMED SPACES AND
APPLICATION IN STABILITY OF FUNCTIONAL
EQUATION

R. SAADATI AND Y. J. CHO

ABSTRACT. In this paper, we define and study Cheng-Mordeson L-fuzzy
normed spaces. Further, we consider the finite dimensional Cheng-Mordeson
L-fuzzy normed spaces and prove some theorems about completeness, com-
pactness and weak convergence in these spaces. As application, we get a
stability result in the setting of Cheng-Mordeson L-fuzzy normed spaces.

1. INTRODUCTION AND PRELIMINARIES

The theory of fuzzy sets was introduced by Zadeh in 1965 [44]. After the
pioneering work of Zadeh, there has been a great effort to obtain fuzzy ana-
logues of classical theories. Among other fields, a progressive development is
made in the field of fuzzy topology [2, 21, 15, 16, 18, 19, 20, 29, 39]. One of
the problems in L-fuzzy topology is to obtain an appropriate concept fuzzy
normed spaces. In 1984, Katsaras [26] defined a fuzzy norm on a linear space
and at the same year Wu and Fang [42] also introduced fuzzy normed space
and gave the generalization of the Kolmogoroff normalized theorem for fuzzy
topological linear space. Some mathematicians have defined fuzzy metrics and
norms on a linear space from various points of view [8, 9, 14, 28, 40, 43]. In
1994, Cheng and Mordeson introduced a definition of fuzzy norm on a lin-
ear space in such a manner that the corresponding induced fuzzy metric is of
Kramosil and Michalek type [27]. In 2003, Bag and Samanta [6] modified the
definition of Cheng and Mordeson [10] by removing a regular condition.

In this paper, we define the notion of Cheng-Mordeson L-fuzzy normed
spaces using [37]. Further, we consider finite dimensional Cheng-Mordeson
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L-fuzzy normed spaces and prove some theorems about completeness, com-
pactness and weak convergence in these spaces.

In this paper, £ = (L, >) is a complete lattice, i.e. a partially ordered set in
which every nonempty subset admits supremum and infimum, and 0, = inf L,
1, =sup L.

Definition 1.1 (see [17]). 1.1 Let £ = (L, <) be a complete lattice and let
U be a non-empty set called the universe. An L-fuzzy set in U is defined as
a mapping A: U — L. For each u in U, A(u) represents the degree (in L) to
which u is an element of A.

Lemma 1.2 (see [12]). Consider the set L* and operation <p. defined by
L* = {(x1,29) : (w1, 19) € [0,1]* and z1 + x5 < 1},

(@1, 22) <+ (Y1,42) <= @1 <Y1, T2 = Yo
for all (x1,x2), (y1,y2) € L*. Then (L*,<p+) is a complete lattice.

Definition 1.3 (see [4]). An intuitionistic fuzzy set Ac, in the universe U is
an object A¢, = {(u, Ca(u),na(w)) : w € U}, where (4(u) € [0, 1] and na(u) €
[0,1] for all uw € U are called the membership degree and the non-membership
degree, respectively, of u in A¢, and, furthermore, satisfy Ca(u) 4+ na(u) < 1.

We define mapping A: L? — L as
Jx it <py
For example,
Nz, y) = (min(zy, y1), max(r2, y2)),

in which z = (21, 22),y = (y1,y2) € L*.
Definition 1.4. A negator on L is any decreasing mapping N : L — L satis-
fying N'(0z) = 1z and N (1) = 0z. f N(N(2)) = x for all z € L, then N is
called an involutive negator.

The negator N on ([0, 1], <) defined as Ny(x) = 1 — z for all z € [0,1] is

called the standard negator on ([0, 1], <). In this paper, the involutive negator
N is fixed.

Definition 1.5. The pair (V,P) is said to be an Cheng-Mordeson L-fuzzy
normed space (briefly, C'M L-fuzzy normed space) if V' is vector space and P
is an L-fuzzy set on V x |0, +oo[ satisfying the following conditions: for all
z,y € Vand t,s €0, +o0],

P(z,t) = 0, for all t < 0;

P(x,t) =1, if and only if z = 0;

Plax,t) = P(x, F:fl) for each o # 0;

ANP(z,t),P(y,s)) <p Plx+y,t+s);

P(z,-) :]0,00] — L is continuous;
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(f) limy_oP(x,t) = 0, and limy_,o, P(x,t) = 1.
In this case P is called an L-fuzzy norm. If P =P, , is an intuitionistic fuzzy
set (see Definition 1.3), then the pair (V, P, ) is said to be an Cheng-Mordeson
intuitionistic fuzzy normed space.

