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PLANARITY IN VAGUE GRAPHS WITH APPLICATION

GANESH GHORAI AND MADHUMANGAL PAL

Abstract. In lots of practical applications with a graph structure, there
may exist crossing between edges. Crossing between edges is not allowed in
crisp planar graph. Crossing of edges can be considered in a vague multi-
graph with certain amount of vague planarity value. This is why the notion
of vague multiset is introduced. Then vague multigraphs, vague planar
graphs, vague strong edges, vague faces, strong vague faces are defined.
The vague dual graph of a vague planar graph is also introduced. Several
properties of vague planar graphs and vague dual graphs are also studied.
An application of vague planar graph is also given.

1. Introduction

Graph theory is now a very important research topic due to its wide range of
applications in data mining, image segmentation, clustering, image capturing,
networking, communication, planning, scheduling, etc. Design of data struc-
ture, modeling of network topologies can be done using the concept of graph.
Also, paths, walks and circuits are used to solve many problems of traveling
salesman, database design, resource networking, etc. There are many real
world applications like design problems for circuits, subways, utility lines with
a graph structure in which crossing between edges is a nuisance. Crossing of
two connections normally means that the communication lines must be run at
different heights. This is not a big problem for electrical wires but it creates
extra expenses for some types of lines, i.e. burying one subway tunnel under
another. In particular, circuits are easier to manufacture if their connections
can be constructed in fewer layers. These applications are designed using the
concept of planar graphs. Several computational challenges like image segmen-
tation or shape matching can also be solved by means of cuts of planar graph.
In a city planning, subway tunnels, pipelines, metro lines, etc. are essential in
twenty first century. There are chances of accident due to crossing. Also, the
cost for crossing of routes in the underground is high while the underground
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routes reduce the traffic jam. Routes without crossing is preferable for safety,
but due to the lack of space crossing of such lines are allowed. Crossing between
one congested and one non-congested routes is more preferable compared to the
crossing between two congested routes. The term “congested” has no definite
meaning. We generally use “congested”, “very congested”, “highly congested”
routes, etc. These terms are called linguistic terms and they have some mem-
bership values. A congested route may be termed as strong route and low
congested route may be termed as weak route. Thus crossing between strong
route and weak route is safer than the crossing between two strong routes. In
other words, crossing between strong and weak route may be allowed in city
planning with certain amount of safety. The terms “strong route” and “weak
route” lead strong edge and weak edge of a vague graph respectively and the
permission of crossing between strong and weak edges leads to the concept of
vague planar graph.

Now a days, most mathematical models are developed using fuzzy sets to
handle various types of systems containing elements of uncertainty. In 1993,
Gau and Buehrer [4], introduced the notion of vague set theory as a gen-
eralization of Zadeh fuzzy set theory [32]. Vague sets are higher order fuzzy
sets. Application of higher order fuzzy sets makes the solution-procedure more
complex, but if the complexity on computation-time, computation-volume, or
memory-space are not matters of concern, then we can achieve better results.
In a fuzzy set, each element is associated with a point-value selected from the
unit interval [0, 1], which is termed as the grade of membership in the set.
Instead of using point-based membership as in fuzzy sets, interval-based mem-
bership is used in a vague set. The interval-based membership in vague sets
is more expressive in capturing vagueness of data. There are some interesting
features for handling vague data that are unique to vague sets. For example,
vague sets allow for a more intuitive graphical representation of vague data,
which facilitates significantly better analysis in data relationships, incomplete-
ness, and similarity measures. Considering the fuzzy relations between fuzzy
sets, Rosenfeld [20] introduced the concept of fuzzy graphs in 1975 and later on
developed the structure of fuzzy graphs obtaining analogous of several graph
concepts. The concept of weak isomorphism, co-weak isomorphism and iso-
morphism between fuzzy graphs was introduced by Bhutani in [3]. The notion
of fuzzy line graph was introduced by Mordeson in [15]. Mordeson and Nair
[17] defined the complement of fuzzy graph and further studied by Sunitha
and Kumar [23]. After that several researchers are working on fuzzy graphs
such as [14, 16]. Samanta and Pal introduced several types of fuzzy graphs like
fuzzy competition graphs [26, 27], fuzzy tolerance graphs [24], fuzzy threshold
graphs [25], etc. As a generalization of fuzzy graphs some more work can be
found on [5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22, 30]. Abdul and Jabbar et al.
[1] introduced the concept of fuzzy planar graph. Nirmala et al. [18] defined
special fuzzy planar graphs. Samanta et al. [28, 29] defined fuzzy planar graph
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assuming crossing of edges. In this paper, the notion of vague multiset is in-
troduced. Then vague multigraphs, vague planar graphs, vague strong edges,
vague faces, strong vague faces are defined. The vague dual graph of a vague
planar graph is also introduced. Several properties of vague planar graphs and
vague dual graphs are also studied.

2. Preliminaries

A finite graph is a graph G = (V,E) where V and E are both finite sets. G
is called an infinite graph if either V or E or both are infinite sets. Mostly in
graph theory, the graphs discussed are finite. A multigraph [2] is a graph that
may contain multiple edges between any two vertices, but it does not contain
any self loops. A graph can be drawn in many different ways. A graph may
or may not be drawn on a plane without crossing of edges.

