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I-PRIME SUBMODULES

ISMAEL AKRAY AND HALGURD S. HUSSEIN

Abstract. We introduce a new generalization of prime submodules called
I-prime submodule for I a fixed ideal of a commutative ring R. We study
some of its properties and show that the intersection of I-prime submodules
is again I-prime. Finally, we proved that if F is a flat module and P an
I-prime submodule of a module M then F ⊗ P is I-prime submodule of
F ⊗M .

1. Introduction

Throughout this paper R will be a commutative ring with nonzero identity
and I a fixed ideal of R and M a unitary left R-module. Prime ideals play a
central role in commutative ring theory. We recall that a prime ideal P of R
is a proper ideal with the property that for a, b ∈ R, ab ∈ P implies a ∈ P or
b ∈ P ; or equivalently, for ideals A and B of R, AB ⊆ P implies A ⊆ P or
B ⊆ P . The concept of weakly prime ideals was introduced by Anderson and
Smith (2003), where a proper ideal P is called weakly prime if, for a, b ∈ R
with 0 6= ab ∈ P , either a ∈ P or b ∈ P , [7]. Bhatwadekar and Sharma
[11] defined the notion of almost prime ideal, i.e., a proper ideal I with the
property that if a, b ∈ R, ab ∈ I − I2, then either a ∈ I or b ∈ I. Thus a
weakly prime ideal is almost prime and any proper idempotent ideal is also
almost prime. Moreover, an ideal I of R is almost prime if and only if I/I2 is a
weakly prime ideal of R/I2. We could restrict where a and/or b lies. A proper
ideal Q of R is said to be primary provided that for a, b ∈ R, ab ∈ Q implies
that either a ∈ Q or b ∈

√
Q. We can generalize the concept of primary ideals

by restricting the set where ab lies. A proper ideal Q of R is weakly primary if
for a, b ∈ R with 0 6= ab ∈ Q, either a ∈ Q or b ∈

√
Q. Weakly primary ideals

were first introduced and studied by Ebrahimi Atani and Farzalipour in 2005,
[12].
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An R-module M is called a multiplication module if every submodule N of
M has the form IM for some ideal I of R, see [3]. Note that, since I ⊆ (N :R
M) then N = IM ⊆ (N :R M)M ⊆ N . So that N = (N :R M)M . Let N and
K be two submodules of a multiplication R-module M with N = I1M and
K = I2M for some ideals I1 and I2 of R. The product of N and K denoted by
NK is defined by NK = I1I2M . Then by [4, Theorem 3.4], the product of N
and K is independent of presentations of N and K. An R-module M is called
faithful if it has zero annihilator. An R-module M is called a cancellation
module of R if, for all ideals I and J of R, IM = JM implies that I = J , see
[6, 5]. For example, every invertible ideal, free module and finitely generated
faithful multiplication module over a ring R is cancellation module of R. It is
clear that if N is a submodule of a nitely generated faithful multiplication (
and so cancellation ) R-module M , then we have (IN : M) = I(N : M) for
every ideal I of R.

The class of prime submodules of modules was introduced and studied in
1992 as a generalization of the class of prime ideals of rings. Then, many
generalizations of prime submodules were studied such as primary, classical
prime, weakly prime and classical primary submodules, see [8, 9, 10, 17] and
[3]. A proper ideal P of R is called φprime ideal if for all a, b ∈ P − φ(P )
implies either a ∈ P or b ∈ P , where φ : τ(R) −→ τ(R) ∪ {φ} is a function
defined on the set of ideals τ(R) of R (see [13] and [19]). Let M be a module
and τ(M) be the set of all submodules of M and let φ : τ(M) −→ τ(M)∪{φ}
be a function. A proper submodule P is called φprime if for all r ∈ R,m ∈M
such that rm ∈ Pφ(P ) implies r ∈ (P : M) or m ∈ P (see [16] and [20]). In
[1], the notion of I-prime ideal was introduced which can be considered as a
special case of φprime ideals by defining φ(P ) = IP .

In this article, we generalize I-prime ideals to submodules and we study
several properties of such generalization. We give some characterizations of
I-prime submodules. Finally we show that if F is an R-module and P an I-
prime submodule of an R-module M , then under a particular condition, P ⊗F
will be an I-prime submodule of M ⊗ F .

2. Main results

A proper submodule P of an R-module M is called I-prime submodule of
M if rm ∈ P − IP for all r ∈ R and m ∈ M implies that either m ∈ P
or r ∈ (P : M). It is clear that every prime and weakly prime submodule
is I-prime but the converse is not true in general as we see in the following
example.

