t-BALANCING NUMBERS, PELL NUMBERS AND SQUARE TRIANGULAR NUMBERS

AHMET TEKCAN AND AZIZ YAZLA

Abstract

Let $t \geq 2$ be an integer. In this work we get all integer solutions of the Diophantine equation $8 r^{2}+8 t r+1=y^{2}$ in order to determine the general terms of all t-balancing numbers for which $2 t^{2}-1$ is prime. Later we obtain some formulas for the sums of Pell, Pell-Lucas, balancing and Lucas-balancing numbers in terms of t-balancing numbers and also we deduce the general terms of all t-balancing numbers in terms of square triangular numbers.

1. Preliminaries.

A positive integer n is called a balancing number (see [1] and [3]) if the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1.1}
\end{equation*}
$$

holds for some positive integer r which is called cobalancing number (or balancer). If n is a balancing number with balancer r, then from (1.1) one has $\frac{(n-1) n}{2}=r n+\frac{r(r+1)}{2}$ and so

$$
\begin{equation*}
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+1}}{2} \text { and } n=\frac{2 r+1+\sqrt{8 r^{2}+8 r+1}}{2} . \tag{1.2}
\end{equation*}
$$

Let B_{n} denote the $n^{\text {th }}$ balancing number, and let b_{n} denote the $n^{\text {th }}$ cobalancing number. Then $B_{1}=1, B_{2}=6, B_{n+1}=6 B_{n}-B_{n-1}$ and $b_{1}=0, b_{2}=2$, $b_{n+1}=6 b_{n}-b_{n-1}+2$ for $n \geq 2$. The zeros of the characteristic equation $x^{2}-6 x+1=0$ for balancing numbers are $\alpha_{1}=3+\sqrt{8}$ and $\beta_{1}=3-\sqrt{8}$. Ray derived some nice results on balancing and cobalancing numbers in his Phd thesis (Balancing and Cobalancing Numbers, Department of Maths., National Institute of Technology, Rourkela, India, 2009). Since x is a balancing number if and only if $8 x^{2}+1$ is a perfect square, he set $y^{2}-8 x^{2}=1$ for some integer $y \neq 0$. The fundamental solution is $\left(y_{1}, x_{1}\right)=(3,1)$. So $y_{n}+x_{n} \sqrt{8}=(3+\sqrt{8})^{n}$

[^0]and similarly $y_{n}-x_{n} \sqrt{8}=(3-\sqrt{8})^{n}$ for $n \geq 1$. Thus $x_{n}=\frac{(3+\sqrt{8})^{n}-(3-\sqrt{8})^{n}}{2 \sqrt{8}}$ which is the Binet formula for balancing numbers and is denoted by B_{n}. Let $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$ be the roots of the characteristic equation for Pell (and also Pell-Lucas) numbers defined by $P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}$ (and $Q_{0}=Q_{1}=2, Q_{n}=2 Q_{n-1}+Q_{n-2}$) for $n \geq 2$. Since $\alpha^{2}=3+\sqrt{8}$ and $\beta^{2}=3-\sqrt{8}$, the Binet formula for balancing numbers is $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}$. Similarly $b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}$.

From (1.2), we note that B_{n} is a balancing number if and only if $8 B_{n}^{2}+1$ is a perfect square and b_{n} is a cobalancing number if and only if $8 b_{n}^{2}+8 b_{n}+1$ is a perfect square. Thus

$$
\begin{equation*}
C_{n}=\sqrt{8 B_{n}^{2}+1} \text { and } c_{n}=\sqrt{8 b_{n}^{2}+8 b_{n}+1} \tag{1.3}
\end{equation*}
$$

are integers called the $n^{\text {th }}$ Lucas-balancing and $n^{\text {th }}$ Lucas-cobalancing number. Their Binet formulas are $C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}$ and $c_{n}=\frac{\alpha^{2 n-1}+\beta^{2 n-1}}{2}$ (for further details see $[7,8,9,10]$).

Balancing numbers and their generalizations have been investigated by several authors from many aspects (see [4, 5, 6, 12]). Recently in [2], Dash, Ota and Dash considered the t-balancing numbers for an integer $t \geq 2$. A positive integer n is called a t-balancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1+t)+(n+2+t)+\cdots+(n+r+t) \tag{1.4}
\end{equation*}
$$

holds for some positive integer r which is called t-cobalancing (or t-balancer) number. For example

- $2,14,84,492,2870, \cdots$ are 0 -balancing numbers with 0 -balancers 1,6 , 35, 204, 1189, \cdots;
- $5,34,203,1188,6929, \cdots$ are 1 -balancing numbers with 1 -balancers $2,14,84,492,2870, \cdots$;
- $3,8,25,54,153, \cdots$ are 2 -balancing numbers with 2 -balancers $1,3,10$, 22, $63, \cdots$;
- $6,11,45,74,272, \cdots$ are 3 -balancing numbers with 3 -balancers $2,4,18$, $30,112, \cdots$.
(Here we note that 0 -and 1 -balancing numbers can be given in terms of balancing numbers, indeed, $B_{n}^{0}=b_{n+1}, b_{n}^{0}=B_{n}, C_{n}^{0}=c_{n+1}, c_{n}^{0}=C_{n}$ and $B_{n}^{1}=B_{n+1}-1, b_{n}^{1}=b_{n+1}, C_{n}^{1}=C_{n+1}, c_{n}^{1}=c_{n+1}$, that is why it is assumed that $t \geq 2$).

