
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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HOMOGENEOUS IDEALIZATION AND SOME DUAL
NOTIONS AROUND COMULTIPLICATION MODULES

BATOOL ZAREI JALAL ABADI1 AND HOSEIN FAZAELI MOGHIMI2

Abstract. Let R be a commutative ring with identity, and let M be a
unital R-module. D. D. Anderson proved that a submodule N of M is mul-
tiplication if and only if 0(+)N is a multiplication ideal of R(+)M , the homo-
geneous idealization of M . In this article, we show that a similar statement
holds for comultiplication modules. We develop the tool of idealization of
a module particularly in the context of cocyclic modules, self-cogenerator
modules, comultiplication modules (self-cogenerated modules), couniform
modules, AB5∗ modules, direct family and inverse family of submodules.

1. Introduction

Let R be a commutative ring with identity and M a unital R-module. Then
R(+)M = R×M is a commutative ring with identity (1, 0) under the compo-
nentwise addition and a multiplication defined by

(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1).

Note that (0(+)M)2 = 0; so 0(+)M ⊆ Nil(R(+)M). We view R as a subring
of R(+)M via r 7→ (r, 0). Homogeneous ideals of R(+)M have the form I(+)N ,
where I is an ideal of R and N a submodule of M such that IM ⊆ N (see [8,
Theorem 3.1] and [12, Theorem 25(1)]). A ring whose ideals are all homoge-
neous is called a homogeneous ring [1]. Ideals of R(+)M need not have the form
I(+)N , that is, need not be homogeneous. For example, the principal ideal of
Z(+)Z which is generated by (2, 1) is not homogeneous. When I(+)N is an ideal,
M/N is an R/I-module and (R(+)M)/(I(+)N) ∼= (R/I)(+)(M/N). In particu-
lar, (R(+)M)/(0(+)N) ∼= R(+)(M/N) and therefore (R(+)M)/(0(+)M) ∼= R. So
the ideals of R(+)M containing 0(+)M are of the form J(+)M for some ideal
J of R [8, Theorem 3.1]. In particular, since (0(+)M)2 = 0, prime (maximal)
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ideals of R(+)M have the form P(+)M where P is a prime (maximal) ideal of
R, (see [8, Theorem 3.2] and [12, Theorem 25.1]).

While the idea to use idealization to extend results concerning ideals to mod-
ules is due to M. Nagata [13], it has been investigated in a wide range of topics
by many of authors. In an extensive article, D. D. Anderson and M. Winders
studied the ring theoretic constructions and properties of R(+)M , especially
the stability of properties for R and M to properties for R(+)M . For exam-
ple, they determined when R(+)M is Noetherian, Artinian, or a principal ideal
ring and applied some examples using idealization to reduce questions concern-
ing factorization in modules to factorization in commutative rings. Moreover,
they covered some topics involving idealization such as Buchsbaum, Cohen-
Macaulay, and Gorenstein rings, homological dimension, multiplication mod-
ules, and Boolean-like rings [8].

In a series of works, M. M. Ali developed more fully the tool of idealization of
a module, particularly in the context of multiplication modules, cancellation-
like modules, half (weak) cancellation modules, half join principal modules and
flat modules, generalizing Anderson’s theorems and discussing the behavior un-
der idealization of some ideals and some submodules associated with a module
[3, 4, 5]. Also, it has been given some necessary and sufficient conditions
for a homogeneous ideal to be large, almost(generalized, weak) multiplication,
projective, finitely generated flat, pure or invertible(q-invertible) [1, 2].

Some authors have taken the homogeneous idealization to examine the new
notions under idealization along with other ring extensions. For example, D. F.
Anderson and A. Badawi considered the stability of n-absorbing ideals under
idealization of a module [9, Theorem 4.11, Example 4.12 and Example 4.13].
Also M. Axtell and J. Stickles studied zero-divisor graphs of the idealization
of a module. Specifically they investigated the preservation of the diameter
and girth of a zero-divisor graph under the idealizations of a ring [10].

In this work, we develop the tool of homogeneous idealization in the context
of some (dual) notions such as cocyclic modules, self-cogenerator modules,
self cogenerated modules, couniform modules, AB5∗ modules, direct family
and inverse family of submodules. These notions are all closely related to
comultiplication modules [7].

