
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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ON E-CURVATURE OF R-QUADRATIC FINSLER METRICS

A. TAYEBI AND E. PEYGHAN

Abstract. In this paper, we prove that every R-quadratic Finsler met-
ric with constant Douglas curvature along any geodesics has vanishing Ē-
curvature. It result that R-quadratic Randers metric satisfies S = 0.

1. Introduction

Let F be a Finsler metric on a manifold M . The geodesics of F are charac-
terized locally by the equation d2xi

dt2
+ 2Gi(x, dx

dt
) = 0, where Gi are coefficients

of a spray defined on M denoted by G(x, y) = yi ∂
∂xi −2Gi ∂

∂yi
. A Finsler metric

F is called a Berwald metric if Gi = 1
2
Γi
jk(x)y

jyk are quadratic in y ∈ TxM for
any x ∈ M . Taking a trace of Berwald curvature yields mean Berwald curva-
ture E. In [12], Shen find a new non-Riemannian quantity for Finsler metrics
that is closely related to the mean Berwald curvature and call it Ē-curvature.
Recall that Ē-curvature is obtained from the mean Berwald curvature by the
covariant horizontal differentiation along geodesics.

The second variation of geodesics gives rise to a family of linear maps Ry :
TxM → TxM , at any point y ∈ TxM . Ry is called the Riemann curvature in
the direction y. There are many Finsler metrics whose Riemann curvature in
every direction is quadratic. A Finsler metric F is said to be R-quadratic if
Ry is quadratic in y ∈ TxM at each point x ∈ M . Indeed a Finsler metric is
R-quadratic if and only if the h-curvature of Berwald connection depends on
position only in the sense of Bácsó–Matsumoto [3]. It is remarkable that, the
notion of R-quadratic Finsler metrics was introduced by Shen, which can be
considered as a generalization of Berwald metrics and R-flat metrics [4, 13, 8].
In this paper, we prove the following.

Theorem 1.1. Let F be a R-quadratic Finsler metric. Suppose that the Dou-
glas curvature of F is constant along any Finslerian geodesics. Then Ē = 0.
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In [1], Akbar-Zadeh considered a non-Riemannian quantity H which is ob-
tained from the mean Berwald curvature by the covariant horizontal differen-
tiation along geodesics. In the class of Weyl metrics, vanishing this quantity
results that the Finsler metric is of constant flag curvature and this fact clarifies
its geometric meaning [1, 10]. By the definition, if Ē = 0 then H = 0.

In [8], it is proved that if F is a R-quadratic Finsler metric then H = 0.
Then Mo consider H-curvature of Finsler manifolds and get a new proof for
this fact [7]. Recently, Li-Shen prove that every R-quadratic Randers metric
has constant non-Riemannian invariant S-curvature [6]. Then Tang proved
that for a Randers metric H = 0 if and only if S = 0 [14]. Therefore, we can
conclude the following.

Corollary 1. Let F be a R-quadratic Randers metric. Then S = 0.

There are many connections in Finsler geometry [15, 16]. In this paper, we
use the Berwald connection and denote the h- and v- covariant derivatives of
a Finsler tensor field by “ | ” and “, ” respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space
at x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M , and by TM0 =
TM \ {0} the slit tangent bundle on M . A Finsler metric on M is a function
F : TM → [0,∞) which has the following properties:
(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive
definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,
define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C = 0 if and only if F is Riemannian.

Given a Finsler manifold (M,F ), then a global vector field G is induced
by F on TM0, which in a standard coordinate (xi, yi) for TM0 is given by
G = yi ∂

∂xi − 2Gi ∂
∂yi

, where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil(y)

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ). The projection of an integral curve
of G is called a geodesic in M . In local coordinates, a curve c(t) is a geodesic
if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.
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For y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗
TxM → R by By(u, v, w) := Bi

j klu
jvkwl ∂

∂xi |x, Ey(u, v) := Ejku
jvk where

Bi
j kl :=

∂3Gi

∂yj∂yk∂yl
, Ejk(y) :=

1

2
Bm

j km,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. B and E are called the Berwald

curvature and mean Berwald curvature respectively. F is called a Berwald
metric and weakly Berwald metric if B = 0 and E = 0, respectively [12].