From (1.4) we see that

$$
\begin{align*}
& r=\frac{-(2 n+2 t+1)+\sqrt{8 n^{2}+8 n(1+t)+(2 t+1)^{2}}}{2} \text { and } \tag{1.5}\\
& n=\frac{(2 r-1)+\sqrt{8 r^{2}+8 t r+1}}{2} .
\end{align*}
$$

Let B_{n}^{t} denote the $n^{\text {th }} t$-balancing number and let b_{n}^{t} denote the $n^{\text {th }} t$-cobalancing number. Then from (1.5), we see that B_{n}^{t} is a t-balancing number if and only if $8\left(B_{n}^{t}\right)^{2}+8 B_{n}^{t}(1+t)+(2 t+1)^{2}$ is a perfect square and b_{n}^{t} is a t-cobalancing number if and only if $8\left(b_{n}^{t}\right)^{2}+8 t b_{n}^{t}+1$ is a perfect square. So

$$
\begin{equation*}
C_{n}^{t}=\sqrt{8\left(B_{n}^{t}\right)^{2}+8 B_{n}^{t}(1+t)+(2 t+1)^{2}} \text { and } c_{n}^{t}=\sqrt{8\left(b_{n}^{t}\right)^{2}+8 t b_{n}^{t}+1} \tag{1.6}
\end{equation*}
$$

are integers which are called the $n^{\text {th }}$ Lucas t-balancing and $n^{\text {th }}$ Lucas t-cobalancing number.

2. Results.

In the present paper, we want to determine the general terms of all t-balancing numbers. But we first determine the set of all positive integer solutions of the Diophantine equation

$$
\begin{equation*}
8 r^{2}+8 t r+1=y^{2} \tag{2.1}
\end{equation*}
$$

Let us explain why? We note that for giving any t-cobalancing number r, $8 r^{2}+8 t r+1$ is a perfect square. So we let $8 r^{2}+8 t r+1=y^{2}$ for some integer $y \neq 0$. Thus from (2.1), we deduce that $2(2 r+t)^{2}-y^{2}=2 t^{2}-1$. So putting $x=2 r+t$, we get the Pell equation

$$
\begin{equation*}
2 x^{2}-y^{2}=2 t^{2}-1 \tag{2.2}
\end{equation*}
$$

Now let Δ be a positive non-square discriminant and let $O_{\Delta}=\left\{x+y \rho_{\Delta}\right.$: $x, y \in \mathbb{Z}\}$, where $\rho_{\Delta}=\sqrt{\frac{\Delta}{4}}$ if $\Delta \equiv 0(\bmod 4)$, or $\frac{1+\sqrt{\Delta}}{2}$ if $\Delta \equiv 1(\bmod 4)$. So O_{Δ} is a subring of $\mathbb{Q}(\sqrt{\Delta})=\{x+y \sqrt{\Delta}: x, y \in \mathbb{Q}\}$. Then the unit group O_{Δ}^{*} is defined to be the group of units of the ring O_{Δ}. For the quadratic form $F(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $\Delta=b^{2}-4 a c$, we can write $F(x, y)=\frac{\left(x a+y \frac{b+\sqrt{\Delta}}{2}\right)\left(x a+y \frac{b-\sqrt{\Delta}}{2}\right)}{a}$. So the module M_{F} of F is the O_{Δ}-module $M_{F}=\left\{x a+y \frac{b+\sqrt{\Delta}}{2}: x, y \in \mathbb{Z}\right\} \subset \mathbb{Q}(\sqrt{\Delta})$. Therefore we get $\left(u+v \rho_{\Delta}\right)(x a+$ $\left.y \frac{b+\sqrt{\Delta}}{2}\right)=x^{\prime} a+y^{\prime} \frac{b+\sqrt{\Delta}}{2}$, where

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left\{\begin{array}{cc}
{[x} & y
\end{array}\right]\left[\begin{array}{cc}
u-\frac{b}{2} v & a v \tag{2.3}\\
-c v & u+\frac{b}{2} v
\end{array}\right] \quad \text { if } \Delta \equiv 0(\bmod 4) .
$$

So there is a bijection $\Psi:\{(x, y): F(x, y)=m\} \rightarrow\left\{\gamma \in M_{F}: N(\gamma)=a m\right\}$ for solving the Diophantine equation $F(x, y)=m$, that is, $a x^{2}+b x y+c y^{2}=m$. The action of $O_{\Delta, 1}^{*}=\left\{\alpha \in O_{\Delta}^{*}: N(\alpha)=1\right\}$ on the set $\Omega=\{(x, y): F(x, y)=$ $m\}$ of integral solutions of the equation $F(x, y)=m$ is most interesting when Δ is a positive non-square since $O_{\Delta, 1}^{*}$ is infinite. Therefore the orbit of each solution will be infinite and so the set Ω is either empty or infinite. Since $O_{\Delta, 1}^{*}$ can be explicitly determined, the set Ω is satisfactorily described by the representation of such a list, called a set of representatives of the orbits.

Let ε_{Δ} be the smallest unit of O_{Δ} that is grater than 1 and let $\tau_{\Delta}=\varepsilon_{\Delta}$ if $N\left(\varepsilon_{\Delta}\right)=1$; or ε_{Δ}^{2} if $N\left(\varepsilon_{\Delta}\right)=-1$. Then every $O_{\Delta, 1}^{*}$ orbit of integral solutions of $F(x, y)=m$ contains a solution $(x, y) \in \mathbb{Z}^{2}$ such that $0 \leq y \leq U$, where $U=\left|\frac{a m \tau_{\Delta}}{\Delta}\right|^{\frac{1}{2}}\left(1-\frac{1}{\tau_{\Delta}}\right)$ if $a m>0$; or $U=\left|\frac{a m \tau_{\Delta}}{\Delta}\right|^{\frac{1}{2}}\left(1+\frac{1}{\tau_{\Delta}}\right)$ if $a m<0$. So for finding a set of representatives of the $O_{\Delta, 1}^{*}$ orbits of integral solutions of $F(x, y)=m$, we must find for each integer y such that $0 \leq y \leq U$, all integers x that satisfy $F(x, y)=m$. If $F(x, y)=m$, then $\Delta y^{2}+4 a m=(2 a x+b y)^{2}$ and so $x=\frac{-b y \pm \sqrt{\Delta y^{2}+4 a m}}{2 a}$.