A drawing of a geometric representation of a graph on any surface such that
no edges intersect is called embedding [2]. A graph G is planar if it can be
drawn in the plane with its edges only intersecting at vertices of G. So the
graph is non-planar if it can not be drawn without crossing. A planar graph
with cycles divides the plane into a set of regions, also called faces. The length
of a face in a planar graph G is the length of the closed walk in G bounding
the face. The portion of the plane lying outside a graph embedded in a plane
is infinite region.

In crisp graph theory, the dual graph of a given planar graph G is a graph
which has a vertex corresponding to each plane region of G, and the graph
has an edge joining two neighboring regions for each edge in G, for a certain
embedding of G.

Definition 2.1 ([4]). A vague set on a non-empty set X is a pair (tA, fA),
where tA : X → [0, 1], fA : X → [0, 1] are true and false membership functions,
respectively, such that tA(x) + fA(x) ≤ 1 for all x ∈ X.

In the above definition, tA(x) is considered as the lower bound for degree of
membership of x in A(based on evidence for), and fA(x) is the lower bound for
negation of membership of x in A(based on evidence against). Therefore, the
degree of membership of x in the vague set A is characterized by the interval
[tA(x), 1−fA(x)]. So, a vague set is a special case of interval-valued sets studied
by many mathematicians and applied in many branches of mathematics. Vague
sets also have many applications. The interval [tA(x), 1 − fA(x)] is called the
vague value of x in A and is denoted by VA(x). We denote zero vague and unit
vague value by 0 = [0,0] and 1= [1, 1], respectively.

It is worth to mention here that interval-valued fuzzy sets are not vague
sets. In interval-valued fuzzy sets, an interval valued membership value is
assigned to each element of the universe considering the “evidence for x” only,
without considering “evidence against x”. In vague sets both are independently
proposed by the decision maker. This makes a major difference in the judgment
about the grade of membership.
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A vague relation is a further generalization of a fuzzy relation.

Definition 2.2 ([19]). Let X and Y be ordinary finite non-empty sets. We call
a vague relation a vague subset of X × Y , that is an expression R defined by
R = {< (x, y), tR(x, y), fR(x, y) >: x ∈ X, y ∈ Y }, where tR : X × Y → [0, 1]
and fR : X × Y → [0, 1], satisfies the condition 0 ≤ tR(x, y) + fR(x, y) ≤ 1, for
all (x, y) ∈ X × Y .

Definition 2.3 ([19]). A vague relation B on a set V is a vague relation from
V to V . If A is a vague set on a set V , then a vague relation B on A is
a vague relation which satisfies tB(x, y) ≤ min{tA(x), tA(y)} and fB(x, y) ≥
max{tB(x), tB(y)} for all x, y ∈ V .

Definition 2.4 ([19]). Let G∗ = (V,E) be a crisp graph. A pair G = (V,A,B)
is called a vague graph of G∗, where A = (tA, fA) is a vague set on V and B =
(tB, fB) is a vague set on E ⊆ V × V such that tB(x, y) ≤ min{tA(x), tA(y)}
and fB(x, y) ≥ max{tB(x), tB(y)} for each (x, y) ∈ E. We call A the vague
vertex set of G and B as the vague edge set of G respectively.

A vague graph G is said to be strong if tB(u, v) = min{tA(u), tA(v)} and
fB(u, v) = max{fA(u), fA(v)} for all (u, v) ∈ E.
G is said to be complete if tB(u, v) = min{tA(u), tA(v)} and fB(u, v) =

max{fA(u), fA(v)} for all u, v ∈ V .
A vague graph G = (V,A,B) is said to be bipartite if the vertex set V can

be partitioned into two non-empty sets V1 and V2 such that tB(v1, v2) > 0 and
fB(v1, v2) > 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2.

3. Vague multiset

A (crisp) multiset over a non-empty set V is simply a mapping d : V → N
where N is the set of all natural numbers. Yager [31] first discussed fuzzy
multiset, although he used the term “fuzzy bag”. An element of a non-empty
set V may occur more than once with possibly the same or different member-
ship values. A natural generalization of this interpretation of multiset leads
to the notion of fuzzy multiset, or fuzzy bag, over a non-empty set V as a

mapping C̃ : V × [0, 1]→ N. The membership values of V are denoted as vµj ,
j = 1, 2, . . . , p where p = max{j : vµj 6= 0}. So the fuzzy multiset can be
denoted as M = {(v, vµj), j = 1, 2, . . . , p : v ∈ V }. Vague multiset is another
generalization of multiset which is defined below.

Definition 3.1 (Vague multiset). Let V be a nonempty set. Let tiA : V → [0, 1]
and f iA : V → [0, 1] be the mappings such that tiA(v) + f iA(v) ≤ 1 for all v ∈ V ,
i = 1, 2, . . . , p. The vague multiset on V is denoted by A and is defined as
{(v, tiA(v), f iA(v)) : v ∈ V, i = 1, 2, . . . , p}.

Example 3.2. Let V = {a, b, c, d}. Then one of the vague multisets on V is
given by (a, 0.5, 0.2), (a, 0.4, 0.3), (a, 0.6, 0.3) (b, 0.7, 0.2), (c, 0.5, 0.4), (d, 0.4, 0.4),
(d, 0.5, 0.4).
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4. Vague multigraph

In this section, we introduce the concept of vague multigraph using the
notion of vague multiset.