Example 2.1. Consider the ring of integers Z and the Z-module Z12. Take
I = 4Z as an ideal of Z and P = (4) be a submodule of Z12 generated by
4. Then P is an I-prime submodule of Z12 since P − IP = (4) − 4Z.(4) =
(4)− (4) = φ. In other side, P is not prime even not weakly prime submodule
since 4 = 2.2 ∈ P but not 2 ∈ P nor 2.Z12 ⊆ P .
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Note that the similar statements of our results from Theorem 2.2 to Corol-
lary 2.5 are present for φ−prime submodules in [20] and [16] but here new
proofs are provided for I−prime submodules. We begin with the following
evident useful theorem.

Theorem 2.2. Let P be an I-Prime. Then P is prime if (P : M)P * IP .

Proof. Let rm ∈ P for r ∈ R and m ∈ M . If rm /∈ IP , then P is prime
submodule of M . If rm ∈ IP , then we can assume that rP ⊆ IP , because for
otherwise there exists x ∈ P such that rx /∈ IP so r(m + x) /∈ IP . As P is
I-prime, r(m + x) ∈ P − IP implies that r ∈ (P : M) or m + x ∈ P , that
is r ∈ (P : M) or m ∈ P . If (P : M)m * IP , then there exists a ∈ (P : M)
such that am /∈ IP , so (a+ r)m /∈ IP . Thus (a+ r)m ∈ P − IP which imply
that a+ r ∈ (P : M) or m ∈ P , that is r ∈ (P : M) or m ∈ P . Hence we may
take (P : M)m ⊆ IP . Since given (P : M)P * IP , there exists a ∈ (P : M)
and x ∈ P such that ax /∈ IP . Therefore (r + a)(m + x) ∈ P − IP and this
implies that r+ a ∈ (P : M) or m+ x ∈ P , that is r ∈ (P : M) or m ∈ P . �

Corollary 2.3. Let P be an 0-prime submodule of M such that (P : M)P 6= 0.
Then P is a prime submodule of M .

Proof. Take I = 0 in the Theorem 2.2. �

Corollary 2.4. Let P be I-prime submodule of M and IP ⊆ (P : M)2P .
Then P is J-prime where J = ∩∞k=1(P :R M)k.

Proof. In the case P is prime submodule, then there is nothing to prove. Now,
in the case P is not prime submodule, by Theorem 2.2 we have (P : M)P ⊆ IP
but given IP ⊆ (P : M)2P , so IP = (P : M)2P and inductionally, we have
IP = (P : M)kP for all positive integer k. Hence IP = ∩∞k=1(P : M)kP = JP
and therefore P is J-prime. �

Corollary 2.5. Let M be a multiplication R-module and P an I-prime sub-
module of M . If P is not prime, then P 2 ⊆ IP .

Proof. Since M is multiplication R-module, P = (P : M)M . By Theorem 2.2
and being P non prime submodule we include that (P : M)P ⊆ IP . Therefore
P 2 = (P : M)2M = (P : M)(P : M)M = (P : M)P ⊆ IP . �

Recall that if N is a proper submodule of a nonzero R-module M . Then
the M -radical of N , denoted by M − rad(N), is defined to be the intersection
of all prime submodules of M containing N . If M has no prime submodule
containing N , then we say M − rad(N) = M . It is shown in [15, Theorem
2.12] that if N is a proper submodule of a multiplication R-module M , then

M − rad(N) =
√

(N :R M)M .

Corollary 2.6. Let M be a multiplication R-module and P an I-prime sub-
module of M . Then P ⊆

√
IP or

√
IP ⊆ P .
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Proof. If P is prime submodule, then
√
IP ⊆

√
P = P . Now if P is not prime

submodule, then by Corollary 2.5 P 2 ⊆ IP , so P ⊆
√
IP . �

The following two famous theorems are crucial in our investigation because
they give several charactrizations of I-prime submodules.

Theorem 2.7. Let M be R-module and P be a proper submodule of M . Then
the following are equivalent.

(1) P is I-prime submodule of M .
(2) For r ∈ R− (P : M), (P : r) = P ∪ (IP : r).
(3) For r ∈ R− (P : M), (P : r) = P or (P : r) = (IP : r).

Proof. (1)⇒ (2) Let P be an I-prime. Take r ∈ R−(P : M) andm ∈ (P :M r).
So rm ∈ P . If rm /∈ IP , then P I-prime gives m ∈ P . If rm ∈ IP , then
m ∈ (IP : r).