Here we notice that there are one, two, three (maybe or more) sets of representatives depending on t for the Pell equation $2 x^{2}-y^{2}=2 t^{2}-1$. For example, for $t=3$, the set of representatives is $\{[\pm 3,1]\}$; for $t=5$, the set of representatives is $\{[\pm 5,1],[\pm 7,7]\}$; for $t=37$, the set of representatives is $\{[\pm 37,1],[\pm 41,25],[\pm 43,31],[\pm 47,41]\}$. To determine all (positive) integer solutions of $2 x^{2}-y^{2}=2 t^{2}-1$ we have to put some restrictions on t. From now on, we assume that t is an integer such that $2 t^{2}-1$ is a prime.

Theorem 2.1. Let $2 t^{2}-1$ be a prime for an integer $t \geq 2$. Then for the Pell equation $2 x^{2}-y^{2}=2 t^{2}-1$, we have
(1) The set of all positive integer solutions is $\Omega=\left\{\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right\}$, where

$$
\begin{aligned}
{\left[\begin{array}{ll}
x_{2 n+1} & y_{2 n+1}
\end{array}\right] } & =\left[\begin{array}{ll}
t & 1
\end{array}\right] M^{n} \text { for } n \geq 0 \\
{\left[\begin{array}{ll}
x_{2 n} & y_{2 n}
\end{array}\right] } & =\left[\begin{array}{ll}
t & -1
\end{array}\right] M^{n} \text { for } n \geq 1,
\end{aligned}
$$

and $M=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$.
(2) The $n^{\text {th }}$ power of M is

$$
M^{n}=\left[\begin{array}{cc}
C_{n} & 4 B_{n} \\
2 B_{n} & C_{n}
\end{array}\right] .
$$

(3) The set of all positive integer solutions can be given in terms of balancing and Lucas-balancing numbers, that is,

$$
\begin{aligned}
\left(x_{2 n+1}, y_{2 n+1}\right) & =\left(t C_{n}+2 B_{n}, 4 t B_{n}+C_{n}\right) \text { for } n \geq 0 \\
\left(x_{2 n}, y_{2 n}\right) & =\left(t C_{n}-2 B_{n}, 4 t B_{n}-C_{n}\right) \text { for } n \geq 1
\end{aligned}
$$

or in terms of Pell numbers, that is,

$$
\begin{aligned}
\left(x_{2 n+1}, y_{2 n+1}\right) & =\left(\left(P_{2 n}+P_{2 n-1}\right) t+P_{2 n}, 2 t P_{2 n}+P_{2 n}+P_{2 n-1}\right) \\
\left(x_{2 n}, y_{2 n}\right) & =\left(\left(P_{2 n}+P_{2 n-1}\right) t-P_{2 n}, 2 t P_{2 n}-P_{2 n}-P_{2 n-1}\right)
\end{aligned}
$$

for $n \geq 1$.
Proof. (1) For the Pell equation $2 x^{2}-y^{2}=2 t^{2}-1$, we get $\tau_{8}=3+2 \sqrt{2}$ and $8\left(y^{2}+2 t^{2}-1\right)$ is a square only for $y=1$ in the range $0 \leq y \leq U$ and in this case $x= \pm t$. Therefore, we find that there is exactly one $O_{8,1}^{*}$ set of representative
of the orbits and that $\left\{\left[\begin{array}{ll} \pm t & 1\end{array}\right]\right\}$ is a set of representatives. $\left[\begin{array}{ll}t & 1\end{array}\right] M^{n}$ generates the solutions $\left(x_{2 n+1}, y_{2 n+1}\right)$ for $n \geq 0$ and $[t-1] M^{n}$ generates the solutions $\left(x_{2 n}, y_{2 n}\right)$ for $n \geq 1$, where $M=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ by (2.3). So the set of all positive integer solutions of $2 x^{2}-y^{2}=2 t^{2}-1$ is $\Omega=\left\{\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right\}$, where $\left[\begin{array}{ll}x_{2 n+1} & y_{2 n+1}\end{array}\right]=\left[\begin{array}{ll}t & 1\end{array}\right] M^{n}$ for $n \geq 0$ and $\left[\begin{array}{ll}x_{2 n} & y_{2 n}\end{array}\right]=\left[\begin{array}{ll}t-1\end{array}\right] M^{n}$ for $n \geq 1$.
(2) We prove it by induction on n. Let us assume that $n=1$. Then since $C_{1}=3$ and $B_{1}=1$, this relation is true. Let us assume that this relation is satisfied for $n-1$, that is,

$$
M^{n-1}=\left[\begin{array}{cc}
C_{n-1} & 4 B_{n-1} \\
2 B_{n-1} & C_{n-1}
\end{array}\right]
$$

Then we get

$$
M \cdot M^{n-1}=\left[\begin{array}{ll}
3 C_{n-1}+8 B_{n-1} & 12 B_{n-1}+4 C_{n-1} \tag{2.4}\\
2 C_{n-1}+6 B_{n-1} & 8 B_{n-1}+3 C_{n-1}
\end{array}\right]
$$

Since $3 C_{n-1}+8 B_{n-1}=C_{n}, 3 B_{n-1}+C_{n-1}=B_{n}, C_{n-1}+3 B_{n-1}=B_{n}$ and $8 B_{n-1}+3 C_{n-1}=C_{n}$, (2.4) becomes

$$
M \cdot M^{n-1}=\left[\begin{array}{cc}
C_{n} & 4 B_{n} \\
2 B_{n} & C_{n}
\end{array}\right]=M^{n}
$$

(3) From (1) and (2), it is easily seen that $\left(x_{2 n+1}, y_{2 n+1}\right)=\left(t C_{n}+2 B_{n}, 4 t B_{n}+\right.$ C_{n}) for $n \geq 0$ and $\left(x_{2 n}, y_{2 n}\right)=\left(t C_{n}-2 B_{n}, 4 t B_{n}-C_{n}\right)$ for $n \geq 1$. The last assertion is obvious since $P_{2 n}=2 B_{n}$ and $P_{2 n}+P_{2 n-1}=C_{n}$.