Definition 4.1. Let V be a nonempty set and let A = (tA, fA) be a vague set
on V . Let B = {((u, v), tiB(u, v), f iB(u, v)), i = 1, 2, . . . , p : (u, v) ∈ V ×V } be a
vague multiset of V ×V . Then G = (V,A,B) is said to be vague multigraph if
tiB(u, v) ≤ min{tA(u), tA(v)} and f iB(u, v) ≥ max{fA(u), fA(v)}, for all u, v ∈
V , i = 1, 2, . . . , p. Here, (tA(u), fA(u)) and (tiB(u, v), f iB(u, v)) represent the
membership value of the vertex u and the membership value of the edge (u, v)
in G respectively.

It may be noted that there may be more than one edge between the vertices
u and v. (tiB(u, v), f iB(u, v)) denotes the true and false membership value of
the i-th edge between the vertices u and v respectively and p represents the
number of edges between the vertices u and v.

An example of vague multigraph is given below.

Example 4.2. Let V = {a, b} be a set of vertices. Let tA(a) = 0.5, fA(a) = 0.4,
tA(b) = 0.6, fA(b) = 0.2 and t1B(a, b) = 0.4, f 1

B(a, b) = 0.5, t2B(a, b) = 0.2,
f 2
B(a, b) = 0.7, t3B(a, b) = 0.5, f 3

B(a, b) = 0.4, t4B(a, b) = 0.3, f 4
B(a, b) = 0.6.

Then A = {(a, 0.5, 0.4), (b, 0.6, 0.2)} and
B = {((a, b), 0.4, 0.5), ((a, b), 0.2, 0.7), ((a, b), 0.5, 0.4), ((a, b), 0.3, 0.6)}. The-

refore, G = (V,A,B) is a vague multigraph (see Fig. 1).

x xa b
(0.5, 0.4) (0.6, 0.2)

(0.4.0.5)

(0.2, 0.7)

(0.5, 0.4)

(0.3, 0.6)
Figure 1. Example of vague multigraph.

The underlying crisp graph of a vague multigraph G = (V,A,B) is denoted
by G = (V,E) where V = {u ∈ V : tA(u) > 0 and fA(u) > 0} and B =
{(u, v) ∈ V × V : tiB(u, v) > 0 and f iB(u, v) > 0, i = 1, 2, . . . , p}. A special
type of vague multigraph is defined below.

5. Vague planar graphs

Planarity has an important significance in connection with wire lines, gas
lines, water lines, printed circuits diagrams, etc. But, sometimes little crossing
may be accepted to these designs of such lines or circuits. So the concept
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of vague planar graph is an important topic for these connections. A crisp
graph is called non-planar if there is at least one crossing between the edges
for all geometric representations of the graph. Suppose a crisp graph G has
a crossing for a certain geometrical representation between two edges (u, v)
and (w, x) and has another crossing between the edges (a, b) and (c, d). Now,
when we think about the strength of the edges of a graph in real phenomena,
some crossing causes a big problem and some are not. Assume that the edges
(u, v), (w, x) and (a, b) are strong edges and (c, d) is a weak edge of G. In
realistic view, the crossing between two strong edges (u, v) and (w, x) can not
be considered in a planar graph, whereas the crossing between one strong edge
(a, b) and one weak edge (c, d) may be considered. These linguistic words can
be stated in a well-defined manner as follows: In vague concept, we say that
each of the three strong edges (u, v), (w, x) and (a, b) have membership values
near to (1, 0) and the weak edge (c, d) has membership value near to (0, 0). If
we remove the edge (w, x), then the membership value of the edge (w, x) in
the graph is taken as (0, 0).

Let G = (V,A,B) be a vague multigraph and for a certain geometrical repre-
sentation, the graph has only one crossing between the edges ((w, x), tB(w, x),
fB(w, x)) and ((y, z), tB(y, z), fB(y, z)). If tB(w, x) = 1, fB(w, x) = 0 and
tB(y, z) = 0, fB(y, z) = 0, then we say that the graph has no crossing. Simi-
larly, if tB(w, x) has value near to 1, fB(w, x) has value near to 0 or if tB(y, z)
and fB(y, z) have value near to 0, the crossing will not be important for the
planarity. If tB(w, x), tB(y, z) have value near to 1 and fB(w, x), fB(y, z) have
value near to 0, then the crossing becomes very important for the planarity.
So, if there is a crossing at a point between two edges, then we assign a value
corresponding to the point, called intersecting value.

5.1. Intersecting value in vague multigraph. Let G = (V,A,B) be a
vague multigraph where B = {((u, v), tiB(u, v), f iB(u, v)), i = 1, 2, . . . , p : (u, v)
∈ V×V }. G is called vague complete multigraph if tiB(u, v) = min{tA(u), tA(v)}
and f iB(u, v) = max{fA(u), fA(v)} for all u, v ∈ V and i = 1, 2, . . . , p.

Example 5.1. Let us consider the vague multigraph G as shown in Fig. 2. It
is easy to see that G is a vague complete multigraph.

x xa c
(0.5, 0.3) (0.7, 0.2)

(0.5, 0.3)

xb
(0.4, 0.5)

(0.4, 0.5) (0.4, 0.5)

(0.4, 0.5) (0.4, 0.5)

Figure 2. Vague complete multigraph
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Now we define the strength of an edge ((u, v), tiB(u, v), f iB(u, v)) which is

defined by a value I(u,v) = (I t(u,v), I
f
(u,v)) where I t(u,v) =

tiB(u,v)

min{tA(u),tA(v)} and If(u,v) =
max{fA(u),fA(v)}

f iB(u,v)
.