(2) ⇒ (3) If a submodule is a union of two submodules, it is equal to one of
them.

(3) ⇒ (1) Let rm ∈ P − IP for r ∈ R and m ∈M . If r /∈ (P : M), then by
hypothesis (P : r) = P or (P : r) = (IP : r). Since rm /∈ IP , m /∈ (IP : r).
But m ∈ (P : r) which means that (P : r) 6= (IP : r). Hence (P : r) = P and
so m ∈ P . Therefore P is I-prime submodule of M . �

Theorem 2.8. Let P be a proper submodule of an R-module M . Then P is
I-prime submodule in M if and only if P/IP is weakly prime in M/IP .

Proof. (⇒) Let P be I-prime in M . Let r ∈ R and m ∈ M with 0 6= r(m +
IP ) ∈ P/IP in M/IP . Then rm ∈ P − IP implies r ∈ (P : M) or m ∈ P ,
hence r ∈ (P : M) = (P/IP : M/IP ) or m+ IP ∈ P/IP . So P/IP is weakly
prime submodule in M/IP .

(⇐) Suppose that P/IP is weakly prime in M/IP and take r ∈ R,m ∈ M
such that rm ∈ P − IP . Then 0 6= rm + IP = r(m + IP ) ∈ P/IP so
m + IP ∈ P/IP or r ∈ (P/IP : M/IP ) = (P : M). Therefore m ∈ P or
r ∈ (P : M). Thus P is I-prime. �

Lemma 2.9. Let M be multiplication R-module, P an I-prime of M and
(P : M) ⊆ I. Then

√
(IP : M)P = IP .

Proof. Let r ∈
√

(IP : M). If r ∈ I, then rP ⊆ IP . For r /∈ I, if r /∈ (P : M),
then (P : r) = P or (P : r) = (IP : r) by Theorem 2.7. If (P : r) = (IP : r),
then rP ⊆ r(P : r) ⊆ r(IP : r) ⊆ IP . For the case (P : r) = P , let n be the
smallest positive integer such that rn ∈ (IP : M).

Then as clearly as (P : r) = P , r(rk)M ⊆ P implies rkM ⊆ P , hence as
clearly n ≥ 2 and IP ⊆ P , we conclude rM ⊆ P contradicting r /∈ (P : M).
The case r /∈ I, r /∈ (P : M) is impossible as by assumtion, (P : M) ⊆ I. Hence√

(IP : M)P ⊆ IP . For the reverse inclusion, since IP = (IP : M)M ⊆√
(IP : M)M , the result follows �
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The next Theorem is an I-prime version of [3, Proposition 13]. First, we
need the following lemma from [2].

Lemma 2.10. Let P be a submodule of a faithful multiplication R-module M
and J a finitely generated faithful multiplication ideal of R. Then,

(1) P = (JP : J).
(2) If P ⊆ JM , then (KP : J) = K(P : J) for any ideal K of R.

Theorem 2.11. Let P be a submodule of a faithful multiplication R-module
M and J a finitely generated faithful multiplication ideal of R. Then P is
I-prime submodule of JM if and only if (P : J) is I-prime in M .

Proof. Suppose that P is I-prime in JM . Let r ∈ R and m ∈ M such that
rm ∈ (P : J) − I(P : J). Then rJm ⊆ P − IP because, if rJm ⊆ IP
then by Lemma 2.10 rm ∈ (IP : J) = I(P : J) which is a contradiction. If
r /∈ (P : JM) we may apply Theorem 2.7 (3) and weinfer (P :JM r) = P ,
m ∈ P . Now, suppose r ∈ (P : JM), so that rJM ⊆ P and then again
by Lemma 2.10 rM = r(JM : J) ⊆ (rJM : J) ⊆ (P : M) and so r ∈
((P : J) : M). Therefore (P : J) is I−prime in M . Conversely, suppose
that (P : J) is I-prime in M . Let K be an ideal of R and N a submodule
of JM such that KN ⊆ P − IP . Then taking Lemma 2.10 in mind we have
K(N : J) ⊆ (KN : J) ⊆ (P : J). Moreover, if K(N : J) ⊆ I(P : J), then
KN = K(JN : J) = JK(N : J) ⊆ IJ(P : J) = IP a contradiction. Hence
K(N : J) ⊆ (P : J)− I(P : J). By [20, Theorem 2.11] (P : J) I-prime in M
implies either K ⊆ ((P : J) : M) = (P : JM) or (N : J) ⊆ (P : J), which
implies that N = J(N : J) ⊆ J(P : J) = P . Hence P is I-prime submodule
in JM . �

Now we give other charactrizations of I-prime submodules which connect
between the I-primeness of a submodule P of an R-module M and the ideal
(P : M) of R.

