I-PRIME SUBMODULES

ISMAEL AKRAY AND HALGURD S. HUSSEIN

Abstract

We introduce a new generalization of prime submodules called I-prime submodule for I a fixed ideal of a commutative ring R. We study some of its properties and show that the intersection of I-prime submodules is again I-prime. Finally, we proved that if F is a flat module and P an I-prime submodule of a module M then $F \otimes P$ is I-prime submodule of $F \otimes M$.

1. Introduction

Throughout this paper R will be a commutative ring with nonzero identity and I a fixed ideal of R and M a unitary left R-module. Prime ideals play a central role in commutative ring theory. We recall that a prime ideal P of R is a proper ideal with the property that for $a, b \in R, a b \in P$ implies $a \in P$ or $b \in P$; or equivalently, for ideals A and B of $R, A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. The concept of weakly prime ideals was introduced by Anderson and Smith (2003), where a proper ideal P is called weakly prime if, for $a, b \in R$ with $0 \neq a b \in P$, either $a \in P$ or $b \in P,[7]$. Bhatwadekar and Sharma [11] defined the notion of almost prime ideal, i.e., a proper ideal I with the property that if $a, b \in R, a b \in I-I^{2}$, then either $a \in I$ or $b \in I$. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime. Moreover, an ideal I of R is almost prime if and only if I / I^{2} is a weakly prime ideal of R / I^{2}. We could restrict where a and/or b lies. A proper ideal Q of R is said to be primary provided that for $a, b \in R, a b \in Q$ implies that either $a \in Q$ or $b \in \sqrt{Q}$. We can generalize the concept of primary ideals by restricting the set where $a b$ lies. A proper ideal Q of R is weakly primary if for $a, b \in R$ with $0 \neq a b \in Q$, either $a \in Q$ or $b \in \sqrt{Q}$. Weakly primary ideals were first introduced and studied by Ebrahimi Atani and Farzalipour in 2005, [12].

[^0]An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R, see [3]. Note that, since $I \subseteq\left(N:_{R}\right.$ $M)$ then $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. So that $N=\left(N:_{R} M\right) M$. Let N and K be two submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [4, Theorem 3.4], the product of N and K is independent of presentations of N and K. An R-module M is called faithful if it has zero annihilator. An R-module M is called a cancellation module of R if, for all ideals I and J of $R, I M=J M$ implies that $I=J$, see $[6,5]$. For example, every invertible ideal, free module and finitely generated faithful multiplication module over a ring R is cancellation module of R. It is clear that if N is a submodule of a nitely generated faithful multiplication (and so cancellation) R-module M, then we have $(I N: M)=I(N: M)$ for every ideal I of R.

The class of prime submodules of modules was introduced and studied in 1992 as a generalization of the class of prime ideals of rings. Then, many generalizations of prime submodules were studied such as primary, classical prime, weakly prime and classical primary submodules, see $[8,9,10,17]$ and [3]. A proper ideal P of R is called ϕ prime ideal if for all $a, b \in P-\phi(P)$ implies either $a \in P$ or $b \in P$, where $\phi: \tau(R) \longrightarrow \tau(R) \cup\{\phi\}$ is a function defined on the set of ideals $\tau(R)$ of R (see [13] and [19]). Let M be a module and $\tau(M)$ be the set of all submodules of M and let $\phi: \tau(M) \longrightarrow \tau(M) \cup\{\phi\}$ be a function. A proper submodule P is called ϕ prime if for all $r \in R, m \in M$ such that $r m \in P \phi(P)$ implies $r \in(P: M)$ or $m \in P$ (see [16] and [20]). In [1], the notion of I-prime ideal was introduced which can be considered as a special case of ϕ prime ideals by defining $\phi(P)=I P$.

In this article, we generalize I-prime ideals to submodules and we study several properties of such generalization. We give some characterizations of I-prime submodules. Finally we show that if F is an R-module and P an I prime submodule of an R-module M, then under a particular condition, $P \otimes F$ will be an I-prime submodule of $M \otimes F$.