Definition 5.2. Let G = (V,A,B) be a vague multigraph. An edge (u, v) in

G is said to be vague strong if I t(u,v) ≥ 0.5 and If(u,v) ≤ 0.5. Otherwise it is

called vague weak.

In vague multigraph, when two edges intersect at a point, a value is assigned
to that point in the following way.

Let in a vague multigraph G = (V,A,B), B contains two edges ((u1, v1),
tiB(u1, v1), f

i
B(u1, v1)) and ((u2, v2), t

j
B(u2, v2), f

j
B(u2, v2)) which intersect at a

point P , where i and j are fixed integers. The intersecting value at the point

P is given by IP = (ItP , I
f
P ) where ItP =

It
(u1,v1)

+It
(u2,v2)

2
and IfP =

If
(u1,v1)

+If
(u2,v2)

2
.

In crisp sense, a planar graph has no crossing of edges, i.e. there is no
intersection of edges. So, the ‘planarity’ of the planar graph is ‘full’. Therefore,
if the number of points of intersection in a vague multigraph increases, then
the ‘planarity’ decreases. So, in vague multigraph, IP is inversely proportional
to the ‘planarity’. Using these concept, the notion of vague planar graph is
introduced below.

Definition 5.3 (Planarity of vague multigraph). Let G = (V,A,B) be a vague
multigraph and for a certain geometrical representation P1, P2, . . . , Pk be the
points of intersections between the edges. Then G is said to be vague planar
graph with vague planarity value P = (Pt,Pf ) where Pt = 1

1+{ItP1
+ItP2

+···+ItPk
}

and Pf = 1

1+{IfP1
+IfP2

+···+IfPk
}
.

Clearly, P is bounded since 0 < Pt ≤ 1 and 0 < Pf ≤ 1.
If there is no point of intersection for a certain geometrical representation

of vague planar graph, then its degree of vague planarity is (1, 1). This is the
case where the underlying crisp graph of this vague planar graph is the crisp
planar graph. According the definition, every vague graph is a vague planar
graph with some degree of vague planarity value.

Example 5.4. Let us consider a vague multigraph with two point of intersec-
tions P1 and P2 (see Fig. 3). P1 is a point between the edges ((a, b), 0.3, 0.5) and
((c, d), 0.3, 0.5), P2 is a point between the edges ((a, b), 0.4, 0.5) and ((c, d), 0.3,
0.5).

Now, for the edge ((a, b), 0.3, 0.5), I(a,b) = (0.6, 0.8), for the edge ((a, b), 0.4,
0.5), I(a,b) = (0.8, 0.8) and for the edge ((c, d), 0.3, 0.5), I(c,d) = (0.6, 0.6).

For the point P1, the intersecting value is IP1 = (0.6+0.6
2

, 0.8+0.6
2

) = (0.6, 0.7)

and for the point P2, the intersecting value is IP2 = (0.8+0.6
2

, 0.8+0.6
2

) = (0.7, 0.7).

So, the vague planarity value for the vague multigraph is ( 1
1+0.6+0.7

, 1
1+0.7+0.7

) =
(0.435, 0.417).
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x xc d

(0.5, 0.3) (0.6, 0.3)

(0.6, 0.2)

x

xa

b

(0.5, 0.4)

(0.4, 0.5)

(0.3, 0.5)

(0.3, 0.5)

(0.4, 0.5)
(0.4, 0.3)

P1 P2

q q

Figure 3. Example of vague planar graph with vague planarity (0.435, 0.471)

Now consider a vague complete multigraph whose vague planarity value is
given by the following theorem.

Theorem 5.5. Let G = (V,A,B) be a vague complete multigraph. The vague
planarity value P = (Pt,Pf ) is given by Pt = 1

1+np
and Pf = 1

1+np
, where np

is the number of points of intersection between the edges in G.

Proof. Since G is complete, we have tiB(u, v) = min{tA(u), tA(v)} and f iB(u, v) =
max{fA(u), fA(v)} for all u, v ∈ V and for i = 1, 2, . . . , p. Let P1, P2, . . . , Pk
be the points of intersection between the edges in G.

For an edge (u, v) in G, I t(u,v) =
tiB(u,v)

min{tA(u),tA(v)} = 1 and If(u,v) = max{fA(u),fA(v)}
f iB(u,v)

=

1.
Therefore, for the point P1 which is the point of intersection between the

edges (a, b) and (c, d), the intersection value is IP1 = (1, 1). Hence, IPi
= (1, 1)

for i = 1, 2, . . . , k.
Now, Pt = 1

1+(ItP1
+ItP2

+···+ItPk
)

= 1
1+(1+1+···+1)

= 1
1+np

, where np is the number

of points of intersection between the edges in G. Therefore, the vague planarity
P is given by P = (Pt,Pf ) where Pt = Pf = 1

1+np
. �

Theorem 5.6. Let G = (V,A,B) be a vague planar graph with vague planarity
P = (Pt,Pf ) is such that Pt > 0.5 and Pf < 0.5. Then the number of points
of intersection between vague strong edges in G is at most one.