Theorem 2.12. Let M be a finitely generated faithful multiplication module
and P be a proper subset of M . Then the following are equivalent:

(i) P is I-prime submodule in M .
(ii) (P : M) is I-prime ideal in R.

(iii) P = JM for some I-prime ideal J of R.

Proof. We may apply Theorem 2.7 and Lemma 2.10, hence we have P is I-
prime in M if and only if for any r ∈ R− (P : M),

(*) (P : r) = P or (P : r) = (IP : r) . . .

(P : M) is I-prime in R if and only if for any r ∈ R− (P : M),

(**) ((P : M) : r) = (P : M) or ((P : M) : r) = ((IP : M) : r) . . .

(i) ⇒ (ii) Let a, b ∈ R with ab ∈ (P : M) − I(P : M). If abM ⊆ IP , then
ab ∈ (IP : M) = I(P : M) which is a contradiction. So abM " IP . Assuming
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a /∈ (P : M) by condition (*) we infer (P : M) = P . Thus a ∈ (P : M) or
bM ⊆ P , that is a ∈ (P : M) or b ∈ (P : M). Hence (P : M) is I-prime ideal
in R.

(ii) ⇒ (i) Let rm ∈ P − IP . Assuming r /∈ (P : M). By condition (**) we
infer ((P : M) : r) = (P : M) and (Rm : M) ⊆ (P : M). Apply [4, Theorem
3.2] and the result obtained.

(ii) ⇒ (iii) Take J = (P : M) and as M is multiplication, then P = (P :
M)M = JM .

(iii) ⇒ (ii) Let P = JM , for some I-prime ideal J of R. Then as M is
multiplication module, we have P = (P : M)M . Hence (P : M)M = JM and
as M is cancelation module, (P : M) = J and so (P : M) is I-prime ideal in
R. �

Applying [4, Theorem 3.2] we see that in this particular case the ideal lattice
of R and the submodule lattice of M are isomorphic, this way we may prove
the analogue of the charactrization of [20, Theorem 2.11 (iv)].

Theorem 2.13. Let M be a finitely generated multiplication R-module and P
a proper submodule of M such that I(P : M) = (IP : M). Then P is I-prime
submodule in M if and only if for any two submodules A and B of M with
A.B ⊆ P and A.B * IP implies either A ⊆ P or B ⊆ P .

Proof. Let P be an I-prime submodule of M and A,B be any two submod-
ules of M with A.B ⊆ P , A.B * IP with A * P and B * P . As M
is multiplication R-module, A = (A : M)M and B = (B : M)M and so
A.B = (A : M)(B : M)M . Thus (A : M) * (P : M) and (B : M) * (P : M).
By Theorem 2.12 (P : M) is I-prime ideal in R and by [1, Theorem 2.12] we
have either (A : M)(B : M) * (P : M) or (A : M)(B : M) ⊆ I(P : M).
In the first case, we have AB = (A : M)(B : M)M * (P : M)M = P and
in the second case, we have AB = (A : M)(B : M)M ⊆ I(P : M)M = IP
and both contradict our hypothesis. Hence either A ⊆ P or B ⊆ P . For the
converse, it is enough by Theoprem 2.12 to prove that (P : M) is I-prime ideal
in R. Let a, b ∈ R such that ab ∈ (P : M)− I(P : M) with a /∈ (P : M) and
b /∈ (P : M). Take A = aM ,B = bM . Then AB = abM ⊆ (P : M)M = P . If
AB = abM ⊆ IP then ab ∈ (IP : M) = I(P : M) which is a contradiction.
Hence AB ⊆ P − IP and by the hypothesis we have either A = aM ⊆ P
or B = bM ⊆ P which means that a ∈ (P : M) or b ∈ (P : M). Therefore
(P : M) is I-prime ideal of R. �

Suppose M is a multiplication module and x, y ∈ M . Then we can define
the product of x and y as xy = Rx.Ry = (Rx : M)(Ry : M)M . Thus we have
the following corollary.

Corollary 2.14. Let P be a proper submodule of finitely generated multiplica-
tion R-module such that I(P : M) = (IP : M). Then P is I-prime submodule
of M if and only if whenever x, y ∈ M with xy ∈ P − IP implies x ∈ P or
y ∈ P
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Let M and F be R-modules and r ∈ R. Then it is clear that for any
submodule P of M , F ⊗ (P : r) ⊆ (F ⊗P : r). In the following lemma we give
a condition under which the equality holds.