2. Main Results

A proper submodule P of an R-module M is called I-prime submodule of M if $r m \in P-I P$ for all $r \in R$ and $m \in M$ implies that either $m \in P$ or $r \in(P: M)$. It is clear that every prime and weakly prime submodule is I-prime but the converse is not true in general as we see in the following example.

Example 2.1. Consider the ring of integers Z and the Z-module Z_{12}. Take $I=4 Z$ as an ideal of Z and $P=(4)$ be a submodule of Z_{12} generated by 4. Then P is an I-prime submodule of Z_{12} since $P-I P=(4)-4 Z .(4)=$ (4) $-(4)=\phi$. In other side, P is not prime even not weakly prime submodule since $4=2.2 \in P$ but not $2 \in P$ nor $2 . Z_{12} \subseteq P$.

Note that the similar statements of our results from Theorem 2.2 to Corollary 2.5 are present for ϕ-prime submodules in [20] and [16] but here new proofs are provided for I-prime submodules. We begin with the following evident useful theorem.

Theorem 2.2. Let P be an I-Prime. Then P is prime if $(P: M) P \nsubseteq I P$.
Proof. Let $r m \in P$ for $r \in R$ and $m \in M$. If $r m \notin I P$, then P is prime submodule of M. If $r m \in I P$, then we can assume that $r P \subseteq I P$, because for otherwise there exists $x \in P$ such that $r x \notin I P$ so $r(m+x) \notin I P$. As P is I-prime, $r(m+x) \in P-I P$ implies that $r \in(P: M)$ or $m+x \in P$, that is $r \in(P: M)$ or $m \in P$. If $(P: M) m \nsubseteq I P$, then there exists $a \in(P: M)$ such that $a m \notin I P$, so $(a+r) m \notin I P$. Thus $(a+r) m \in P-I P$ which imply that $a+r \in(P: M)$ or $m \in P$, that is $r \in(P: M)$ or $m \in P$. Hence we may take $(P: M) m \subseteq I P$. Since given $(P: M) P \nsubseteq I P$, there exists $a \in(P: M)$ and $x \in P$ such that $a x \notin I P$. Therefore $(r+a)(m+x) \in P-I P$ and this implies that $r+a \in(P: M)$ or $m+x \in P$, that is $r \in(P: M)$ or $m \in P$.

Corollary 2.3. Let P be an 0-prime submodule of M such that $(P: M) P \neq 0$. Then P is a prime submodule of M.

Proof. Take $I=0$ in the Theorem 2.2.
Corollary 2.4. Let P be I-prime submodule of M and $I P \subseteq(P: M)^{2} P$. Then P is J-prime where $J=\cap_{k=1}^{\infty}\left(P:_{R} M\right)^{k}$.

Proof. In the case P is prime submodule, then there is nothing to prove. Now, in the case P is not prime submodule, by Theorem 2.2 we have $(P: M) P \subseteq I P$ but given $I P \subseteq(P: M)^{2} P$, so $I P=(P: M)^{2} P$ and inductionally, we have $I P=(P: M)^{k} P$ for all positive integer k. Hence $I P=\cap_{k=1}^{\infty}(P: M)^{k} P=J P$ and therefore P is J-prime.

Corollary 2.5. Let M be a multiplication R-module and P an I-prime submodule of M. If P is not prime, then $P^{2} \subseteq I P$.
Proof. Since M is multiplication R-module, $P=(P: M) M$. By Theorem 2.2 and being P non prime submodule we include that $(P: M) P \subseteq I P$. Therefore $P^{2}=(P: M)^{2} M=(P: M)(P: M) M=(P: M) P \subseteq I P$.

Recall that if N is a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$. It is shown in [15, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$.
Corollary 2.6. Let M be a multiplication R-module and P an I-prime submodule of M. Then $P \subseteq \sqrt{I P}$ or $\sqrt{I P} \subseteq P$.