2. Self-cogenerator and strongly self-cogenerated modules

Given a submodule L of M , a homomorphism β : L → M is called trivial
provided there exists an r ∈ R such that β(x) = rx(x ∈ L). In particular , an
endomorphism ϕ of the module M will be called trivial if ϕ : M →M is trivial
in the above sense. For example if M is cyclic, then every endomorphism of
M is trivial.

Lemma 2.1. Let I be an ideal of a ring R and N be a submodule of an R-
module M .
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(1) If ϕ : R(+)M → R(+)M is a trivial ring homomorphism, then ϕ̄ : R→ R
given by ϕ̄(r) = r′ where ϕ(r, 0) = (r′,m′), is a trivial ring homomor-
phism.

(2) If φ : 0(+)N → 0(+)M is a trivial homomorphism of R(+)M-modules,

then φ̂ : N → M given by φ̂(n) = m where φ(0, n) = (0,m) is a trivial

homomorphism of R-modules. Moreover kerφ = 0(+) ker φ̂.
(3) If ψ : I(+)N → R(+)M is a trivial homomorphism of R(+)M-modules,

then ψ̄ : I → R given by ψ̄(i) = r where ψ(i, 0) = (r,m) and ψ̂ : N →
M given by ψ̂(n) = m where ψ(0, n) = (r,m) are trivial homomor-
phisms of R-modules.

(4) If g : N →M is a trivial homomorphism of R-modules, then

(0(+)g) : 0(+)N → 0(+)M

given by (0(+)g)(0, n) = (0, g(n)) is a trivial homomorphism of R(+)M-
modules. Moreover ker(0(+)g) = 0(+) ker g.

Proof. (1) Let r, r′ ∈ R. It is easily seen that

ϕ̄(r + r′) = ϕ̄(r) + ϕ̄(r′).

Moreover,

ϕ(rr′, 0) = ϕ((r, 0)(r′, 0)) = ϕ(r, 0)ϕ(r′, 0)

= (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1).

Hence ϕ̄(rr′) = ϕ̄(r)ϕ̄(r′). Now, since ϕ is trivial, there exists (s,m) ∈ R(+)M
such that ϕ(r, 0) = (s,m)(r, 0) = (sr, rm). Therefore ϕ̄(r) = sr, for all r ∈ R.

(2) Let n, n′ ∈ N, r ∈ R. It is easy to check that

φ̂(n+ n′) = m+m′ = φ̂(n) + φ̂(n′).

Moreover,

φ(0, rn) = φ((r, 0)(0, n)) = (r, 0)φ(0, n)

= (r, 0)(0,m) = (0, rm).

Hence φ̂(rn) = rm = rφ̂(n). Now, since φ is trivial, there exists (s,m) ∈
R(+)M such that φ(0, n) = (s,m)(0, n) = (0, sn). Therefore φ̂(n) = sn, for all
n ∈ N .

(3) Let i, i′ ∈ I, n, n′ ∈ N, s ∈ R. It is easy to see that

ψ̄(i+ i′) = ψ̄(i) + ψ̄(i′).

Moreover,

ψ(si, 0) = ψ((s, 0)(i, 0)) = (s, 0)ψ(i, 0)

= (s, 0)(r,m) = (sr, sm).
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Thus ψ̄(si) = sr = sψ̄(i). Now since ψ is trivial, there exists (s,m) ∈ R(+)M
such that ψ(i, 0) = (s,m)(i, 0) = (si, im). Therefore ψ̄(i) = si, for all i ∈ I .
Also it is easy to check that

ψ̂(n+ n′) = m+m′ = ψ̂(n) + ψ̂(n′).

Moreover,

ψ(0, sn) = ψ
(
(s, 0)(0, n)

)
= (s, 0)ψ(0, n)

= (s, 0)(r,m) = (sr, sm).

Hence ψ̂(sn) = sm = sψ̂(n). Now since ψ is trivial, there exists (s,m) ∈
R(+)M such that ψ(0, n) = (s,m)(0, n) = (0, sn). Therefore ψ̂(n) = sn, for all
n ∈ N .

(4) Let n, n′ ∈ N,m ∈M, r ∈ R. It is easily seen that

(0(+)g)((0, n) + (0, n′)) = (0(+)g)(0, n) + (0(+)g)(0, n′).

Moreover,

(0(+)g)((r,m)(0, n)) = (0(+)g)(0, rn) = (0, g(rn))

= (0, rg(n)) = (r,m)(0, g(n))

= (r,m)(0(+)g)(0, n).