Proof. If possible, let G has at least two points of intersection P1 and P2

between two vague strong edges in G.
Now, for any vague strong edge ((u, v), tiB(u, v), f iB(u, v)), I t(u,v) ≥ 0.5 and

If(u,v) ≤ 0.5.

Thus, for any two intersecting strong edges ((u, v), tiB(u, v), f iB(u, v)) and

((w, x), tjB(w, x), f jB(w, x)),
It
(u,v)

+It
(w,x)

2
≥ 0.5 and

If
(u,v)

+If
(w,x)

2
≤ 0.5 i.e. ItP1

≥ 0.5

and IfP1
≤ 0.5.
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Similarly, ItP2
≥ 0.5 and IfP2

≤ 0.5. Then, 1+ItP1
+ItP2

≥ 2 and 1+IfP1
+IfP2

≤
2. Therefore, Pt = 1

1+ItP1
+ItP2

≤ 0.5 and Pf = 1

1+IfP1
+IfP2

≥ 0.5.

This is a contradiction since Pt > 0.5 and Pf < 0.5.
Hence, the number of points of intersection between vague strong edges

cannot be two. Clearly, if the number of point of intersection of vague strong
edges increases, then the vague planarity value decreases. Similarly, if the
number of point of intersection of vague edges is one, then the vague planarity
value P = (Pt,Pf ) is such that Pt > 0.5 and Pf < 0.5. Any vague planar
graph without any crossing between edges has vague planarity value P where
Pt > 0.5 and Pf < 0.5. Thus, we conclude that the maximum number of point
of intersection between vague strong edges in G is one. �

Next, let us now state a fundamental theorem of vague planar graph.

Theorem 5.7. Let G = (V,A,B) be a vague planar graph with vague planarity
value P = (Pt,Pf ). If Pt ≥ 0.67 and Pf ≤ 0.33, then G does not contain any
point of intersection between two vague strong edges.

Proof. If possible, let P be a point of intersection between two vague strong
edges ((u, v), tiB(u, v), f iB(u, v)) and ((w, x), tjB(w, x), f jB(w, x)).

For any vague strong edge ((u, v), tiB(u, v), f iB(u, v)), we have I t(u,v) ≥ 0.5

and If(u,v) ≤ 0.5.

For the minimum value of I t(u,v), I
t
(w,x) and for the maximum value of If(u,v),

If(w,x), ItP = 0.5 and IfP = 0.5. Then, Pt = 1
1+0.5

< 0.67 and Pf = 1
1+0.5

> 0.33,

a contradiction. Hence, G does not contain any point of intersection between
vague strong edges. �

This theorem motivated us to introduce a special type of vague planar graph
called strong vague planar graphs whose vague planarity value P = (Pt,Pf )
is such that Pt ≥ 0.67, Pf ≤ 0.33. If the vague planarity is (1, 1), then
the geometrical representation of vague planar graph is similar to the crisp
planar graph. In the above theorem, it is shown that, if the vague planarity
P = (Pt,Pf ) with Pt ≥ 0.67 and Pf ≤ 0.33, then there is no crossing between
vague strong edges. In this case, if there is any point of intersection between
edges, then the intersection is between vague weak edge and any other edge.
The significance of vague weak edge is less compared to the vague strong edges.
Thus, strong vague planar graph is more significant. If the vague planarity
value increases, then the geometrical structure of planar graph tends to crisp
planar graph.

Definition of strong vague planar graph is given below.

Definition 5.8. A vague planar graph G is said to be strong vague planar
graph if the vague planarity value P = (Pt,Pf ) of the graph is such that
Pt ≥ 0.67, Pf ≤ 0.33.
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Thus, depending on vague planarity value, the vague planar graph is divided
into two groups namely, strong vague planar graph and weak vague planar
graph.

Strength of an edge has an important role to model some types of project.
If the strength of an edge is very small, then the edge may be ignored to design
a project. So, the edges with sufficient strengths are very useful to design such
projects. These edges are called considerable edges which is defined below.

Definition 5.9. Let G = (V,A,B) be a vague planar graph. Let 0 < c <
0.5 be a rational number. An edge ((u, v), tB(u, v), fB(u, v)) is said to be

considerable edge if tB(u,v)
min{tA(u),tA(v)} ≥ c and max{fA(u),fA(v)}

fB(u,v)
≤ c. If an edge is

not considerable, then it is called non-considerable edge.
For a vague multigraph G, a multi-edge ((u, v),

tiB(u, v), f iB(u, v)) is said to be considerable edge if
tiB(u,v)

min{tA(u),tA(v)} ≥ c and
max{fA(u),fA(v)}

f iB(u,v)
≤ c for all i = 1, 2, . . . , p.

If tB(u,v)
min{tA(u),tA(v)} ≥ c and max{fA(u),fA(v)}

fB(u,v)
≤ c for all edges (u, v) of a vague

graph G, then the number c is said to be considerable number of the vague
graph. Considerable number of a vague graph may not be unique.

Clearly, for a specific value of c, there is a set of considerable edges and
for different values of c, one can obtain different sets of considerable edges.
Actually, c is a pre-assigned number for a specific application. For example,
a social network (people, organization, etc) is taken as a vague vertex and
the relationship between them is represented by vague edge. The amount of
relationship (within [0, 1]) is taken as true and false membership degree of
the vague edge. If we choose c = 0.25 for this network, then we get a set
of considerable edge, say C. This set consists of a group of people who have
some considerable amount of relationship. The number of point of intersection
between considerable edges can be determined from the following theorem.