Ezxample 1.6. Let (V.|| -||) be a normed space. We define A(a, b) by A(a,b) :=
(min(ay, by), max(as, by)) for all a = (a1, as),b = (by,b2) € L* and let P,, be
the intuitionistic fuzzy set on V'x ]0, +oo[ defined as follows:

b el
P v 7t — 3
(1) <t+uxu el

for all t € R*. Then (V,P,,) is a Cheng-Mordeson intuitionistic fuzzy normed
space.

Definition 1.7. (1) A sequence (x,,)nen in a C'M L-fuzzy normed space (V, P)
is called a Cauchy sequence if, for each ¢ € L\ {0,} and ¢ > 0, there exists
ng € N such that, for all n,m > ny,

P(xn — xm, t) >1 N(e),

where N is a negator on L.
(2) A sequence (z,)nen is said to be convergent to x € V in the C'M L-

fuzzy normed space (V,P), which is denoted by z, Boaif P(x, —x,t) = 1,
whenever n — +oo for all ¢t > 0.

(3) A CM L-fuzzy normed space (V,P) is said to be complete if and only if
every Cauchy sequence in V' is convergent.

Lemma 1.8 (see [37]). Let P be a CM L-fuzzy norm on V. Then we have the
following:

(i) P(z,t) is nondecreasing with respect to t for all x € V;

(i) P(x —y,t) =Py — x,t) for allx,y € V and t € ]0, +o0|.

Definition 1.9. Let (V,P) be an C'M L-fuzzy normed space and let N be a
negator on L. For all t €]0, +oo[, we define the open ball B(x,r,t) with center
x € V and radius r € L'\ {Og, 1.} as follows:

B(z,rt)={y eV | Plx —y,t) >, N(r)}
and define the unit ball of V' by
B(0,r,1) ={z: P(z,1) >, N(r)}.
A subset A C V is said to be open if, for each = € A, there exist ¢ > 0 and
r € L\ {0z, 1.} such that B(z,r,t) C A. Let 7p denote the family of all open

subsets of V. Then 7p is called the topology induced by the C'M L-fuzzy norm
P.

Definition 1.10. Let (V,P) be a C'M L-fuzzy normed space and let N be a
negator on L. A subset A of V is said to be LF-bounded if there exist ¢t > 0
and r € L\ {0z, 1.} such that P(x,t) >, N(r) for all z € A.
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Theorem 1.11. In a CML-fuzzy normed space (V,P), every compact set is
closed and LF-bounded.

Lemma 1.12 (see [13]). Let (V,P) be a CML-fuzzy normed space. Let N be
a continuous negator on L. If we define Exp: V — RT U {0} by

Exp(z) =inf{t > 0: P(x,t) >, N(\)}

for allx € L\ {0¢z,12} and x € V. Then we have the following:

(i) Explaz) = |a|Exp(x) for allx € A and o € R.

(11) E)\77)<.§L’ + y) < E)\77)<.§I,’) + E)\,'p<y) fOT all T,y € V.

(iii) A sequence (x,,)nen s convergent with respect to the C M L-fuzzy norm
P if and only if Exp(x, —x) — 0. Also, the sequence (T,)nen 1S a
Cauchy sequence with respect to the C M L-fuzzy norm P if and only if
it ©s a Cauchy sequence with respect to Ey p.

Lemma 1.13 (see [13]). A subset A of R is LF-bounded in (R, P) if and only
if it is bounded in R.

Corollary 1.14 (see [13]). If the real sequence (By)nen is LF-bounded, then
it has at least one limit point.

Definition 1.15. Let V be a vector space and let f be a real functional on
V. We define

V=Af:Po(f(x).t) 21 Plcx,t),c # 0}
for all t > 0.