Hence we can give the following main result.
Theorem 2.2. (1) For balancing numbers, we have

$$
\begin{aligned}
16 B_{n} C_{n}+32 B_{n}^{2}+2 C_{n}^{2}+2 & =\left(4 b_{n+1}+2\right)^{2} \\
24 B_{n} C_{n}+32 B_{n}^{2}+4 C_{n}^{2} & =2 c_{n+1}\left(4 b_{n+1}+2\right) \\
8 B_{n}^{2}+2 C_{n}^{2}+8 B_{n} C_{n}-1 & =c_{n+1}^{2}
\end{aligned}
$$

for $n \geq 1$.
(2) The general terms of all t-balancing numbers can be given in terms of balancing numbers as

$$
\begin{aligned}
B_{2 n-1}^{t} & =\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2} \\
b_{2 n-1}^{t} & =\frac{\left(C_{n}-1\right) t-2 B_{n}}{2} \\
C_{2 n-1}^{t} & =\left(4 b_{n+1}+2\right) t-c_{n+1} \\
c_{2 n-1}^{t} & =4 t B_{n}-C_{n} \\
B_{2 n}^{t} & =\frac{\left(4 B_{n}+C_{n}-1\right) t+\left(2 B_{n}+C_{n}-1\right)}{2}
\end{aligned}
$$

$$
\begin{aligned}
b_{2 n}^{t} & =\frac{\left(C_{n}-1\right) t+2 B_{n}}{2} \\
C_{2 n}^{t} & =\left(4 b_{n+1}+2\right) t+c_{n+1} \\
c_{2 n}^{t} & =4 t B_{n}+C_{n}
\end{aligned}
$$

for $n \geq 1$.
(3) The general terms of balancing numbers can be given in terms of t-balancing numbers as

$$
\begin{aligned}
& B_{n}=\frac{b_{2 n}^{t}-b_{2 n-1}^{t}}{2} \text { and } \quad C_{n}=\frac{c_{2 n}^{t}-c_{2 n-1}^{t}}{2} \text { for } n \geq 1 \\
& b_{n}=\frac{C_{2 n-2}^{t}+C_{2 n-3}^{t}-4 t}{8 t} \text { and } c_{n}=\frac{C_{2 n-2}^{t}-C_{2 n-3}^{t}}{2} \text { for } n \geq 2
\end{aligned}
$$

(4) Binet formulas for t-balancing numbers are

$$
\begin{aligned}
B_{2 n-1}^{t} & =t\left(\frac{\alpha^{2 n+1}+\beta^{2 n+1}-2}{4}\right)-\frac{\alpha^{2 n+1}-\beta^{2 n+1}+2 \sqrt{2}}{4 \sqrt{2}} \\
b_{2 n-1}^{t} & =t\left(\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}\right)-\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}} \\
C_{2 n-1}^{t} & =t\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\sqrt{2}}\right)-\frac{\alpha^{2 n+1}+\beta^{2 n+1}}{2} \\
c_{2 n-1}^{t} & =t\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{2}}\right)-\frac{\alpha^{2 n}+\beta^{2 n}}{2} \\
B_{2 n}^{t} & =t\left(\frac{\alpha^{2 n+1}+\beta^{2 n+1}-2}{4}\right)+\frac{\alpha^{2 n+1}-\beta^{2 n+1}-2 \sqrt{2}}{4 \sqrt{2}} \\
b_{2 n}^{t} & =t\left(\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}\right)+\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}} \\
C_{2 n}^{t} & =t\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\sqrt{2}}\right)+\frac{\alpha^{2 n+1}+\beta^{2 n+1}}{2} \\
c_{2 n}^{t} & =t\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{2}}\right)+\frac{\alpha^{2 n}+\beta^{2 n}}{2}
\end{aligned}
$$

for $n \geq 1$.
(5) The general terms of Pell and Pell-Lucas numbers can be given in terms of t-balancing numbers as

$$
\begin{aligned}
& P_{2 n}=b_{2 n}^{t}-b_{2 n-1}^{t}, \quad P_{2 n+1}=\frac{C_{2 n}^{t}+C_{2 n-1}^{t}}{4 t}, \\
& Q_{2 n}=\frac{b_{4 n}^{t}-b_{4 n-1}^{t}}{b_{2 n}^{t}-b_{2 n-1}^{t}} \text { and } Q_{2 n+1}=C_{2 n}^{t}-C_{2 n-1}^{t}
\end{aligned}
$$

for $n \geq 1$.