Now, since g is trivial, there exists r ∈ R such that g(n) = rn, for all n ∈ N .
Therefore

(0(+)g)(0, n) = (0, g(n)) = (0, rn)

= (r, 0)(0, n),

for all (0, n) ∈ 0(+)N . The proof of other part is rutine. �

Example 2.2. If f : Z→ Z is the identity map and g : Z→ Z is a map defined
by g(x) = 2x, then f and g are trivial homomorphisms, while it is easily seen
that f(+)g which is defined by (f(+)g)(r,m) = (f(r), g(m)) is not trivial. This
shows that Lemma 2.1 (4) is not true in general.

An R-module M is called self-cogenerator provided for each submodule N
of M , the factor module M/N embeds in the direct product of M I of copies
of M , for some index set I. It is easy to check that a module M is self-
cogenerator if and only if for each submodule N of M there exists an index set
I and endomorphisms ϕi(i ∈ I) of M such that N = ∩i∈I kerϕi. For example
every vector space over a field is self-cogenerator. We shall call a module M
is strongly self-cogenerated provided for each submodule N of M there exists
a family ϕi(i ∈ I) of trivial endomorphisms of M , for some index set I, such
that N = ∩i∈I kerϕi.

Theorem 2.3. Let R be a ring and N be a submodule of R-module M .

(1) N is a self-cogenerator submodule of M if and only if 0(+)N is a self-
cogenerator ideal of R(+)M .
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(2) N is a strongly self-cogenerated submodule of M if and only if 0(+)N is
a strongly self-cogenerated ideal of R(+)M .

Proof. (1) Let N be a self-cogenerator submodule of M and 0(+)L be an ideal
of R(+)M contained in 0(+)N . Since N is self-cogenerator and L is a submodule
of N , there exists a family ϕi(i ∈ I) of endomorphisms of N , for some index
set I, such that L = ∩i∈I kerϕi. By Lemma 2.1(4), 0(+)ϕi(i ∈ I) is a family
of endomorphisms of 0(+)N such that ker (0(+)ϕi) = 0(+) kerϕi, for all i ∈ I.
Hence

0(+)L = 0(+) ∩i∈I kerϕi = ∩i∈I0(+) kerϕi = ∩i∈I ker(0(+)ϕi).

Therefore 0(+)N is self-cogenerator.
(2) Follows by Lemma 2.1 (4) and the proof of (1). �

An R-module M is called comultiplication provided for each submodule N
of M there exists an ideal I of R such that N = (0 :M I) = {m ∈M | Im = 0}.
An ideal I of R is a comultiplication ideal if it is a comultiplication R-module.
It is proved that M is a comultiplication R-module if and only if M is a strongly
self-cogenerated R-module ([7, Theorem 1.5]). Hence by Theorem 2.3(2), we
have the following result:

Corollary 2.4. Let M be an R-module and N a submodule of M . Then N is
a comultiplication submodule of M if and only if 0(+)N is a comultiplication
ideal of R(+)M .

3. Large, nonsingular and small submodules

A submodule N of M is called large provided N ∩ L 6= 0 for every nonzero
submodule L of M i.e. if N ∩ L = 0, then L = 0. The socle of M , denoted
soc (M), is the intersection of all large submodules of M . M is called cocyclic
provided M has a simple large socle. An R-module M is a comultiplication
module if and only if for each submodule N of M such that M/N is cocyclic
there exists an ideal I of R such that N = (0 :M I) [7, Proposition 1.3].

Proposition 3.1. Let R be a ring, N a submodule of an R-module M and
I(+)N a homogeneous ideal of R(+)M .

(1) N is a minimal submodule of M if and only if 0(+)N is a minimal ideal
of R(+)M .

(2) A submodule L of N is large if and only if 0(+)L is an large submodule
of 0(+)N .

(3) soc (0(+)N) = 0(+) soc N .
(4) N is a cocyclic submodule if and only if 0(+)N is a cocyclic submodule.
(5) ann (0(+)N) = ann N(+)M.
(6) If N is faithful, then 0(+)N is large in I(+)N .
(7) If N is faithful and K is large in N , then 0(+)K is large in I(+)N .
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Proof. (1) The result is followed by this fact that ideals of R(+)M contained
in 0(+)N are exactly of the form 0(+)L where L is a submodule of N .