Lemma 1.16 (see [38]). If (V,P) is a CM L-fuzzy normed space, then we have
(a) the function (x,y) — =+ y is continuous.

(b) the function (o, x) — ax is conlinuous.

By the above lemma, a C'M L-fuzzy normed space is Hausdorff Topological
Vector Space.

2. CML-Fuzzy FINITE DIMENSIONAL NORMED SPACES

Theorem 2.1. Let {1, - ,x,} be a linearly independent set of vectors in
vector space V' and let (V,P) be a C M L-fuzzy normed space. Then there exist
¢ # 0 and a CML-fuzzy normed space (R, Py) such that, for every choice of
the n real scalars aq, - -+ ,

(2].) P(a1x1+---+an$n,t) SL PO(CZ|QJ|’t)

J=1

Proof. Put s = |ay| 4+ -+ + |ay,|. If s =0, all a;’s must be zero and so (2.1)
holds for any ¢. Let s > 0. Then (2.1) is equivalent to the inequality which we
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obtain from (2.1) by dividing by s and putting §; = =, that is,

(2.2)  PBixr+ -+ Buxn, t') < Pole,t), (' = 2 Zl 8] = 1).
-

Hence, it suffices to prove the existence of a ¢ # 0 and L-fuzzy norm P, such
that (2.2) holds. Suppose that this is not true. Then there exists a sequence
(Ym)men of vectors,

n

Ym = Brm1 + -+ Bomn, (O Bjml =1)

Jj=1

such that P(ym,t) — 1z as m — oo for all £ > 0. Since Y 7 | |Bjm| = 1, we
have |3;,,] <1 and so, by Lemma 1.13, the sequence of (5;,,) is LF-bounded.
By Corollary 1.14, (f1,,) has a convergent subsequence. Let /3 denote the
limit of that subsequence and let (y;,,) denote the corresponding subsequence
of (ym). By the same argument, (y;,,) has a subsequence (ys,,,) for which the

corresponding subsequence Bém) of real scalars convergence. Let 55 denote the
limit. Continuing this process, after n steps, we obtain a subsequence (Y,.m)m
of (ymm) such that

Ynm = nyj,mxj<z h/j,m| = 1)
j=1 j=1

and ;. — f; as m — oco. By Lemma 1.12 (ii), for any g € L\ {0, 1.}, we
have

n

Eup(Ynm — Z Bjx;) = EM,P(Z(%}m — B)z;)
j=1

j=1
<D 1gm = Byl Ep(a;) = 0
j=1

as m — 00. By Lemma 1.12 (iii), we conclude

TYILLIgO Ynm = Zﬁjxj(z |BJ| = 1)7
= =

so that not all f; can be zero. Put y = 2?21 Bjxj. Since {zy,---,z,} is a
linearly independent set, we have y # 0. Since P(y,,t) — 1, by assumption,
we have P(yy, m,t) = 1.. Hence it follows that

Py, t) = P((Y = Ynm) + Ynim> t) 2L NPY — Ynym: t/2), P(Ynm: 1/2)) = 12

and so y = 0, which is a contradiction. O
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Theorem 2.2. Every finite dimensional subspace W of a C M L-fuzzy normed
space (V,P) is complete. In particular, every finite dimensional C'M L-fuzzy
normed space is complete.

Proof. Let (Ym)men be a Cauchy sequence in W such that y is its limit. Then
we show that y € W. Let dimW = n and {zy,--- ,2,} any linearly indepen-
dent subset for Y. Then each y,, has a unique representation of the form

Ym = ozgm):pl ooy,

Since (Ym)men is a Cauchy sequence, for any € € L\ {0}, there is a positive
integer ng such that

N(€) <2 P(ym — yx, 1),

whenever m, k > ng and t > 0. From this and the last theorem, we have

N(#) <1 Plym — s t) = P(D_ (0 = o) 1)

j=1

<o Po(laf" - alert) <o P <1’ "t _a® )
j=1 Zj:l |%‘ -y |

t
c _ m) _ (k) 1
SL 7DO ]-7 (m) _ (k) - 7DO (O[j - a] ) E)
o —a;7

for some ¢ # 0 and Py. This shows that each of the n sequences (ozg.m))meN
where j € {1,2,3,---,n} is a Cauchy sequence in R. Hence these sequences
converge. Let o; denote the limit. Using these n limits a4, - - -, o, we define

Qe+

Y =121 + -+ 0pTy.