Proof. (1) Note that $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}, C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}$ and $b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}$. So

$$
\begin{aligned}
& 16 B_{n} C_{n}+32 B_{n}^{2}+2 C_{n}^{2}+2 \\
& =16\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)\left(\frac{\alpha^{2 n}+\beta^{2 n}}{2}\right)+32\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)^{2}+2\left(\frac{\alpha^{2 n}+\beta^{2 n}}{2}\right)^{2}+2 \\
& =\frac{\alpha^{4 n+2}-2(\alpha \beta)^{2 n+1}+\beta^{4 n+2}}{2} \\
& =16\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{4 \sqrt{2}}-\frac{1}{2}\right)^{2}+16\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{4 \sqrt{2}}\right)-4 \\
& =16\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{4 \sqrt{2}}-\frac{1}{2}\right)^{2}+16\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{4 \sqrt{2}}-\frac{1}{2}\right)+4 \\
& =16 b_{n+1}^{2}+16 b_{n+1}+4=\left(4 b_{n+1}+2\right)^{2} .
\end{aligned}
$$

The others can be proved similarly.
(2) Since $x=2 r+t$, we get from (3) of Theorem 2.1 that

$$
b_{2 n-1}^{t}=\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}
$$

Thus from (1.6), we get

$$
\begin{aligned}
c_{2 n-1}^{t} & =\sqrt{8\left(b_{2 n-1}^{t}\right)^{2}+8 t b_{2 n-1}^{t}+1} \\
& =\sqrt{8\left(\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}\right)^{2}+8 t\left(\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}\right)+1} \\
& =\sqrt{16 t^{2} B_{n}^{2}-8 t B_{n} C_{n}+C_{n}^{2}} \\
& =4 t B_{n}-C_{n}
\end{aligned}
$$

since $8 B_{n}^{2}+1=C_{n}^{2}$. So from (1.5), we deduce that

$$
B_{2 n-1}^{t}=\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2}
$$

and hence

$$
\begin{aligned}
C_{2 n-1}^{t} & =\sqrt{8\left(B_{2 n-1}^{t}\right)^{2}+8 B_{2 n-1}^{t}(1+t)+(2 t+1)^{2}} \\
& =\sqrt{\begin{array}{c}
8\left(\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2}\right)^{2} \\
+8\left(\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2}\right)(1+t) \\
+(2 t+1)^{2}
\end{array}} \\
& =\sqrt{\begin{array}{l}
t^{2}\left(16 B_{n} C_{n}+32 B_{n}^{2}+2 C_{n}^{2}+2\right) \\
-t\left(24 B_{n} C_{n}+32 B_{n}^{2}+4 C_{n}^{2}\right) \\
+\left(8 B_{n}^{2}+2 C_{n}^{2}+8 B_{n} C_{n}-1\right)
\end{array}} \\
& =\sqrt{t^{2}\left(4 b_{n+1}+2\right)^{2}-2 t c_{n+1}\left(4 b_{n+1}+2\right)+c_{n+1}^{2}}
\end{aligned}
$$

$$
=\left(4 b_{n+1}+2\right) t-c_{n+1}
$$

by (1). The others can be proved similarly.
(3) Since $b_{2 n-1}^{t}=\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}$ and $b_{2 n}^{t}=\frac{\left(C_{n}-1\right) t+2 B_{n}}{2}$ by (2), we easily deduce that $\frac{b_{2 n}^{t}-b_{2 n-1}^{t}}{2}=B_{n}$. The others are similar.
(4) Recall that $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}$ and $C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}$. So we get from (2) that

$$
\begin{aligned}
B_{2 n-1}^{t} & =\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2} \\
& =\frac{t\left[4\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)+\frac{\alpha^{2 n}+\beta^{2 n}}{2}-1\right]-2\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)-\frac{\alpha^{2 n}+\beta^{2 n}}{2}-1}{2} \\
& =\frac{t\left(\frac{\alpha^{2 n}(1+\sqrt{2})+\beta^{2 n}(1-\sqrt{2})-2}{2}\right)-\frac{\alpha^{2 n}(1+\sqrt{2})-\beta^{2 n}(1-\sqrt{2})+2 \sqrt{2}}{2 \sqrt{2}}}{2} \\
& =t\left(\frac{\alpha^{2 n+1}+\beta^{2 n+1}-2}{4}\right)-\frac{\alpha^{2 n+1}-\beta^{2 n+1}+2 \sqrt{2}}{4 \sqrt{2}} .
\end{aligned}
$$

The others can be proved similarly.
(5) Note that $b_{2 n-1}^{t}=\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}$ and $b_{2 n}^{t}=\frac{\left(C_{n}-1\right) t+2 B_{n}}{2}$ by (2). So

$$
b_{2 n}^{t}-b_{2 n-1}^{t}=\frac{\left(C_{n}-1\right) t+2 B_{n}}{2}-\frac{\left(C_{n}-1\right) t-2 B_{n}}{2}=P_{2 n}
$$

since $B_{n}=\frac{P_{2 n}}{2}$. The others can be proved similarly.
2.1. Sums. In this subsection, we consider the sums of numbers we mentioned above.

Theorem 2.3. (1) For the sums of t-balancing numbers, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} B_{i}^{t}=\left(B_{\frac{n+2}{2}}+b_{\frac{n+2}{2}}-\frac{n+2}{2}\right) t-\frac{n}{2} \\
& \sum_{i=1}^{n} b_{i}^{t}=\left(B_{\frac{n}{2}}+b_{\frac{n+2}{2}}-\frac{n}{2}\right) t \\
& \sum_{i=1}^{n} C_{i}^{t}=\left(3 B_{\frac{n+2}{2}}+B_{\frac{n}{2}}+2 b_{\frac{n+2}{2}}-3\right) t \\
& \sum_{i=1}^{n} c_{i}^{t}=4 b_{\frac{n+2}{2}} t
\end{aligned}
$$

for even $n \geq 2$ or

$$
\sum_{i=1}^{n} B_{i}^{t}=\left(B_{\frac{n+3}{2}}-B_{\frac{n+1}{2}}-\frac{n+3}{2}\right) t-b_{\frac{n+3}{2}}-\frac{n+1}{2}
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} b_{i}^{t}=\left(2 B_{\frac{n+1}{2}}-\frac{n+1}{2}\right) t-B_{\frac{n+1}{2}} \\
& \sum_{i=1}^{n} C_{i}^{t}=\left(b_{\frac{n+5}{2}}-b_{\frac{n+1}{2}}-4\right) t-2 B_{\frac{n+3}{2}}+2 b_{\frac{n+3}{2}}+1 \\
& \sum_{i=1}^{n} c_{i}^{t}=4\left(B_{\frac{n+1}{2}}+b_{\frac{n+1}{2}}\right) t-2 B_{\frac{n+1}{2}}-2 b_{\frac{n+1}{2}}-1
\end{aligned}
$$