Proof. If P is prime submodule, then $\sqrt{I P} \subseteq \sqrt{P}=P$. Now if P is not prime submodule, then by Corollary $2.5 P^{2} \subseteq I P$, so $P \subseteq \sqrt{I P}$.

The following two famous theorems are crucial in our investigation because they give several charactrizations of I-prime submodules.

Theorem 2.7. Let M be R-module and P be a proper submodule of M. Then the following are equivalent.
(1) P is I-prime submodule of M.
(2) For $r \in R-(P: M),(P: r)=P \cup(I P: r)$.
(3) For $r \in R-(P: M),(P: r)=P$ or $(P: r)=(I P: r)$.

Proof. (1) $\Rightarrow(2)$ Let P be an I-prime. Take $r \in R-(P: M)$ and $m \in\left(P:_{M} r\right)$. So $r m \in P$. If $r m \notin I P$, then $P I$-prime gives $m \in P$. If $r m \in I P$, then $m \in(I P: r)$.
$(2) \Rightarrow(3)$ If a submodule is a union of two submodules, it is equal to one of them.
$(3) \Rightarrow(1)$ Let $r m \in P-I P$ for $r \in R$ and $m \in M$. If $r \notin(P: M)$, then by hypothesis $(P: r)=P$ or $(P: r)=(I P: r)$. Since $r m \notin I P, m \notin(I P: r)$. But $m \in(P: r)$ which means that $(P: r) \neq(I P: r)$. Hence $(P: r)=P$ and so $m \in P$. Therefore P is I-prime submodule of M.

Theorem 2.8. Let P be a proper submodule of an R-module M. Then P is I-prime submodule in M if and only if $P / I P$ is weakly prime in $M / I P$.

Proof. (\Rightarrow) Let P be I-prime in M. Let $r \in R$ and $m \in M$ with $0 \neq r(m+$ $I P) \in P / I P$ in $M / I P$. Then $r m \in P-I P$ implies $r \in(P: M)$ or $m \in P$, hence $r \in(P: M)=(P / I P: M / I P)$ or $m+I P \in P / I P$. So $P / I P$ is weakly prime submodule in $M / I P$.
(\Leftarrow) Suppose that $P / I P$ is weakly prime in $M / I P$ and take $r \in R, m \in M$ such that $r m \in P-I P$. Then $0 \neq r m+I P=r(m+I P) \in P / I P$ so $m+I P \in P / I P$ or $r \in(P / I P: M / I P)=(P: M)$. Therefore $m \in P$ or $r \in(P: M)$. Thus P is I-prime.

Lemma 2.9. Let M be multiplication R-module, P an I-prime of M and $(P: M) \subseteq I$. Then $\sqrt{(I P: M)} P=I P$.

Proof. Let $r \in \sqrt{(I P: M)}$. If $r \in I$, then $r P \subseteq I P$. For $r \notin I$, if $r \notin(P: M)$, then $(P: r)=P$ or $(P: r)=(I P: r)$ by Theorem 2.7. If $(P: r)=(I P: r)$, then $r P \subseteq r(P: r) \subseteq r(I P: r) \subseteq I P$. For the case $(P: r)=P$, let n be the smallest positive integer such that $r^{n} \in(I P: M)$.

Then as clearly as $(P: r)=P, r\left(r^{k}\right) M \subseteq P$ implies $r^{k} M \subseteq P$, hence as clearly $n \geq 2$ and $I P \subseteq P$, we conclude $r M \subseteq P$ contradicting $r \notin(P: M)$. The case $r \notin I, r \notin(P: M)$ is impossible as by assumtion, $(P: M) \subseteq I$. Hence $\sqrt{(I P: M)} P \subseteq I P$. For the reverse inclusion, since $I P=(I P: M) M \subseteq$ $\sqrt{(I P: M)} M$, the result follows

The next Theorem is an I-prime version of [3, Proposition 13]. First, we need the following lemma from [2].