Lemma 2.15. Let r ∈ R and P a submodule of M . Then for any flat R-
module F , we have F ⊗ (P : r) = (F ⊗ P : r).

Proof. Consider the exact sequence 0 −→ (P : r) −→ M
fr−→ M

P
where

fr(m) = rm + P . As F is flat , the exactness of the sequence 0 −→ P −→
M −→ M

P
−→ 0 implies to the exactness of the sequence 0 −→ F ⊗ P −→

F ⊗ M −→ F ⊗ M
P
−→ 0 which gives the isomorphism, F ⊗ M

P
∼= F⊗M

F⊗P .

So the exactness of the sequence 0 −→ (P : r) −→ M −→ M
P

imply the

exactness of the sequence 0 −→ F ⊗ (P : r) −→ F ⊗ M
1⊗f́r−→ F⊗M

F⊗P where

(1 ⊗ f́r)(n ⊗ m) = r.(n ⊗ m) + F ⊗ P for n ∈ F . Therefore F ⊗ (P : r) =

ker(1⊗ f́r) = (F ⊗ P :F⊗M r). �

The next two assersions are closely related to Theorem 2.18 in [18].

Theorem 2.16. Let P be I-prime submodule of an R-module M and F a flat
R-module with F ⊗P 6= F ⊗M . Then F ⊗P is I-prime submodule of F ⊗M .

Proof. Suppose that P is I-prime and r ∈ R − (P : M). Then by Theorem
2.7 (P : r) = P or (P : r) = (IP : r). Now Lemma 2.15 gives us (F ⊗ P :
r) = F ⊗ (P : r) = F ⊗ P or (F ⊗ P : r) = F ⊗ (P : r) = F ⊗ (IP : r) =
(F ⊗ IP : r) = (I(F ⊗ P ) : r) and consequently F ⊗ P is I-prime submodule
of F ⊗M . �

An R-module F is called faithfully flat if for any two R-modules A and
B, the sequence 0 −→ A −→ B is exact if and only if the sequence 0 −→
F ⊗ A −→ F ⊗ B is exact. By using this definition we are thus led to the
following strengthening of the Theorem 2.16.

Proposition 2.17. Let F be a faithfully flat R-module. Then a submodule P
of an R-module M is I-prime if and only if F ⊗ P is I-prime submodule of
F ⊗M .

Proof. Suppose that P is I-prime submodule of an R-module M and F a
faithfully flat R-module. If F⊗P = F⊗M , then the exactness of the sequence
0 −→ F ⊗ P −→ F ⊗M −→ 0 imply the exactness of 0 −→ P −→ M −→ 0
and hence P = M which is a contradiction. So F ⊗ P 6= F ⊗ M and by
Theorem 2.16 F ⊗P is an I-prime submodule of F ⊗M . Conversely, let F ⊗P
be an I-prime submodule of F ⊗M . Hence F ⊗ P 6= F ⊗M and so P 6= M .
Now for every r ∈ R − (P : M) we have r ∈ R − (F ⊗ P : F ⊗M) and so by
Lemma 2.15, F ⊗ (P : r) = (F ⊗P : r) = F ⊗P or F ⊗ (P : r) = (F ⊗P : r) =
(I(F ⊗ P ) : r) = (F ⊗ IP : r) = F ⊗ (IP : r). Assume F ⊗ (P : r) = F ⊗ P .
Then 0 −→ F ⊗ (P : r) −→ F ⊗ P −→ 0 is an exact sequence and as F is
faithfully flat, 0 −→ (P : r) −→ P −→ 0 is exact sequence and consequently
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(P : r) = P . The other case can be proved similarly. Thus by Theorem 2.7 P
is I-prime submodule of M . �

It is known from Proposition 6.1 in [14] that J ⊗F ∼= JF for any ideal J of
R and flat R-module F . Thus according to Theorem 2.16 and Corollary 2.17
we conclude the following.

Corollary 2.18. Let F be a flat R-module and J an I-prime ideal of R with
JF 6= F . Then JF is an I-prime submodule of F . In the case F is faithfully
flat, the converse is also true.

We know that every polynomial ring R[x] is flat over R and that R[x]⊗M ∼=
M [x]. Hence as an immediate consequence of the Theorem 2.16 we give the
following corollary.

Corollary 2.19. Let M be an R-module and x an indeterminate. If P is
I-prime submodule of M , then P [x] is I-prime submodule of M [x].
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