for odd $n \geq 1$.
(2) For the sums of Pell numbers, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} P_{2 i-1}=\frac{b_{2 n}^{t}-b_{2 n-1}^{t}}{2} \\
& \sum_{i=1}^{n} P_{2 i}=\frac{C_{2 n}^{t}+C_{2 n-1}^{t}-4 t}{8 t} \\
& \sum_{i=0}^{2 n} P_{2 i+1}=\frac{\left(C_{2 n}^{t}+C_{2 n-1}^{t}\right)\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)}{8 t} \\
& \sum_{i=1}^{2 n} P_{2 i}=\frac{\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)}{2} \\
& \sum_{i=0}^{2 n}\left(P_{2 i+1}+P_{2 i+2}\right)=\frac{\left(c_{2 n+2}^{t}-c_{2 n+1}^{t}\right)\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)}{4}
\end{aligned}
$$

(3) For the sums of Pell-Lucas numbers, we have

$$
\begin{aligned}
& \sum_{i=0}^{2 n} Q_{i}=\frac{2\left(b_{4 n+2}^{t}-b_{4 n+1}^{t}\right)}{C_{2 n}^{t}-C_{2 n-1}^{t}} \\
& \sum_{i=1}^{2 n} Q_{2 i}=\frac{\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\left(C_{2 n}^{t}+C_{2 n-1}^{t}\right)}{t}
\end{aligned}
$$

(4) For the sums of balancing numbers, we have

$$
\begin{aligned}
& \sum_{i=1}^{2 n} B_{i}=\frac{\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)}{4} \\
& \sum_{i=1}^{2 n} B_{2 i}=\frac{\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\left(c_{2 n}^{t}-c_{2 n-1}^{t}\right)\left(b_{4 n+2}^{t}-b_{4 n+1}^{t}\right)}{4} \\
& \sum_{i=1}^{2 n}\left(B_{i}+B_{i+1}\right)=2\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\left(b_{2 n+2}^{t}-b_{2 n+1}^{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=0}^{2 n} B_{2 i+1}=\frac{\left(C_{2 n}^{t}+C_{2 n-1}^{t}\right)\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)\left(b_{4 n+2}^{t}-b_{4 n+1}^{t}\right)}{16 t} \\
& \sum_{i=0}^{2 n}\left(B_{2 i+1}+B_{2 i+2}\right)=\frac{\left(C_{4 n+2}^{t}-C_{4 n+1}^{t}\right)\left(b_{4 n+2}^{t}-b_{4 n+1}^{t}\right)}{4}
\end{aligned}
$$

(5) For the sums of Lucas-cobalancing numbers, we have

$$
\begin{aligned}
& \sum_{i=1}^{2 n+1} c_{i+1}=\frac{\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)\left(C_{2 n+2}^{t}-C_{2 n+1}^{t}\right)}{4} \\
& \sum_{i=1}^{2 n+1} c_{2 i+1}=\frac{\left(C_{2 n}^{t}-C_{2 n-1}^{t}\right)\left(C_{2 n}^{t}+C_{2 n-1}^{t}\right)\left(C_{4 n+4}^{t}-C_{4 n+3}^{t}\right)}{16 t} .
\end{aligned}
$$

Proof. (1) Let n be even, say $n=2 k$ for an integer $k \geq 1$. Then from (4) of Theorem 2.2 , we easily get

$$
\begin{aligned}
\sum_{i=1}^{2 k} B_{i}^{t} & =B_{1}^{t}+B_{2}^{t}+\cdots+B_{2 k}^{t} \\
= & {\left[\left(\frac{\alpha^{3}+\beta^{3}-2}{4}\right) t-\frac{\alpha^{3}-\beta^{3}+2 \sqrt{2}}{4 \sqrt{2}}\right] } \\
& +\left[\left(\frac{\alpha^{3}+\beta^{3}-2}{4}\right) t+\frac{\alpha^{3}-\beta^{3}-2 \sqrt{2}}{4 \sqrt{2}}\right] \\
& +\cdots+\left[\left(\frac{\alpha^{2 k+1}+\beta^{2 k+1}-2}{4}\right) t-\frac{\alpha^{2 k+1}-\beta^{2 k+1}-2 \sqrt{2}}{4 \sqrt{2}}\right] \\
= & \left(\frac{\alpha^{3}+\alpha^{5}+\cdots+\alpha^{2 k+1}+\beta^{3}+\beta^{5}+\cdots+\beta^{2 k+1}}{2}-k\right) t-k \\
= & \left(\frac{\alpha^{2 k+2}-\beta^{2 k+2}}{4 \sqrt{2}}+\frac{\alpha^{2 k+1}-\beta^{2 k+1}}{4 \sqrt{2}}-\frac{1}{2}-\frac{2 k+2}{2}\right) t-k \\
= & \left(B_{\frac{n+2}{2}}+b_{\frac{n+2}{2}}-\frac{n+2}{2}\right) t-\frac{n}{2} .
\end{aligned}
$$

The others can be proved similarly.
In [11], Santana and Diaz-Barrero proved that the sum of first nonzero $4 n+1$ terms of Pell numbers is a perfect square, that is,

$$
\begin{equation*}
\sum_{i=1}^{4 n+1} P_{i}=\left(\sum_{i=0}^{n}\binom{2 n+1}{2 i} 2^{i}\right)^{2} \tag{2.5}
\end{equation*}
$$

Later in [13, Theorem 2.1], Tekcan and Tayat proved that the sum of first nonzero $2 n+1$ terms of Pell numbers is a perfect square if n is even or half of
a perfect square if n is odd, that is,

$$
\sum_{i=1}^{2 n+1} P_{i}=\left\{\begin{array}{l}
\left(\frac{\alpha^{n+1}+\beta^{n+1}}{2}\right)^{2} \text { for even } n \\
\frac{\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\sqrt{2}}\right)^{2}}{2} \text { for odd } n
\end{array}\right.
$$

They set $X_{n}=\frac{\alpha^{n+1}+\beta^{n+1}}{2}$ and $Y_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\sqrt{2}}$ for $n \geq 0$ and proved that the right hand side of (2.5) is $\left(2 X_{n}^{2}-2 X_{n} Y_{n-1}+(-1)^{n+1}\right)^{2}$. Similarly, we can give the following theorem.