(2) Suppose L is large in N and 0(+)K is a submodule of 0(+)N such that
(0(+)L) ∩ (0(+)K) = 0. Then 0 = (0(+)L) ∩ (0(+)K) = 0(+)(L ∩ K). Thus
L ∩ K = 0. Hence K = 0 and hence 0(+)K = 0. This implies that 0(+)L
is large in 0(+)N . Conversely, suppose K is a submodule of N such that
L∩K = 0. Then (0(+)L)∩ (0(+)K) = 0(+)(L∩K) = 0. Since 0(+)L is large in
0(+)N , 0(+)K = 0 and hence K = 0. This show that L is large in N .

(3) By (2), the large submodules of 0(+)N are exactly of the form 0(+)L
where L is large in N . Hence the result follows.

(4) follows by (1), (2) and (3).
(5) Let (r,m) ∈ R(+)M . Then

(r,m) ∈ ann (0(+)N)⇐⇒ (r,m)0(+)N = 0

⇐⇒ 0(+)rN = 0

⇐⇒ rN = 0

⇐⇒ r ∈ ann N.

(6) LetH be an ideal ofR(+)M contained in I(+)N such thatH∩(0(+)N) = 0.
Then H(0(+)N) = 0. Hence

H ⊆ ann (0(+)N) = ann N(+)M = 0(+)M.

Thus H = 0(+)K for some submodule K of M . Therefore

0 = H ∩ (0(+)N) = (0(+)K) ∩ (0(+)N) = 0(+)(K ∩N).

Thus K ∩N = 0. Since H = 0(+)K ⊆ I(+)N , K ⊆ N . Hence 0 = K ∩N = K
and hence H = 0(+)K = 0. This implies that 0(+)N is a large ideal of R(+)M
contained in I(+)N .

(7) Let H be an ideal of R(+)M in I(+)N such that H ∩ (0(+)K) = 0. Then
(H ∩ (0(+)N)) ∩ (0(+)K) = 0. But H ∩ (0(+)N) ⊆ 0(+)N and by (2), 0(+)K is
a large ideal of R(+)M contained in 0(+)N . Then H ∩ (0(+)N) = 0. By (6),
0(+)N is a large ideal of R(+)M contained in I(+)N , hence H = 0. �

Let M be an R module, I an ideal of R and N a submodule of M . In a
general case of above theorem 5, ann (I(+)N) = (ann (I) ∩ ann N)(+)(0 :M
I) [3, Lemma 1]. Using this fact we have the following characterization for
comultiplication modules.

Proposition 3.2. Let M be an R-module. Then M is a comultiplication
module if and only if for each submodule N of M such that M/N is cocyclic
there exists an ideal I of R such that ann (I(+)N) = (ann (I) ∩ ann N)(+)N

Proof. It immediately follows from [3, Lemma 1] and [7, Proposition 1.3]. �

An R-module M is called nonsingular provided Im 6= 0, for every large ideal
I of R and non-zero element m of M . M is called a multiplication module
provided, for each submodule N of M , there exists an ideal I of R such that
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N = IM [11]. Note that, if N is a submodule of a multiplication R-module
M , then I ⊆ (N : M) = {r ∈ R | rM ⊆ N} and hence N = IM ⊆ (N :
M)M ⊆ N so that N = (N : M)M . The ideal I of R is called nonsingular
(multiplication) if it is a nonsingular (multiplication) R-module.

Theorem 3.3. Let I be a ideal of R and M an R-module. If I(+)IM is a
finitely generated nonsingular comultiplication ideal of R(+)M , then I(+)IM
is a multiplication ideal of R(+)M and ann (I(+)IM) = R(e,m) for some
idempotent (e,m) of R(+)M . In particular I is a multiplication ideal of R,
ann (I) = Re for some idempotent e of R.

Proof. Since I(+)IM is a nonsingular comultiplication ideal of R(+)M , then
by [7, Corollary 1.7] it is projective, and hence is a multiplication ideal and
ann (I(+)IM) = R(e,m) by [6, p.3899]. The in particular part follows from [3,
Theorem 7]. �

Theorem 3.4. Let M be a faithful multiplication R-module and I(+)N be a
homogeneous ideal of R(+)M . If I(+)N is a nonsingular ideal of R(+)M , then
N is a nonsingular submodule of M and I is a nonsingular ideal of R. In
particular if 0(+)N is a nonsingular ideal of R(+)M , then N is a nonsingular
submodule of M .