Theorem 5.10. Let G be vague planar graph with vague planarity value P =
(Pt,Pf ) be such that Pt ≥ 0.5 and Pf ≤ 0.5 and considerable number c. Then
the number of point of intersection between considerable edges in G is at most
[1
c
] or 1

c
according as 1

c
is not an integer or an integer respectively.

Proof. Let G = (V,A,B) be a vague planar graph where

B = {((u, v), tiB(u, v), f iB(u, v)), i = 1, 2, . . . , p : (u, v) ∈ V × V }.
Let 0 < c < 0.5 be the considerable number. For any considerable edge

((u, v), tiB(u, v), f iB(u, v)), we have tiB(u, v) ≥ c min{tA(u), tA(v)} and f iB(u, v) ≥
1
c

max{fA(u), fA(v)}.
This implies that, I t(u,v) ≥ c and If(u,v) ≤ c.

Let P1, P2, . . . , Pk be the k-points of intersection between the considerable
edges. Also let, P1 be the point of intersection between the considerable edges
((u1, v1), t

i
B(u1, v1), f

i
B(u1, v1)) and ((u2, v2), t

j
B(u2, v2), f

j
B(u2, v2)).
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Then ItP1
=

It
(u1,v1)

+It
(u2,v2)

2
≥ c and IfP1

=
If
(u1,v1)

+If
(u2,v2)

2
≤ c.

So,
k∑
i=1

ItPi
≥ kc and

k∑
i=1

IfPi
≤ kc.

Hence, Pt ≤ 1
1+kc

and Pf ≥ 1
1+kc

.

This imply that 0.5 ≤ Pt ≤ 1
1+kc

and 1
1+kc
≤ Pf ≤ 0.5

i.e. 0.5 ≤ Pt ≤ 1
1+kc
≤ Pf ≤ 0.5

i.e. 0.5 = 1
1+kc

= Pt = Pf
i.e. k = 1

c
.

Hence the values of k are given by

k =

{
[1
c
], if 1

c
is not an integer,

1
c
, if 1

c
is an integer.

This completes the proof. �

We know that, the complete graph (crisp) with five vertices K5 and the com-
plete bipartite graph with six vertices K3,3 cannot be drawn without crossings.
Therefore, any graph (crisp) containing K5 or K3,3 as a subgraph is non-planar.

Theorem 5.11. Any complete vague graph of five vertices K5 or complete
bipartite vague graph of six vertices K3,3 are not strong vague planar graph.

Proof. Let G = (V,A,B) be a complete vague graph of five vertices where V =
{u, v, w, x, y} and B = {((u, v), tB(u, v), fB(u, v)) : (u, v) ∈ V × V }. For all
u, v ∈ V , we have tB(u, v) = min{tA(u), tA(v)} and fB(u, v) = max{fA(u), fA(v)}.

By Theorem 5.5, we have the vague planarity value of a complete vague
graph is P = (Pt,Pf ) where Pt = 1

1+np
and Pf = 1

1+np
, np being the number

of point of intersection of the edges in G.
We know that the geometric representation of the underlying crisp graph of a

vague complete graph of five vertices is non-planar and one point of intersection
cannot be avoided for any representation. So, Pf = 0.5 > 0.33. Hence G is
not strong vague planar graph.

Similarly, it can be proved that the complete bipartite vague graph K3,3 is
not a strong vague planar graph. �

6. Faces of vague planar graph

Face of a vague planar graph is an important parameter. Face of a vague
planar graph is a region bounded by vague edges. Every vague face is char-
acterized by vague edges in its boundary. If all the edges in the boundary
of vague face have true and false membership values 1 and 0 respectively, it
becomes crisp face. If one such edges is removed or has true and false 0 and
1 respectively, the vague face does not exist. So, the existence of a vague face
depends on the minimum value of strength of vague edges in its boundary.
Vague face and its true and false membership values of a vague graph are
defined below.
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?
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Figure 4. Example of vague planar graph with three vague faces

Definition 6.1. Let G = (V,A,B) be a vague planar graph and

B = {((u, v), tiB(u, v), f iB(u, v)), i = 1, 2, . . . , p : (u, v) ∈ V × V }.
A vague face of G is a region bounded by the set of vague edges E ′ ⊆ V × V ,
of a geometric representation of G. The strength of the face is (tF , fF ) where

tF = min{I t(u,v) : (u, v) ∈ E ′} and fF = max{If(u,v) : (u, v) ∈ E ′}.

Definition 6.2. A vague face is called strong vague face if tF > 0.5 or fF < 0.5
and weak vague face otherwise. Every vague planar graph has an infinite region
which is called outer vague face. Other faces are called inner vague faces.

Example 6.3. Let us consider the vague planar graph as shown in the Fig. 4.
Here, F1, F2, F3 are three vague faces. The vague face F1 is bounded by the
edges ((v1, v2), 0.3, 0.3), ((v2, v4), 0.3, 0.2) and ((v4, v1), 0.4, 0.3) with strength
(0.67, 1).

Similarly, F3 is a face bounded by the edges ((v1, v3), 0.2, 0.3), ((v1, v2), 0.3, 0.3)
and ((v2, v3), 0.4, 0.2) with strength (0.33, 1). F2 is the outer face with strength
(0.33, 1). So, F1 is strong vague face while F2, F3 are weak vague faces.