Clearly, y € W. Furthermore, by Lemma 1.12 (ii), for any p € L\ {0z, 1.},
we have

n

Eup(Ym —y) = Eup (Z((Ofﬁm) = Oéj)%‘) <> lod™ = oyl Bup(x;) = 0
=1

j=1
whenever m — oco. This shows that the arbitrary sequence (y,,)men is conver-
gent in W. Hence W is complete. 0

Corollary 2.3. Fvery finite dimensional subspace W of a C M L-fuzzy normed
space (V,P) is closed in V.

Theorem 2.4. In a finite dimensional CM L-fuzzy normed space (V,P), any
subset K C V' is compact if and only if K is closed and LF-bounded.

Proof. By Theorem 1.11, compactness implies closedness and £ F-boundedness.
Conversely, let K be closed and LF-bounded. Let dimV = n and {z1,...,
z,} be a linearly independent set of V. We consider a sequence (z(™),,cn in



CHENG-MORDESON £-FUZZY NORMED SPACES 133
K. Each 2™ has a representation by
2™ =aol™z 4+l

Since, K is LF-bounded, so is (2™),,eny and so there exist ¢ > 0 and r €
L\ {OL, 1.} such that P(z™ ) >, N(r) for all m € N.

On the other hand, by Theorem 2.1, there exist ¢ # 0 and a L-fuzzy norm
Py such that

N (r) <p P(a (Za :1:],>

“ t
<t Po (CZ o™, t) <t Po (17 ﬁ)
= Yy ™|
t ot
SL PO (17 (m) ) - 7DO (Oé§ )7 _> .
c|0zj | c

(m)

Hence, the sequence (" )nen for any fixed j is LF-bounded and, by Corol-

lary 1.14, has a limit point «;, where 1 < j < n. We consider that (z™),,cn
has a subsequence (z,,)men Which converges to z = Z?Zl ajz;. Since K is

closed, z € K. This shows that an arbitrary sequence (2™),,cy in K has a
subsequence which converges in K. Hence, K is compact. ([l

Remark 2.5. In a CM L-fuzzy normed space (V, P) whenever P(x,t) >, N(r)
forall z € V, t > 0 and r € L\ {0, 1}, we can find ¢y, €]0,¢[ such that
P(x,to) > N(r) (see [15]).

Lemma 2.6. Let (V,P) be a C M L-fuzzy normed space and let A be a subspace
of V.. Define

Dia1 — A,t) = sup{P(ay — y,1) : y € A}

for allzy € V andt > 0. Then, for anye € L\ {1:} and x; € V' \ A, there
exists y; € A such that

/\(D(l’l — A, t), 8) <7 P(l’l — Y1, f}) SL D(l’l — A, t)
The proof is straightforward.

Lemma 2.7. Let (V,P) be a CML-fuzzy normed space and let A be a subset
of V. If we define

=inf{t >0:D(x;— A,t) >, N(\)}
and
po =1inf{t > 0: A(D(z1 — A, t),e) >, N(\)},
in which e € L\ {1.}. Then there exists 6 € |0,t] such that py > p; + 9.
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Proof. Since AN(D(x1 — A,t),e) < ( — A,t), by Remark 2.5, there exists
d €]0, t[suchthat /\( (a1 At) e) <y D(x; — A,t —0) and so
=inf{t > 0: A(D(z; — A t) e) > NN}
2 inf{t >0:D(x; — At —9) >, NA)}
=inf{t+0>0:D(x;— A t) >, NN} =p1 + 0. O

Lemma 2.8. Let (V,P) be a CM L-fuzzy normed space and let A be a nonempty
closed subspace of V.. Then x € A if and only if D(x — A,t) = 1 for allt > 0.