Proof. Let J,H be large ideals of R and 0 6= r ∈ I, 0 6= n ∈ N such that
nJ = rH = 0. Then (0, n)(J(+)JM) = 0(+)nJ = 0 and (r, 0)(H(+)HM) =
rH(+)rHM = 0. Since J(+)JM and H(+)HM are large ideals of R(+)M by [1,
Theorem 14, (6)], it contradicts the nonsingularity of I(+)N . �

As a dual notion of a large submodule, A submodule N of an R-module M
is said to be small provided for any submodule L of M , L + N = M implies
that L = M . I(+)N is a small ideal of R(+)M if and only if I is a small ideal of
R [1, Proposition 17]. M is said to be couniform provided each of its non-zero
submodules is small.

Theorem 3.5. Let I be an ideal of a ring R and N be a submodule of an
R-module M .

(1) 0(+)N is couniform if and only if N is couniform.
(2) If I(+)M is couniform, then I is couniform.
(3) If I(+)IM is couniform, then I is couniform.

Proof. (1) Let 0(+)N be couniform and L,K be non-zero submodules of N
such that L+K = N . Then 0(+)N = 0(+)(L+K) = (0(+)L) + (0(+)K). Hence
0(+)L = 0(+)N or 0(+)K = 0(+)N and hence L = N or K = N . This show
that N is couniform. The converse is routine.

(2) Let J,H be non-zero ideals of R in I such that J +H = I. Then

(J(+)M) + (H(+)M) = (J +H)(+)M = I(+)M.

Since I(+)M is couniform, J(+)M = I(+)M or H(+)M = I(+)M . Thus J = I or
H = I. Hence I is couniform.
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(3) Let J,H be non-zero ideals of R in I such that J +H = I. Then

(J(+)JM) + (H(+)HM) = (J +H)(+)(J +H)M = I(+)IM.

Since I(+)IM is couniform, J(+)JM = I(+)IM or H(+)HM = I(+)IM . Thus
J = I or H = I. Hence I is couniform. �

4. Direct and inverse family of submodules

A family Li(i ∈ I) of submodules of an R-module M is called direct provided
for each i, j ∈ I there exists a k ∈ I such that Li + Lj ⊆ Lk and in this case

N ∩ (Σi∈ILi) = Σi∈I(N ∩ Li),

for every submodule N of M . On the other hand, a family of submodules
Hi(i ∈ I) of M is called inverse if for each i, j ∈ I there exists a k ∈ I such
that Hk ⊆ Hi∩Hj. Also M is said to satisfy the AB5∗-condition and is called
an AB5∗ module provided for every inverse family Hi(i ∈ I) of submodules,

N + ∩i∈IHi = ∩i∈I(N +Hi),

for every submodule N of M . For example multiplication modules over valu-
ation domain are AB5∗-modules. Also the prüfer group Zp∞ is an AB5∗. By
an AB5∗ submodule N of M (resp. ideal I of R), we mean that N (resp. I)
is an AB5∗ R-module.

Proposition 4.1. Let M be an R-module and N be a submodule of M .

(1) A family Li(i ∈ I) of submodules of N is direct (resp. inverse) if and
only if a family 0(+)Li of ideals of R(+)M is direct (resp. inverse).

(2) N is an AB5∗ submodule if and only if 0(+)N is an AB5∗ ideal of
R(+)M .

Proof. (1) clear.
(2) Let N be an AB5∗ module, 0(+)Hi(i ∈ I) be any inverse family of ideals

of R(+)M contained in 0(+)N and 0(+)L be a ideal of R(+)M contained in
0(+)N . Then

(0(+)L) + ∩i∈I(0(+)Hi) = (0(+)L) + (0(+)(∩i∈IHi))

= 0(+)(L+ ∩i∈IHi).

Since N is an AB5∗ submodule and by (1) a family Hi(i ∈ I) is inverse in
N ,

L+ ∩i∈IHi = ∩i∈I(L+Hi).

Thus

0(+)(L+ ∩i∈IHi) = 0(+) ∩i∈I (L+Hi)

= ∩i∈I(0(+)(L+Hi))

= ∩i∈I((0(+)L) + (0(+)Hi)).
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Hence 0(+)N is an AB5∗submodule. Conversely suppose Hi(i ∈ I) is an inverse
family of submodules of N and L be a submodule of N . Then

0(+)(L+ ∩i∈IHi) = (0(+)L) + (0(+) ∩i∈I Hi)

= (0(+)L) + ∩i∈I(0(+)Hi).