Theorem 2.4. Let P_{n} denote the $n^{\text {th }}$ Pell number, let Q_{n} denote the $n^{\text {th }}$ PellLucas number and let B_{n} denote the $n^{\text {th }}$ balancing number. Then
(1) The sum of Pell numbers from 1 to $4 n-3$ is a perfect square and is

$$
\sum_{i=1}^{4 n-3} P_{i}=\left(\frac{C_{2 n-2}^{t}-C_{2 n-3}^{t}}{2}\right)^{2}
$$

for $n \geq 2$.
(2) The sum of Pell numbers from 1 to $4 n-1$ and adding 1 is a perfect square and is

$$
1+\sum_{i=1}^{4 n-1} P_{i}=\left(\frac{c_{2 n}^{t}-c_{2 n-1}^{t}}{2}\right)^{2}
$$

for $n \geq 1$.
(3) The sum of Pell numbers from 1 to $2 n-1$ is a perfect square and is

$$
\sum_{i=1}^{2 n-1} P_{i}=\left(\frac{C_{n-1}^{t}-C_{n-2}^{t}}{2}\right)^{2}
$$

for odd $n \geq 3$, and the half of the sum of Pell numbers from 1 to $2 n-1$ is a perfect square and is

$$
\frac{\sum_{i=1}^{2 n-1} P_{i}}{2}=\left(b_{n}^{t}-b_{n-1}^{t}\right)^{2}
$$

for even $n \geq 2$.
(4) The sum of $(2 i-1)^{\text {st }}$ Pell-Lucas numbers from 1 to $2 n$ is a perfect square and is

$$
\sum_{i=1}^{2 n} Q_{2 i-1}=\left(2\left(b_{2 n}^{t}-b_{2 n-1}^{t}\right)\right)^{2}
$$

for $n \geq 1$.
(5) The half of the sum of $(2 i+1)^{\text {st }}$ Pell-Lucas numbers from 0 to $2 n$ is a perfect square and is

$$
\frac{\sum_{i=0}^{2 n} Q_{2 i+1}}{2}=\left(\frac{C_{2 n}^{t}-C_{2 n-1}^{t}}{2}\right)^{2}
$$

for $n \geq 1$.
(6) The sum of $(2 i-1)^{\text {st }}$ balancing numbers from 1 to $2 n$ is a perfect square and is

$$
\sum_{i=1}^{2 n} B_{2 i-1}=\left(\frac{b_{4 n}^{t}-b_{4 n-1}^{t}}{2}\right)^{2}
$$

for $n \geq 1$.
Proof. (1) Note that $P_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ and $\sum_{i=1}^{n} P_{i}=\frac{P_{n}+P_{n+1}-1}{2}$. So

$$
\begin{aligned}
\sum_{i=1}^{4 n-3} P_{2 i-1} & =\frac{P_{4 n-3}+P_{4 n-2}-1}{2} \\
& =\frac{{\frac{\alpha^{4 n-3}-\beta^{4 n-3}}{2 \sqrt{2}}+\frac{\alpha^{4 n-2}-\beta^{4 n-2}}{2 \sqrt{2}}-1}_{2}^{4}}{}=\frac{\alpha^{4 n-2}+\beta^{4 n-2}-2}{4} \\
& =\left(\frac{\left(4 b_{n}+2\right) t+c_{n}-\left(4 b_{n}+2\right) t+c_{n}}{2}\right)^{2} \\
& =\left(\frac{C_{2 n-2}^{t}-C_{2 n-3}^{t}}{2}\right)^{2}
\end{aligned}
$$

by (2) of Theorem 2.2. The other cases can be proved similarly.
2.2. Relationship with Triangular Numbers. In this subsection, we consider the relationship between t-balancing numbers and triangular numbers which are the numbers of the form $T_{n}=\frac{n(n+1)}{2}$ for $n \geq 0$. There are infinitely many triangular numbers that are also square numbers which are called square triangular numbers and is denoted by S_{n}. For the $n^{\text {th }}$ square triangular number S_{n}, we can write

$$
S_{n}=s_{n}^{2}=\frac{t_{n}\left(t_{n}+1\right)}{2},
$$

where s_{n} and t_{n} are the sides of the corresponding square and triangle.
In the following theorem, we can give the general terms of s_{n}, t_{n} and S_{n} in terms of t-balancing numbers and contrary, we can give the general terms of all t-balancing numbers in terms of squares and triangles.