Proof. Let D(z — A,t) = 1.. By definition, there exists a sequence (z,)nen in
A such that P(x —z,,t) — 1.. Hence z — x,, — 0 or equivalently z,, — x and,
since A is closed, x € A. The converse is trivial. O

Theorem 2.9. Let (V,P) be a CML-fuzzy normed space and let A be a
nonempty closed subspace of V.. Then, for anyy € A, there exist xg € V\ A and
Xo € L such that xg € B(0,A, 1) and E\p(zo —y) > 1 for all \g <p, A <p, 1.

Proof. Since, A is a nonempty closed subspace of V', by Lemma 2.8, there
exists ¢; € V'\ A such that D(z; — A, t) < 1. for all t > 0. Let

supD(x1 — A, t) =

£>0
Let Ao = N (o). Then, for all A\ <z A <, 1., we have

supD(xy — A, t) > N(N).

t>0

By the property of sup, there exists to > 0 such that D(z; — A, t) > N(\) for
all t > ty. By Lemma 2.6, there exists y; € A such that

ND(z1 — A, t),e) < P(z1 — y1,t)
for alle € L\ {1.} and ¢ > 0. Taking zo = * -, by Lemma 2.7, we have

P(z9,1) = P(xlpz yl, 1) =P(z1 —y1,p2) > N(D(x1 — A, p2),€)
> A(D(xqy — A,p1 +0),e) > AN (N),e).
Since, ¢ € L\ {1} is arbitrary, we have P(z9,1) >, N'()), i.e., zg € B(0, A, 1)
for all A\g <; A <y, 1. Taking 6; = p%, by Lemma 2.7, we have
A (P(xo =y, No(01)), ) = A(P(x1 = (41 + pay), p2Ns(61)), €)
<t A(D(z1 — A,pr = 6),€) <p N(A).
Letting ¢ — 1, and § — 0, we have P(xo —y,1) <, M()) and so
Eyp(zo—y) > 1
for all y € A and zy € B(0, A, 1). O
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Lemma 2.10. Let {x1, - ,x,} be a linearly independent set of vectors in
vector space V' and (V,P) be a CML-fuzzy normed space. Then there exists
k # 0 such that, for every choice of the n real scalars aq,- -+, oy,

Exp (Z 0@%‘) > [k lay].
j=1 j=1

Proof. By Theorem 2.1, there exist ¢ # 0 and an L-fuzzy norm Py such that
P(Z Oéjl’j,lf) <z PO(CZ |Oéj|,t>.
i=1 j=1
Therefore, we have
Eap (D ases) = Eap (¢ lagl) = lel Y o | Bam (1),
j=1 j=1 j=1

Taking k = cE) p,(1), we have

EA,P(Z%‘%‘) > [k oyl O
=1 j=1

Theorem 2.11. Let (V,P) be a CML-fuzzy normed space. Then (V,P) is
finite dimensional if and only if the unit ball B(0, \,1) is compact.

Proof. Let dimV = n and {xy,---,z,} a basis for V. We consider any se-
quence (z™),,en in B(0, A, 1). Each 2(™ has the representation by

2 = Z ag-m)xj.
=1

By Lemmas 2.7 and 2.10, we have
1> Byp(a®™) 2 [k D_log™),
j=1

(m
J
a; (1 < j < n). Therefore, (2™),,cy has a subsequence (x(™));cy which
converges to = Y 7 | a;T;.

On the other hand, for any € # 0., there exists kg € N such that, for all
k Z k07

P(w,140) > AP —2,6), P(z'™) 1)) >, AN (), N(N))
for all & > 0. Since € #, 0, and § > 0 are arbitrary, it follows that
Pz, 1) > A1z, N(N) = N(N)

and, consequently, = € B(0, A, 1). Hence, B(0, A, 1) is compact.
Conversely, assume that the unit balls be compact, but (V,P) is not finite
dimensional. We choose z; # 0 in V, for any k; € R, let V} = {kyzy : 1 €

where k # 0. Hence the sequence (« ))meN is bounded and has a limit point
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V, k1 € R}. By Theorem 2.9, for all A\g; < A <, 1., there exist x5 € V \ V}
and x5 € B(0, A, 1) such that Ey p(xg — 1) > 1.