Lemma 2.10. Let P be a submodule of a faithful multiplication R-module M and J a finitely generated faithful multiplication ideal of R. Then,
(1) $P=(J P: J)$.
(2) If $P \subseteq J M$, then $(K P: J)=K(P: J)$ for any ideal K of R.

Theorem 2.11. Let P be a submodule of a faithful multiplication R-module M and J a finitely generated faithful multiplication ideal of R. Then P is I-prime submodule of $J M$ if and only if $(P: J)$ is I-prime in M.

Proof. Suppose that P is I-prime in $J M$. Let $r \in R$ and $m \in M$ such that $r m \in(P: J)-I(P: J)$. Then $r J m \subseteq P-I P$ because, if $r J m \subseteq I P$ then by Lemma $2.10 \mathrm{rm} \in(I P: J)=I(P: J)$ which is a contradiction. If $r \notin(P: J M)$ we may apply Theorem 2.7 (3) and weinfer $\left(P:_{J M} r\right)=P$, $m \in P$. Now, suppose $r \in(P: J M)$, so that $r J M \subseteq P$ and then again by Lemma $2.10 r M=r(J M: J) \subseteq(r J M: J) \subseteq(P: M)$ and so $r \in$ $((P: J): M)$. Therefore $(P: J)$ is I-prime in M. Conversely, suppose that $(P: J)$ is I-prime in M. Let K be an ideal of R and N a submodule of $J M$ such that $K N \subseteq P-I P$. Then taking Lemma 2.10 in mind we have $K(N: J) \subseteq(K N: J) \subseteq(P: J)$. Moreover, if $K(N: J) \subseteq I(P: J)$, then $K N=K(J N: J)=J K(N: J) \subseteq I J(P: J)=I P$ a contradiction. Hence $K(N: J) \subseteq(P: J)-I(P: J)$. By [20, Theorem 2.11] $(P: J) I$-prime in M implies either $K \subseteq((P: J): M)=(P: J M)$ or $(N: J) \subseteq(P: J)$, which implies that $N=J(N: J) \subseteq J(P: J)=P$. Hence P is I-prime submodule in $J M$.

Now we give other charactrizations of I-prime submodules which connect between the I-primeness of a submodule P of an R-module M and the ideal ($P: M$) of R.
Theorem 2.12. Let M be a finitely generated faithful multiplication module and P be a proper subset of M. Then the following are equivalent:
(i) P is I-prime submodule in M.
(ii) $(P: M)$ is I-prime ideal in R.
(iii) $P=J M$ for some I-prime ideal J of R.

Proof. We may apply Theorem 2.7 and Lemma 2.10, hence we have P is Iprime in M if and only if for any $r \in R-(P: M)$,

$$
\begin{equation*}
(P: r)=P \text { or }(P: r)=(I P: r) \ldots \tag{*}
\end{equation*}
$$

$(P: M)$ is I-prime in R if and only if for any $r \in R-(P: M)$,
$(* *) \quad((P: M): r)=(P: M)$ or $((P: M): r)=((I P: M): r) \ldots$
(i) \Rightarrow (ii) Let $a, b \in R$ with $a b \in(P: M)-I(P: M)$. If $a b M \subseteq I P$, then $a b \in(I P: M)=I(P: M)$ which is a contradiction. So $a b M \nsubseteq I P$. Assuming
$a \notin(P: M)$ by condition $\left(^{*}\right)$ we infer $(P: M)=P$. Thus $a \in(P: M)$ or $b M \subseteq P$, that is $a \in(P: M)$ or $b \in(P: M)$. Hence $(P: M)$ is I-prime ideal in R.
(ii) \Rightarrow (i) Let $r m \in P-I P$. Assuming $r \notin(P: M)$. By condition (**) we infer $((P: M): r)=(P: M)$ and $(R m: M) \subseteq(P: M)$. Apply [4, Theorem 3.2] and the result obtained.
(ii) \Rightarrow (iii) Take $J=(P: M)$ and as M is multiplication, then $P=(P$: $M) M=J M$.
(iii) \Rightarrow (ii) Let $P=J M$, for some I-prime ideal J of R. Then as M is multiplication module, we have $P=(P: M) M$. Hence $(P: M) M=J M$ and as M is cancelation module, $(P: M)=J$ and so $(P: M)$ is I-prime ideal in R.