Let

Di
j kl := Bi

j kl −
1

n+ 1

∂3

∂yj∂yk∂yl
(∂Gm

∂ym
yi
)
.

It is easy to verify that D := Di
j kldx

j⊗∂i⊗dxk⊗dxl is a well-defined tensor on
slit tangent bundle TM0. We call D the Douglas tensor. The Douglas tensor
D is a non-Riemannian projective invariant, namely, if two Finsler metrics
F and F̄ are projectively equivalent, Gi = Ḡi + Pyi, where P = P (x, y) is
positively y-homogeneous of degree one, then the Douglas tensor of F is same
as that of F̄ [5, 9, 11]. Finsler metrics with vanishing Douglas tensor are called
Douglas metrics. The notion of Douglas curvature was proposed by Bácsó and
Matsumoto as a generalization of Berwald curvature [2].

The quantity Hy = Hijdx
i ⊗ dxj is defined as the covariant derivative of E

along geodesics [10]. More precisely

Hij := Eij|my
m

In local coordinates,

2Hij = ym
∂4Gk

∂yi∂yj∂yk∂xm
− 2Gm ∂4Gk

∂yi∂yj∂yk∂ym
−Gm

i B
k
j km −Gm

j B
k
i km,

where Gi
j :=

∂Gi

∂yj
.

The Riemann curvature Ry = Ri
kdx

k ⊗ ∂
∂xi |x : TxM → TxM is a family of

linear maps on tangent spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K =
K(P, y) is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

where gy = gij(x, y)dx
i ⊗ dxj. We say that a Finsler metric F is of scalar

curvature if for any y ∈ TxM , the flag curvature K = K(x, y) is a scalar
function on the slit tangent bundle TM0. If K = constant, then F is said to
be of constant flag curvature.
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A Finsler metric F is said to be R-quadratic if Ry is quadratic in y ∈ TxM
at each point x ∈ M . Let

Ri
j kl(x, y) :=

1

3

∂

∂yj
{∂R

i
k

∂yl
− ∂Ri

l

∂yk
},

where Ri
jkl is the Riemann curvature of Berwald connection. Then we have

Ri
k = Ri

j kl(x, y)y
jyl. Therefore Ri

k is quadratic in y ∈ TxM if and only if Ri
j kl

are functions of position alone. Indeed a Finsler metric is R-quadratic if and
only if the h-curvature of Berwald connection depends on position only in the
sense of Bácsó–Matsumoto [2].

By means of E-curvature, we can define Ēy : TxM ⊗ TxM ⊗ TxM → R by

Ēy(u, v, w) := Ējkl(y)u
ivjwk,

where Ēijk := Eij|k. We call it Ē-curvature. It is remarkable that, Ēijk is
not totally symmetric in all three of its indices. By definition, if Ē = 0, then
E-curvature is covariantly constant along all horizontal directions on TM0.

3. Proof of Theorem 1.1

To prove the Theorem 1.1, we need the following:

Lemma 1.

(1) Ejk,l|my
m = Hjk,l − Ējkl.

Proof. The following Ricci identity for Eij is hold:

(2) Eij,l|k − Eij|k,l = EpjB
p
ikl + EipB

p
jkl.

It follows from (2) that

(3) Ejk,l|my
m = Ejk|m,ly

m = [Ejk|my
m],l − Ejk|l.

This yields the (1). �
Lemma 2. Let F be a R-quadratic Finsler metric. Then the Berwald curvature
of F is constant along any Finslerian geodesics.

Proof. The curvature form of Berwald connection is

(4) Ωi
j = dωi

j − ωk
j ∧ ωi

k =
1

2
Ri

jklω
k ∧ ωl −Bi

jklω
k ∧ ωn+l.