In this case, x; and x5 are linear independent. In fact, if z; and x5 are
dependent, then there exists k1, ko € R (we might as well assume ks # 0) such
that kix1 + koxo = 0 and 9 = *k';lxl € Vi, which is a contradiction.

Let ‘/2 = {]{lel + kg.ﬁl]g X € ‘/1,.1’2 eV \ ‘/1,]{?1,/{?2 € R} By Theorem 29,
for all A\go < A <p 1, there exist 3 € V' \ V4 and 23 € B(0, A, 1) such that
E\p(x3 —y) > 1 where y € V5. In particular, if we choose y = xy and y = 2,
then E)p(zs —x1) > 1 and E)p(x3 — 22) > 1. By the same way, we can
choose (2,)nen C B(0, A, 1) such that Ey p(z,, — z,,) > 1 where m # n for all
Mon—1 < A <p 1g. If we put A\g = Vi<i<n—1A04, then the sequence (z,,),>2 lie
in B(0,\,1) and Ep(zy, — x,) > 1 for all \g <, A <, 1z. By Lemma 1.12,
(ii), the sequence (z,),>2 has not any convergent subsequence in V', which is
a contradiction. This completes the proof. O

Theorem 2.12. Let (V,P) be a finite dimensional C M L-fuzzy normed space
and let A be a closed subspace of V. Then, for all X\ >p X, there exists
xo € B(0,\, 1) such that

inf £ —y) =1.
;I€1A A,P(% ?/)

Proof. By Theorem 2.9, for any y, € A, there exist z, € V' \ A and \g € L
such that

(23) T, € B(O, )\, 1), E)\77)<.§I,’n — yn> Z 1

for all A >, Ag. Since V' is finite dimensional, by Theorem 2.11, B(0, A, 1) is
compact and so there exists zyp € B(0, A, 1) such that

P(zy, — x0,t) = 1

for all ¢ > 0, where (z,, )ken is a subsequence of (z,,)en. Since zg € B(0, A, 1),
Ey\p(x9) < 1. Since the null element 0 € A, we have

1> E\p(z0) = Exp(z0 —0) > élelg Eyp(z0 —y).
Next, we prove that infycs Eyp(zo —y) > 1. By (2.1), P(z, — yn, 1) <g

N(N). Let P(xg —y,1) > N()) for all y € A. Then, by continuity of C'M L-
fuzzy norm P and Remark 2.5, we can find A\; € L such that, for § € ]0, 1],

P(zo — y, Ns(6)) > N (M),
and
N()\l) >, N()\)

Since x,, — o, there exists ky € N such that, for every k& > ky,

P(ZL‘nk — {L‘Q,t) >, N()\l)
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for all ¢ > 0. By triangle inequality 1.5, (d), we have

N<)‘> Ed) P<xnk - ynk7t) L /\(P<xnk — 2o, f}/2),’P<SL’0 - ynk7t/2))
> AN (M), N (A1) > N (),

which is a contradiction. Then, for any y € A, we have P(zo —y,1) <; N(N),
which implies infye 4 E) p(zo — y) > 1. This completes the proof. O
Definition 2.13. A sequence (2, )men in a CM L-fuzzy normed space (V,P)

is said to be weakly convergent if there exists z € V such that, for all f € V
and t > 0,

P(f(xm) = f(x), 1) = Le.
This is written by

1%
Ty — .

Theorem 2.14. Let (V,P) be a CML-fuzzy normed space and let (Ty,)men be
a sequence in V. Then we have the following:

(i) Convergence implies weak convergence with the same limit.
(ii) If dimV < oo, then weak convergence implies convergence.

Proof. (i) Let x,,, — x. Then, for all t > 0, we have
P(xm —x,t) — 1g.
By Definition 1.15, for every f € V,
Po(f(wm) = f(), 1) = Po(f (wm = x),t) 21 P(wm —2,t/c)(c # 0).

Then z,, o

(ii) Let x, W 2 and dimV = n. Let {z1,...,2,} be a linearly independent
set of V. Then z,, = agm)xl oot o™y, and ¥ = auay + - + @prn. By
assumption, for all f € V and t > 0, we have

Po(f (xm) = f(x),1) = 1.