Applying [4, Theorem 3.2] we see that in this particular case the ideal lattice of R and the submodule lattice of M are isomorphic, this way we may prove the analogue of the charactrization of [20, Theorem 2.11 (iv)].
Theorem 2.13. Let M be a finitely generated multiplication R-module and P a proper submodule of M such that $I(P: M)=(I P: M)$. Then P is I-prime submodule in M if and only if for any two submodules A and B of M with $A . B \subseteq P$ and $A . B \nsubseteq I P$ implies either $A \subseteq P$ or $B \subseteq P$.
Proof. Let P be an I-prime submodule of M and A, B be any two submodules of M with $A . B \subseteq P, A . B \nsubseteq I P$ with $A \nsubseteq P$ and $B \nsubseteq P$. As M is multiplication R-module, $A=(A: M) M$ and $B=(B: M) M$ and so $A . B=(A: M)(B: M) M$. Thus $(A: M) \nsubseteq(P: M)$ and $(B: M) \nsubseteq(P: M)$. By Theorem $2.12(P: M)$ is I-prime ideal in R and by [1, Theorem 2.12] we have either $(A: M)(B: M) \nsubseteq(P: M)$ or $(A: M)(B: M) \subseteq I(P: M)$. In the first case, we have $A B=(A: M)(B: M) M \nsubseteq(P: M) M=P$ and in the second case, we have $A B=(A: M)(B: M) M \subseteq I(P: M) M=I P$ and both contradict our hypothesis. Hence either $A \subseteq P$ or $B \subseteq P$. For the converse, it is enough by Theoprem 2.12 to prove that $(P: M)$ is I-prime ideal in R. Let $a, b \in R$ such that $a b \in(P: M)-I(P: M)$ with $a \notin(P: M)$ and $b \notin(P: M)$. Take $A=a M, B=b M$. Then $A B=a b M \subseteq(P: M) M=P$. If $A B=a b M \subseteq I P$ then $a b \in(I P: M)=I(P: M)$ which is a contradiction. Hence $A B \subseteq P-I P$ and by the hypothesis we have either $A=a M \subseteq P$ or $B=b M \subseteq P$ which means that $a \in(P: M)$ or $b \in(P: M)$. Therefore $(P: M)$ is I-prime ideal of R.

Suppose M is a multiplication module and $x, y \in M$. Then we can define the product of x and y as $x y=R x . R y=(R x: M)(R y: M) M$. Thus we have the following corollary.
Corollary 2.14. Let P be a proper submodule of finitely generated multiplication R-module such that $I(P: M)=(I P: M)$. Then P is I-prime submodule of M if and only if whenever $x, y \in M$ with $x y \in P-I P$ implies $x \in P$ or $y \in P$

Let M and F be R-modules and $r \in R$. Then it is clear that for any submodule P of $M, F \otimes(P: r) \subseteq(F \otimes P: r)$. In the following lemma we give a condition under which the equality holds.
Lemma 2.15. Let $r \in R$ and P a submodule of M. Then for any flat R module F, we have $F \otimes(P: r)=(F \otimes P: r)$.