7. Vague dual graph

In this section, we introduce the concept of dual of a vague planar graph.
In vague dual graph, vertices are corresponding to the strong vague faces and
each edge in dual graph between two vertices is corresponding to each edge in
the boundary between two vague faces of vague planar graph. The definition
is given below.

Definition 7.1. Let G = (V,A,B) be a vague planar graph where B =
{((u, v), tiB(u, v), f iB(u, v)), i = 1, 2, . . . , p : (u, v) ∈ V × V }. Let F1, F2, . . . , Fk
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be the strong vague faces of G. The vague dual graph of G is a vague planar
graph G1 = (V1, A1, B1) where V1 = {xj, j = 1, 2, . . . , k}, the vertex xj of G1

is correspond to the face Fj of G.
The true and false membership values of vertices are given by the mapping

A1 = (tA1 , fA1) : V1 → [0, 1] × [0, 1] such that tA1(xj) = max{ti(u, v), i =
1, 2, . . . , l : (u, v) is an edge of the boundary of the vague face Fi}, and
fA1(xj) = min{f i(u, v), i = 1, 2, . . . , l : (u, v) is an edge of the boundary of
the vague face Fi}.

There may exist more than one common edge between two vague faces Fi
and Fj of G. Thus there may be more than one edge between two vertices xi
and xj in the vague dual graph G1. Let tlB(xi, xj) and f lB(xi, xj) denote the
true and false membership values of the l-th edge between xi and xj. The true
and false membership values of the edges of the vague dual graph are given
by tlB1

(xi, xj) = tlB(u, v), f lB1
(xi, xj) = f lB(u, v) where (u, v) is a common edge

between two vague faces Fi and Fj and l = 1, 2, . . . , t; t being the number of
common edges in the boundary between Fi and Fj or the number the edges
between xi and xj.

If there is any strong pendant edge in the vague planar graph, then there will
be a self-loop in G1 corresponding to this pendant edge. The edge true and false
membership value of the self-loop is equal to the true and false membership
value of the pendant edge. Vague dual graph of vague planar graph does not
contain any point of intersection of edges for a certain representation, so it is
a vague planar graph with vague planarity value (1, 1).

x x

x x

u v

w x

x2
x3

x4

cc

c

cx1

Figure 5. Vague planar graph and it’s vague dual graph

Next, we give an example of a vague dual graph of a vague planar graph
which are shown in Fig. 5. We assume that the black filled circles and the lines
represent the vertices and edges of the vague planar graph while the empty
circles and the dotted lines represent the vertices and edges of vague dual graph
corresponding to the vague planar graph.
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Example 7.2. Let us now consider a vague planar graph G = (V,A,B) as
shown in Fig. 5, where V = {u, v, w, x},
A = {(u, 0.7, 0.1), (v, 0.6, 0.2), (w, 0.8, 0.1), (x, 0.9, 0.1)}, and
B = {((u, v), 0.6, 0.2), ((v, x), 0.5, 0.25), ((w, x), 0.7, 0.2), ((u,w), 0.7, 0.1),

((u,w), 0.6, 0.15), ((v, w), 0.5, 0.22)}.
The vague planar graph has the following faces:

(i) the vague face F1 is bounded by ((v, w), 0.5, 0.22), ((w, x), 0.7, 0.2),
((v, x), 0.5, 0.25),

(ii) the vague face F2 is bounded by ((u, v), 0.6, 0.2), ((u,w), 0.7, 0.1),
((v, w), 0.5, 0.22),

(iii) the vague face F3 is bounded by ((u,w), 0.7, 0.1), ((u,w), 0.6, 0.15), and
(iv) the outer vague face F4 is surrounded by ((u, v), 0.6, 0.2), ((v, x), 0.5, 0.25),

((w, x), 0.7, 0.2), ((u,w), 0.6, 0.15).

Since all the faces are strong vague faces, for each strong vague faces, we
consider a vertex for the vague dual graph. Thus the vertex set V1 of the
vague dual graph is V1 = {x1, x2, x3, x4}, where the vertex xi corresponds to
the strong vague face Fi, i = 1, 2, 3, 4.

Now, the true and false membership values of the vertex set V1 are calculated
below:

tA1(x1) = max{0.5, 0.7, 0.5} = 0.7, fA1(x1) = min{0.22, 0.2, 0.25} = 0.2,
tA1(x2) = max{0.6, 0.7, 0.5} = 0.7, fA1(x2) = min{0.2, 0.1, 0.22} = 0.1,
tA1(x3) = max{0.7, 0.6} = 0.7, fA1(x3) = min{0.1, 0.15} = 0.1,
tA1(x4) = max{0.6, 0.5, 0.7, 0.6} = 0.7, fA1(x4) = min{0.2, 0.25, 0.2, 0.15} =