We take in particular fi,---, f, defined by fjz; = 1 and fjz; = 0 (i # j).
Therefore, f;(z.,) = a§m) and f;j(z) = «a;. Hence f;(z,) — f;(z) implies

(m) — ;. From this and Lemma 1.12 (ii), we obtain

E,p(xy, —x)=E,p (Z(oém) —q;j :L‘j) Z |a(m) — | Exp(z;) = 0

7j=1
as m — 0o. This shows that (z,,)men convergence to x. O

Theorem 2.15. A CML-fuzzy normed space (V,P) is locally convez.
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Proof. 1t suffices to consider the family of neighborhoods of the origin, B(0,,t),
with t > 0and r € L\ {0g,1.}. Let ¢ >0, r € L\ {0g, 12}, x,y € B(0,7,1)
and « € [0,1]. Then we have

Plax + (1 —a)y,t) > A(P(az,at), P(1 — a)y, (1 — a)t))
= A(P(z,t),P(y,t)) >5 N(r).

Thus, ax + (1 — a)y belongs to B(0,r,t) for all « € [0, 1]. 0O

3. STABILITY OF CUBIC FUNCTIONAL EQUATIONS IN £-Fuzzy NORMED
SPACES

The study of stability problems for functional equations is related to a ques-
tion of Ulam [41] concerning the stability of group homomorphisms and af-
firmatively answered for Banach spaces by Hyers [22]. Subsequently, the re-
sult of Hyers was generalized by T. Aoki [3] for additive mappings and by
Th.M. Rassias [34] for linear mappings by considering an unbounded Cauchy
difference. The paper [34] of Th.M. Rassias has provided a lot of influence in
the development of what we now call Hyers-Ulam—Rassias stability of func-
tional equations. We refer the interested readers for more information on such
problems to e.g. [5, 11, 23, 35, 36].

The functional equation

(3.1)  3f(x+3y)+fBr—y)=15f(z+y) + 15f(x —y) +80f(y)

is said to be the cubic functional equation since the function f(x) = cx? is its
solution. Every solution of the cubic functional equation is said to be a cubic
mapping. The stability problem for the cubic functional equation was proved
by Jun and Kim [24] for mappings f: X — Y, where X is a real normed
space and Y is a Banach space. Later a number of mathematicians worked
on the stability of some types of the cubic equation [25, 34]. In addition,
Mirmostafaee, Mirzavaziri and Moslehian [33, 32|, Alsina [1], Mihet, and Radu
[30], Mihet et. al. [31] and Baktash et. al. [7] investigated the stability in the
settings of fuzzy, probabilistic and random normed spaces.

The aim of this note, is to provide a result on the stability of the cubic
functional equation (3.1) in fuzzy normed spaces and give a better error esti-
mation.

Now, we state our main result.

Theorem 3.1. Let X be a linear space, (Z,P') be a CM L-fuzzy normed space,
p: X x X — Z be a function such that for some 0 < a < 27,

(3.2) P (p(32,0),t) > P'(ap(x,0),t) (z,y € X,t>0)
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and lim,_,o P'(p(3"x,3"y),27"t) = 1, for all z,y € X and t > 0. Let (Y, P)
be a complete fuzzy normed space. If f: X — Y is a mapping such that

(3.3) PBf(x+3y)+ fBr—y) —15f(z+y) — 15f(x —y) — 80f(y), 1)
>1 P'(e(,y),t)

where x,y € X,t > 0. Then there exists a unique cubic mapping C: X — Y
such that

(3.4) P(f(x) = C(x),t) > P'(p(,0), (27 — a)t)).
Proof. Putting y = 0 in (3.3) we get

f(Bz)
27

(3.5) P( — f(x),t) > P(p(z,0),27t) (x € X,t>0).

Replacing = by 3"z in (3.5), and using (3.2) we obtain

36) P(L f;:f) S f;f) 1) S5 P (p(3m, 0), 27 x 277%)

27 x 27"
—t

> PI(QP(ZL‘,O), an

).