Proof. Consider the exact sequence $0 \longrightarrow(P: r) \longrightarrow M \xrightarrow{f_{r}} \frac{M}{P}$ where $f_{r}(m)=r m+P$. As F is flat, the exactness of the sequence $0 \longrightarrow P \longrightarrow$ $M \longrightarrow \frac{M}{P} \longrightarrow 0$ implies to the exactness of the sequence $0 \longrightarrow F \otimes P \longrightarrow$ $F \otimes M \longrightarrow F \otimes \frac{M}{P} \longrightarrow 0$ which gives the isomorphism, $F \otimes \frac{M}{P} \cong \frac{F \otimes M}{F \otimes P}$. So the exactness of the sequence $0 \longrightarrow(P: r) \longrightarrow M \longrightarrow \frac{M}{P}$ imply the exactness of the sequence $0 \longrightarrow F \otimes(P: r) \longrightarrow F \otimes M \xrightarrow{1 \otimes f_{r}} \frac{F \otimes M}{F \otimes P}$ where $\left(1 \otimes f_{r}\right)(n \otimes m)=r .(n \otimes m)+F \otimes P$ for $n \in F$. Therefore $F \otimes(P: r)=$ $\operatorname{ker}\left(1 \otimes \hat{f}_{r}\right)=\left(F \otimes P:_{F \otimes M} r\right)$.

The next two assersions are closely related to Theorem 2.18 in [18].
Theorem 2.16. Let P be I-prime submodule of an R-module M and F a flat R-module with $F \otimes P \neq F \otimes M$. Then $F \otimes P$ is I-prime submodule of $F \otimes M$.

Proof. Suppose that P is I-prime and $r \in R-(P: M)$. Then by Theorem $2.7(P: r)=P$ or $(P: r)=(I P: r)$. Now Lemma 2.15 gives us $(F \otimes P:$ $r)=F \otimes(P: r)=F \otimes P$ or $(F \otimes P: r)=F \otimes(P: r)=F \otimes(I P: r)=$ $(F \otimes I P: r)=(I(F \otimes P): r)$ and consequently $F \otimes P$ is I-prime submodule of $F \otimes M$.
An R-module F is called faithfully flat if for any two R-modules A and B, the sequence $0 \longrightarrow A \longrightarrow B$ is exact if and only if the sequence $0 \longrightarrow$ $F \otimes A \longrightarrow F \otimes B$ is exact. By using this definition we are thus led to the following strengthening of the Theorem 2.16.

Proposition 2.17. Let F be a faithfully flat R-module. Then a submodule P of an R-module M is I-prime if and only if $F \otimes P$ is I-prime submodule of $F \otimes M$.

Proof. Suppose that P is I-prime submodule of an R-module M and F a faithfully flat R-module. If $F \otimes P=F \otimes M$, then the exactness of the sequence $0 \longrightarrow F \otimes P \longrightarrow F \otimes M \longrightarrow 0$ imply the exactness of $0 \longrightarrow P \longrightarrow M \longrightarrow 0$ and hence $P=M$ which is a contradiction. So $F \otimes P \neq F \otimes M$ and by Theorem $2.16 F \otimes P$ is an I-prime submodule of $F \otimes M$. Conversely, let $F \otimes P$ be an I-prime submodule of $F \otimes M$. Hence $F \otimes P \neq F \otimes M$ and so $P \neq M$. Now for every $r \in R-(P: M)$ we have $r \in R-(F \otimes P: F \otimes M)$ and so by Lemma 2.15, $F \otimes(P: r)=(F \otimes P: r)=F \otimes P$ or $F \otimes(P: r)=(F \otimes P: r)=$ $(I(F \otimes P): r)=(F \otimes I P: r)=F \otimes(I P: r)$. Assume $F \otimes(P: r)=F \otimes P$. Then $0 \longrightarrow F \otimes(P: r) \longrightarrow F \otimes P \longrightarrow 0$ is an exact sequence and as F is faithfully flat, $0 \longrightarrow(P: r) \longrightarrow P \longrightarrow 0$ is exact sequence and consequently
$(P: r)=P$. The other case can be proved similarly. Thus by Theorem $2.7 P$ is I-prime submodule of M.

It is known from Proposition 6.1 in [14] that $J \otimes F \cong J F$ for any ideal J of R and flat R-module F. Thus according to Theorem 2.16 and Corollary 2.17 we conclude the following.