Since 0(+)N is an AB5∗ submodule and by (1) a family 0(+)Hi(i ∈ I) is inverse
in 0(+)N and 0(+)L is a ideal of R(+)M contained in 0(+)N ,

(0(+)L) + ∩i∈I(0(+)Hi) = ∩i∈I((0(+)L) + (0(+)Hi)).

Thus

0(+)(L+ ∩i∈IHi) = ∩i∈I((0(+)L) + (0(+)Hi))

= ∩i∈I(0(+)(L+Hi))

= 0(+) ∩i∈I (L+Hi).

Hence

L+ ∩i∈IHi = ∩i∈I(L+Hi),

This show that N is an AB5∗ submodule. �

By [7, Theorem 2.9], if M is a comultiplication R-module such that (0 :M I∩
J) = (0 :M I)+(0 :M J) for all ideals I and J of R, then M is an AB5∗ module.
Now by Proposition 4.1 and that every submodule of a comultiplication module
is a comultiplication module [7, Lemma 2.1], we have the following result:

Corollary 4.2. Let M be a comultiplication R-module. If N is a submodule
of M such that (0 :N I ∩ J) = (0 :N I) + (0 :N J) for all ideals I and J of R.
Then N is an AB5∗ submodule of M , and therefore 0(+)N is an AB5∗ ideal
of R(+)M .

Theorem 4.3. Let R be a ring and M an R-module. Let I(+)N be a homoge-
neous ideal of R(+)M .

(1) A family Ii(i ∈ I) of ideals of R contained in I is direct (resp. inverse)
if and only if the family Ii(+)N(i ∈ I) of ideals of R(+)M contained in
I(+)N is direct (resp. inverse).

(2) If a family I(+)Ni(i ∈ I) of homogeneous ideals of R(+)M contained in
I(+)N is direct (resp. inverse), then the family Ni(i ∈ I) of submodules
of N is direct (resp. inverse). The converse is true if IM ⊆ Ni for all
i ∈ I.

(3) If I(+)N is an AB5∗ ideal of R(+)M , then I is an AB5∗ ideal of R.

Proof. (1) Since IiM ⊆ IM ⊆ N , Ii(+)N ’s are ideals of R(+)M . Hence for any
i, j, k ∈ I,

Ii + Ij ⊆ Ik ⇐⇒ (Ii + Ij)(+)N ⊆ Ik(+)N

⇐⇒ (Ii(+)N) + (Ij(+)N) ⊆ Ik(+)N
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Also

Ik ⊆ Ii ∩ Ij ⇐⇒ Ik(+)N ⊆ (Ii ∩ Ij)(+)N

⇐⇒ Ik(+)N ⊆ (Ii(+)N) ∩ (Ij(+)N).

It follows that a family Ii(i ∈ I) of ideals of R contained in I is direct if and
only if the family Ii(+)N(i ∈ I) of ideals of R(+)M contained in I(+)N is direct.

(2) Let for all i ∈ I, IM ⊆ Ni. Then for any i, j, k ∈ I,

Ni +Nj ⊆ Nk ⇐⇒ I(+)(Ni +Nj) ⊆ I(+)Nk

⇐⇒ (I(+)Ni) + (I(+)Nj) ⊆ I(+)Nk

Also

Nk ⊆ Ni ∩Nj ⇐⇒ I(+)Nk ⊆ I(+)(Ni ∩Nj)

⇐⇒ I(+)Nk ⊆ (I(+)Ni) ∩ (I(+)Nj).

(3) Suppose that Ii(i ∈ I) is an inverse family of ideals of R contained in I
and J is an ideal of R contained in I. Then

(J + ∩i∈IIi)(+)N = (J(+)N) + ∩i∈I(Ii(+)N)

= (J(+)N) + ∩i∈I(Ii(+)N)

By (1) a family Ii(+)N(i ∈ I) of ideals of R(+)M contained in I(+)N is inverse
and J(+)N is an ideal R(+)M contained in I(+)N . By assumption I(+)N is an
AB5∗ ideal, thus

(J(+)N) + ∩i∈I(Ii(+)N) = ∩i∈I
(
(J(+)N) + (Ii(+)N)

)
= ∩i∈I

(
(J + Ii)(+)N

)
=

(
∩i∈I (J + Ii)

)
(+)
N.

Then
(J + ∩i∈IIi)(+)N =

(
∩i∈I (J + Ii)

)
(+)
N.

Thus
J + ∩i∈IIi = ∩i∈I(J + Ii).

Hence I is an AB5∗ ideal of R. �
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