. "x n— k+1g kg
Since f(237n) — f(z) = k:é(f(;;kﬂ ) _ f(;’?k 1), by (3.6) we have
f(3™x) — ok

P (Tm - f(x)atkz% m) >1 Ni=oP'((2,0),1) = P'((,0), 1),

that is,

(3.7) 'P(f(;,;nx) — f(x),t) > P’ (‘P(xa 0), n—+ak> .

k=0 27x27%F

By replacing x with 3™z in (3.7) we observe that:

n+m m
ag pLETD SO s (go(x, 0), ++a> |

k=m 27x27F

Then {%} is a Cauchy sequence in (Y,P). Since (Y,P) is a complete
C'M L-fuzzy normed space this sequence convergent to some point C(z) € Y.

Fix x € X and put m =0 in (3.8) to obtain

f(3"z)

(3.9) P

— @) t) =, P <¢<x,o>, ;> ,

k=0 27x27F
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and so for every § > 0 we have

(3.10)
PC() ~ fa)t+8) 2o 1 (P(C) - L2 0). PLD — o).

>, A (P (C(x) - ff;f)ﬁ) P (W’O)’ +a_>> '
k=0 2727k

Taking the limit as n — oo and using (3.10) we get

(3.11) P(C(x) = f(z),t+06) >L P'(p(x,0),t(27 — a)).

Since § was arbitrary, by taking 6 — 0 in (3.11) we get
P(C(x) = f(x),t) 2L P'((2,0),4(27 — a)).
Replacing x,y by 3"z, 3"y in (3.3) to get
p (B at3y) B Br—y) 16fE"(x+y) 15/B"x—y)
27m 27 27 8n

_ 80/(3"(v))
27"

, t) > P (p(3"x,3"y), 27"),

for all z,y € X and for all ¢ > 0. Since lim,,_,o, P'(p(3"z,3"y),27"t) = 1 we
conclude that C fulfills (3.1). To Prove the uniqueness of the cubic function
C, assume that there exists a cubic function D: X — Y which satisfies (3.4).
Fix x € X. Clearly C(3"z) = 27"C(x) and D(3"z) = 27"D(x) for all n € N.
It follows from (3.4) that

P(C(2) — D(x),1) = P (C(?’nx) b (3"‘”),t)

27 27
C@3"x)  f(3"z) t D(3"z)  f(3"x) t
> z — Z
= P( 277 o 02) P\ o 277 2
t 2727 — )t
©(3"x,0),27" 27—a)2) >, P <¢($,0),%) :
Since
i 20T a)t
n—o00 2am
we get

. 27727 — a)t
i P(p(o,0), T 1y,

Therefore P(C(z) — D(x),t) = 1 for all ¢ > 0, whence C(z) = D(z). O
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Corollary 3.2. Let X be a linear space, L = [0,1], (Z,P") be a CML-fuzzy
normed space, (Y,P) be a complete C M L-fuzzy normed space, p,q be nonneg-
ative real numbers and let zo € Z. If f: X — Y 1is a mapping such that

(3.12) PBf(r+3y) + f(Bx —y) — 15f(x +y) — 15f (v —y) —80f(y),1)
>P'((lz]1” + lyllDz0,t) (z,y € X, t>0),

f(0) =0 and p,q < 3, then there exists a unique cubic mapping C: X — Y
such that

(3.13) P(f(x) = Clz),t) = P'([|lz]"20, (27 — 37)1)).
forallz € X andt > 0.

Proof. Let ¢: X x X — Z be defined by ¢(z,y) = (||z]|” + ||y||?)z0. Then the
corollary is followed from Theorem 3.1 by a = 3P. U

Corollary 3.3. Let X be a linear space, L = [0,1], (Z,P") be a CM L-fuzzy
normed space, (Y, P) be a complete C M L-fuzzy normed space and let zy € Z.
If f: X =Y is a mapping such that

(3.14) P(3f(z+3y)+[f(3x—y)—15f(z+y)—15f(z—y) =80 (y),t) > P'(c20,1)

forx,y € X,;t > 0 and f(0) = 0, then there exists a unique cubic mapping
C: X =Y such that

(3.15) P(f(z) — C(x),t) > P'(e2, 26t).
forallz € X andt > 0.

Proof. Let ¢: X x X — Z be defined by ¢(x,y) = £29. Then the corollary is
followed from Theorem 3.1 by o = 1. O
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