Corollary 2.18. Let F be a flat R-module and J an I-prime ideal of R with $J F \neq F$. Then JF is an I-prime submodule of F. In the case F is faithfully flat, the converse is also true.

We know that every polynomial ring $R[x]$ is flat over R and that $R[x] \otimes M \cong$ $M[x]$. Hence as an immediate consequence of the Theorem 2.16 we give the following corollary.

Corollary 2.19. Let M be an R-module and x an indeterminate. If P is I-prime submodule of M, then $P[x]$ is I-prime submodule of $M[x]$.

Acknowledgement

The authors gratefully acknowledge the constructive comments on this paper offered by the anonymous referee. We express our sincere gratitude for his/her review, which will help to improve the quality of the paper significantly.

References

[1] I. Akray. I-prime ideals. Journal of Algebra and related topics, 4(2):41-47, 2016.
[2] M. M. Ali. Residual submodules of multiplication modules. Beiträge Algebra Geom., 46(2):405-422, 2005.
[3] M. M. Ali. Multiplication modules and homogeneous idealization. II. Beiträge Algebra Geom., 48(2):321-343, 2007.
[4] R. Ameri. On the prime submodules of multiplication modules. Int. J. Math. Math. Sci., (27):1715-1724, 2003.
[5] D. D. Anderson. Cancellation modules and related modules. In Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), volume 220 of Lecture Notes in Pure and Appl. Math., pages 13-25. Dekker, New York, 2001.
[6] D. D. Anderson and D. F. Anderson. Some remarks on cancellation ideals. Math. Japon., 29(6):879-886, 1984.
[7] D. D. Anderson and E. Smith. Weakly prime ideals. Houston J. Math., 29(4):831-840, 2003.
[8] M. Baziar and M. Behboodi. Classical primary submodules and decomposition theory of modules. J. Algebra Appl., 8(3):351-362, 2009.
[9] M. Behboodi. Classical prime submodules. 2004. Thesis (Ph.D.)-Chamran University.
[10] M. Behboodi and H. Koohy. Weakly prime modules. Vietnam J. Math., 32(2):185-195, 2004.
[11] S. M. Bhatwadekar and P. K. Sharma. Unique factorization and birth of almost primes. Comm. Algebra, 33(1):43-49, 2005.
[12] S. Ebrahimi Atani and F. Farzalipour. On weakly primary ideals. Georgian Math. J., 12(3):423-429, 2005.
[13] M. Ebrahimpour. On generalizations of prime ideals (II). Comm. Algebra, 42(9):38613875, 2014.
[14] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[15] Z. A. El-Bast and P. F. Smith. Multiplication modules and theorems of Mori and Mott. Comm. Algebra, 16(4):781-796, 1988.
[16] A. Khaksari and A. Jafari. ϕ-prime submodules. Int. J. Algebra, 5(29-32):1443-1449, 2011.
[17] C.-P. Lu. Prime submodules of modules. Comment. Math. Univ. St. Paul., 33(1):61-69, 1984.
[18] H. Mostafanasab, E. S. Sevim, S. Babaei, and U. Tekir. ϕ-classical prime submodules. pages 1-17, 2015.
[19] A. Yousefian Darani. Generalizations of primary ideals in commutative rings. Novi Sad J. Math., 42(1):27-35, 2012.
[20] N. Zamani. ϕ-prime submodules. Glasg. Math. J., 52(2):253-259, 2010.
Received August 20, 2016.

Ismael Akray,
Department of Mathematics, Soran University, Erbil city, Kurdistan region, IRAQ
E-mail address: ismael.akray@soran.edu.iq
Halgurd S. Hussein,
Department of Mathematics, Soran University, Erbil city, Kurdistan region, IRAQ
E-mail address: rasty.rosty1@gmail.com

[^0]: 2010 Mathematics Subject Classification. 13A15, 13C99, 13F05.
 Key words and phrases. I-Prime ideal, prime submodule, flat module and faithfully flat module.