0.15.
There are two common edges (w, x) and (v, x) between the faces F1 and F4

in G. Therefore, there exist two edges between x1 and x4 in the vague dual
graph. The true and false membership values of these edges are given by

tB1(x1, x4) = tB(w, x) = 0.7, fB1(x1, x4) = fB(w, x) = 0.2,
tB1(x1, x4) = tB(v, x) = 0.5, fB1(x1, x4) = fB(v, x) = 0.25.
The true and false membership values of other edges of the vague dual graph

are calculated as
tB1(x1, x2) = tB(v, w) = 0.5, fB1(x1, x2) = fB(v, w) = 0.22,
tB1(x2, x3) = tB(u,w) = 0.7, fB1(x2, x3) = tB(u,w)=0.1,
tB1(x2, x4) = tB(u, v)=0.6, fB1(x2, x4) = tB(u, v)=0.2,
tB1(x3, x4) = tB(u,w)=0.6, fB1(x3, x4) = tB(u,w)=0.15.
Thus, the edge set of the vague dual graph is
B1 = {((x1, x2), 0.5, 0.22), ((x2, x3), 0.7, 0.1), ((x2, x4), 0.6, 0.2),

((x3, x4), 0.6, 0.15), ((x1, x4), 0.7, 0.2), ((x1, x4), 0.6, 0.2)}.

Now, we have the following observations.

Theorem 7.3. Let G = (V,A,B) be a vague planar graph whose number of
vertices, number of edges and number of strong vague faces denoted by n, e
and f respectively. Let G1 be the vague dual graph of G. Then
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(i) the number of vertices of G1 is equal to f ,
(ii) the number of edges of G1 is equal to e,
(iii) the number of vague faces of G1 is equal to n.

Proof. Proof of (i), (ii) and (iii) follows from the definition of vague dual
graph. �

The number of strong vague faces in vague dual graph of a vague planar
graph is always less than or equal to the number of vertices of vague planar
graph, since all faces of vague dual graph may not be strong vague faces.

Theorem 7.4. Let G = (V,A,B) be a vague planar graph having no weak
vague edges and G1 be the vague dual graph of G. Then the true and false
membership values of the vague edges of G1 are equal to the true and false
membership values of the vague planar graph of G.

Proof. Obvious. �

8. Application of vague planar graphs

We consider the above network consisting of nine important cities (vertices)
in a country connected by railway lines (see Fig.6). Now, we consider the
crowdness of the railway lines connecting cities. Crowdness of a railway line is
a vague quantity. The amount of crowdness depends on the decision makers
mentality, habits, natures, etc., i.e. completely depends on the decision makers.
The measurement of crowdness using point based membership as in fuzzy
sets is a difficult one for the decision maker. So, we consider the amount
of crowdness as an interval based membership in vague sets, since it is more
expressive in capturing vagueness of data.

t t

t
t

t

t

t

t t1
2

3

4

5

6

7
8

9

P

Figure 6. A network of railway lines connecting cities.

We assume that, the crowdness of the railways line (i, j) connecting the
cities i and j as follows:

This is very clear that if the crossing of railways increases, the possibility of
crowdness increases. So, the traveling time will increase significantly. Thus,
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Table 1. The crowdness of the network of Fig. 6

Railwaylines (1,4) (2,3) (3,4) (3,6) (4,9) (5,6)
Crowdness (0.6,0.3) (0.5,0.2) (0.4,0.5) (0.4,0.2) (0.8,0.1) (0.6,0.2)

Railwaylines (6,7) (6,8) (7,6)
Crowdness (0.7,0.2) (0.7,0.3) (0.3,0.2)

it is natural to construct the railway lines in such a way that the number of
crossing decreases, i.e. the vague planarity value increases. This is why the
measurement of vague planarity value is important.

In the network of Fig. 6, there are only one crossing between the railway
lines (4, 9) and (6, 7). To model the given network as a vague planar graph,
we consider the true and false membership values of each vertices as 1 and 0
respectively. Then we have the following.

I t(4,9) = 0.8, If(4,9) = 0, I t(6,7) = 0.7 and If(6,7) = 0.

Therefore, the intersecting value at the point P , the intersection between

the railway lines (4, 9) and (6, 7) is IP = (
It
(4,9)

+It
(6,7)

2
,
If
(4,9)

+If
(6,7)

2
) = (0.75, 0).

So, the vague planarity value P = (Pt,Pf ) is given by Pt = 1
1+0.75

= 0.57,
Pf = 1. Therefore, the vague planarity value of the network of Fig. 6 is
(0.57, 1), which is far from vague planarity (0.67, 0.33). Hence, it is likely to
be crowded due to the crossing of railway lines.

9. Conclusions

Planarity is important in connecting the wire lines, gas lines, water lines,
printed circuit designs, etc. But, sometimes little crossing may be allowed
for such design. These graph theoretic problems may be vague or uncertain
in some aspects. It is quiet natural to deal with the vagueness using the
concepts of vague sets compared to fuzzy sets. Therefore, the concept of
vague sets is applied to multigraphs and planar graphs. The edges of a vague
multigraph may be vague weak or vague strong. Using the concept of vague
weak edge, vague planar graph is introduced where an edge may intersect with
other edges. This facility is not available in a crisp planar graph. Since the
role of vague weak edge is not significant, therefore the intersection between a
vague weak edge with any edge is less important. This motivates us to allow
the intersection of edges in vague planar graph. We define a new term called
vague planarity value of a vague planar graph. If the vague planarity value of
a vague graph is (1, 1), then no edges crosses other. This leads to the crisp
planar graph. Hence, the vague planarity value measures the planarity of a
vague graph. Strong vague planar graphs are introduced. Also face of a vague
graph is defined. Many new theorems of vague planar graph have been proved
in this paper. These theories will be helpful to improve algorithms in different
fields including computer vision, image segmentation, etc.
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