For the Berwald connection, we have the following structure equation

(5) dgij − gjkΩ
k
i − gikΩ

k
j = −2Lijkω

k + 2Cijkω
n+k,

where Lijk := Cijk|sy
s is the Landsberg curvature. Differentiating (5) yields

the following Ricci identity

(6) gpjΩ
p
i − gpiΩ

p
j = − 2Lijk|lω

k ∧ ωl − 2Lijk,lω
k ∧ ωn+l

− 2Cijl|kω
k ∧ ωn+l − 2Cijl,kω

n+k ∧ ωn+l − 2CijpΩ
p
ly

l.
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Differentiating of (4) yields

(7) dΩ j
i − ω k

i ∧ Ω j
k + ω j

k ∧ Ω k
i = 0.

Define Bi
j kl|m and Bi

j kl,m by

(8) dBi
jkl−Bi

mklω
m
i −Bi

jmlω
m
k −Bi

jkmω
m
l +Bi

jklω
i
m = Bi

jkl|mω
m+Bi

jkl,mω
n+m.

Similarly, we define Ri
jkl|m and Ri

jkl,m by

(9) dRi
jkl−Ri

mklω
m
i −Bi

jmlω
m
k −Ri

jkmω
m
l +Ri

jklω
i
m = Ri

jkl|mω
m+Ri

jkl,mω
n+m.

From (6), (7), (8) and (9) one obtain

Ri
j kl|m +Ri

j lm|k +Ri
j mk|l = Bi

j kuR
u
lm +Bi

j luR
u
km +Bi

k luR
u
jm,(10)

Bi
j kl|m −Bi

j mk|l = Ri
j ml,k,(11)

Bi
j kl,m = Bi

j km,l.(12)

By assumption and (11) we have

Bi
j kl|m = Bi

j mk|l,(13)

which contacting with ym, we conclude that

Bi
j kl|my

m = 0.(14)

By (14), we conclude that the Berwald curvature of R-quadratic Finsler metric
is constant along any geodesics. �
Corollary 2. ([7, 8]) Let F be a R-quadratic Finsler metric. Then H = 0.

By (11) we have
Bi

j ml|k −Bi
j km|l = Ri

j kl,m.

This implies that
Ējlk − Ējkl = 2Rm

j kl,m.

Thus we get the following.

Corollary 3. Let F be a R-quadratic Finsler metric. Then Ē-curvature is
totally symmetric in all three of its indices.

Proof of Theorem 1.1:

(15) Di
jkl = Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}.

Then

(16) Di
jkl|my

m = Bi
jkl|my

m − 2

n+ 1
{Ejk|my

mδil + Ekl|my
mδij + Elj|my

mδik}

− 2

n+ 1
Ejk,l|my

myi.

It follows from (11) that

(17) Bi
jkl|my

m = Ri
jml,ky

m.
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Then we have

(18) Ejk|my
m = Rp

jmp,ky
m.

We obtain

(19)

Dα
jkl|my

m = Rα
jml,ky

m − 2

n+ 1
{Rp

jmp,ky
mδαl +Rp

lmp,jy
mδαk +Rp

kmp,ly
mδαj}

− 2

n+ 1
Ejk,l|my

myi.

By assumptions we have

(20) Ejk,l|my
myi = 0.

Contracting (20) with yi yields

(21) Ejk,l|my
m = 0.

Considering (1), we conclude that Ēijk = 0. �

Corollary 4. Let F be a R-quadratic Douglas metric. Then Ē = 0.

It is remarkable that, the assumption of R-quadraticness of a Finsler metric
is necessary in Theorem 1.1 and can not be dropped. For example, see the
following.

Example 1. Let

F := |y|+ < x, y >√
1 + |x|2

, y ∈ TxRn ' Rn

where |.| and <,> denote the Euclidean norm and inner product on Rn respec-
tively. F is indeed a Randers metric on the whole of Rn and it is a projectively
flat Randers metric on Rn i.e., the spray coefficients are in the form Gi = Pyi,
for a scalar function on TM0 given by

P = c
(
|y| − < x, y >√

1 + |x|2
),

where c = 1/2(
√
1 + |x|2). Then F is a Douglas metric. The flag curvature of

F given by

K =
3

4(1 + |x|2)
.
|y|

√
1 + |x|2− < x, y >

|y|
√

1 + |x|2+ < x, y >
.

Therefore, this Randers metric is not R-quadratic. By a simple calculation,
we get Ēijk = (n+ 1)Pij|k 6= 0.
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