Theorem 2.5. (1) The general terms of s_{n}, t_{n} and S_{n} are
$s_{n}=\frac{b_{2 n}^{t}-b_{2 n-1}^{t}}{2}, t_{n}=\frac{c_{2 n}^{t}-c_{2 n-1}^{t}-2}{4}, S_{n}=\left(\frac{C_{2 n}^{t}-C_{2 n-1}^{t}-b_{2 n+2}^{t}+b_{2 n+1}^{t}}{2}\right)^{2}$ for $n \geq 1$.
(2) The general terms of all t-balancing numbers are

$$
\begin{aligned}
B_{2 n-1}^{t} & =\left(t_{n}+2 s_{n}\right) t-\left(s_{n}+t_{n}+1\right) \\
b_{2 n-1}^{t} & =t_{n} t-s_{n} \\
C_{2 n-1}^{t} & =\left(4 s_{n}+4 t_{n}+2\right) t-\left(s_{n}+s_{n+1}\right) \\
c_{2 n-1}^{t} & =4 s_{n} t-\left(2 t_{n}+1\right) \\
B_{2 n}^{t} & =\left(t_{n}+2 s_{n}\right) t+\left(s_{n}+t_{n}\right) \\
b_{2 n}^{t} & =t_{n} t+s_{n} \\
C_{2 n}^{t} & =\left(4 s_{n}+4 t_{n}+2\right) t+\left(s_{n}+s_{n+1}\right) \\
c_{2 n}^{t} & =4 s_{n} t+\left(2 t_{n}+1\right)
\end{aligned}
$$

for $n \geq 1$.
Proof. (1) Since $s_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}, t_{n}=\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}$ and $S_{n}=\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)^{2}$, we deduce from (4) of Theorem 2.2 that

$$
\begin{aligned}
s_{n} & =\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}} \\
& =\frac{\left(t\left(\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}\right)+\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)-\left(t\left(\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}\right)-\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)}{2} \\
& =\frac{b_{2 n}^{t}-b_{2 n-1}^{t}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
t_{n} & =\frac{\alpha^{2 n}+\beta^{2 n}-2}{4} \\
& =\frac{\left(t\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{2}}\right)+\frac{\alpha^{2 n}+\beta^{2 n}}{2}\right)-\left(t\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\sqrt{2}}\right)-\frac{\alpha^{2 n}+\beta^{2 n}}{2}\right)-2}{4} \\
& =\frac{c_{2 n}^{t}-c_{2 n-1}^{t}-2}{4} .
\end{aligned}
$$

Similarly it can be showed that $S_{n}=\left(\frac{C_{2 n}^{t}-C_{2 n-1}^{t}-b_{2 n+2}^{t}+b_{2 n+1}^{t}}{2}\right)^{2}$.
(2) We get from (2) and (4) of Theorem 2.2 that

$$
\begin{aligned}
B_{2 n-1}^{t} & =\frac{\left(4 B_{n}+C_{n}-1\right) t-\left(2 B_{n}+C_{n}+1\right)}{2} \\
& =\frac{\left[4\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)+\frac{\alpha^{2 n}+\beta^{2 n}}{2}-1\right] t-\left[2\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)+\frac{\alpha^{2 n}+\beta^{2 n}}{2}+1\right]}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{\alpha^{2 n+1}+\beta^{2 n+1}-2}{4}\right) t-\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}+2 \sqrt{2}}{4 \sqrt{2}}\right) \\
& =\frac{\left(\alpha^{2 n}+\beta^{2 n}-2+\sqrt{2} \alpha^{2 n}-\sqrt{2} \beta^{2 n}\right) t}{4}-\frac{\alpha^{2 n}-\beta^{2 n}+\sqrt{2} \alpha^{2 n}+\sqrt{2} \beta^{2 n}+2 \sqrt{2}}{4 \sqrt{2}} \\
& =\left(\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}+\frac{\alpha^{2 n}-\beta^{2 n}}{2 \sqrt{2}}\right) t-\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}+\frac{\alpha^{2 n}+\beta^{2 n}-2}{4}+1\right) \\
& =\left(t_{n}+2 s_{n}\right) t-\left(s_{n}+t_{n}+1\right) .
\end{aligned}
$$

The others can be proved similarly.

References

[1] A. Behera and G.K. Panda. On the Square Roots of Triangular Numbers. The Fibonacci Quarterly, 37(2)(1999), 98-105.
[2] K.K. Dash, R.S. Ota and S. Dash. t-Balancing Numbers. Int. J. Contemp. Math. Sciences, 7(41)(2012), 1999-2012.
[3] R. Finkelstein. The House Problem. Am. Math. Mon. 72(1965), 1082-1088.
[4] T. Kovacs, L. Liptai and P. Olajos. On $(a, b)-$ Balancing Numbers. Publ. Math. Debrecen 77/3-4(2010), 485-498.
[5] K. Liptai. Lucas Balancing Numbers. Acta Math. Univ. Ostrav. 14(2006), 43-47.
[6] K. Liptai, F. Luca, Á. Pinter and L. Szalay. Generalized Balancing Numbers. Indag. Mathem., N.S. 20(1)(2009), 87-100.
[7] P. Olajos. Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Annales Mathematicae et Informaticae 37(2010), 125-138.
[8] G.K. Panda. Some Fascinating Properties of Balancing Numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer. 194(2009), 185-189.
[9] G.K. Panda and P.K. Ray. Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica 6(1)(2011), 41-72.
[10] G.K. Panda and P.K. Ray. Cobalancing Numbers and Cobalancers. Int. J. Math. Sci. 8 (2005), 1189-1200.
[11] S.F. Santana and J.L. Diaz-Barrero. Some Properties of Sums Involving Pell Numbers. Missouri Journal of Mathematical Science 18(1)(2006), 33-40.
[12] L. Szalay. On the Resolution of Simultaneous Pell Equations. Ann. Math. Info. 34 (2007), 77-87.
[13] A. Tekcan and M.Tayat. Generalized Pell Numbers, Balancing Numbers and Binary Quadratic Forms. Creative Mathematics and Inf. 23(1)(2014), 115-122.

Received January 27, 2016.

Uludag University

Faculty of Science
Department of Mathematics
Bursa-Turkiye
E-mail address: tekcan@uludag.edu.tr

[^0]: 2010 Mathematics Subject Classification. 05A19, 11B37, 11B39.
 Key words and phrases. Pell equation, balancing number, t-balancing number, square triangular number.

