THE STRUCTURE OF THE UNIT GROUP OF THE GROUP ALGEBRA $\mathbb{F} S_{5}$ WHERE \mathbb{F} IS A FINITE FIELD WITH $\operatorname{char}(\mathbb{F})=p>5$

YOGESH KUMAR, R.K.SHARMA AND J.B.SRIVASTAVA

Abstract

Let \mathbb{F}_{q} denote a field having $q=p^{n}$ elements, where p a prime, and let S_{5} denote the symmetric group of degree 5 . We give a complete structure of the unit group $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right), p>5$.

1. Introduction

Determination of unit group of a group algebra has been very fascinating and challenging. Recently, Gildea $[2,3,4,5,6,7,8,9,10,12]$ and Makhijani [10] have determined the unit group of certain finite group algebras. Makhijani [10] characterized the unit group of the finite group algebra of the alternating group A_{5}. In this paper we have characterized completely for $\mathbb{F} S_{5}$, char $\mathbb{F}>5$.

Let \mathbb{F} be a finite field of $\operatorname{char}(\mathbb{F})=p>5$. We shall write $\mathbb{F}=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$, where $|\mathbb{F}|=p^{n}$. Since $\left|S_{5}\right|=120=2^{3} \cdot 3 \cdot 5 \cdot$ The Jacobson radical $J\left(\mathbb{F}_{q} S_{5}\right)=0$ by Maschke's theorem. Also $\mathbb{F} S_{5}$ is a finite ring, hence Artinian. Further, by Wedderburn Decomposition theorem

$$
\mathbb{F}_{q} S_{5} \cong \mathbb{M}_{n_{1}}\left(D_{1}\right) \oplus \mathbb{M}_{n_{2}}\left(D_{2}\right) \oplus \cdots \oplus \mathbb{M}_{n_{r}}\left(D_{r}\right)
$$

where $D_{1}, D_{2}, \ldots, D_{r}$ are finite dimensional division algebras over the finite field \mathbb{F}. Therefore each $D_{k}=\mathbb{F}_{p^{n_{k}}}$ is a finite field and

$$
\mathbb{F}_{q} S_{5} \cong \mathbb{M}_{n_{1}}\left(\mathbb{F}_{p^{m_{1}}}\right) \oplus \mathbb{M}_{n_{2}}\left(\mathbb{F}_{p^{m_{2}}}\right) \oplus \cdots \oplus \mathbb{M}_{n_{r}}\left(\mathbb{F}_{p^{m_{r}}}\right)
$$

Hence

$$
\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right) \cong G L_{n_{1}}\left(\mathbb{F}_{p^{m_{1}}}\right) \times G L_{n_{2}}\left(\mathbb{F}_{p^{m_{2}}}\right) \times \cdots \times G L_{n_{r}}\left(\mathbb{F}_{p^{m_{r}}}\right)
$$

Thus the structure of the unit group $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right)$ is determined completely once we compute $r, n_{1}, n_{2}, \ldots, n_{r}, m_{1}, m_{2}, \ldots, m_{r}$. Finding r is easy. Clearly the centre,

$$
\mathcal{Z}\left(\mathbb{F}_{q} S_{5}\right) \cong \mathbb{F}_{p^{m_{1}}} \oplus \mathbb{F}_{p^{m_{2}}} \oplus \cdots \oplus \mathbb{F}_{p^{m_{r}}}
$$

[^0]where r is the number of distinct conjugacy classes of S_{5}. It can be seen easily that $r=7$. We shall use the following presentation of the group S_{5}
$$
S_{5}=\left\langle a, b \mid a^{2}, b^{5},(a b)^{4},\left(b a b^{-2} a b\right)^{2}\right\rangle
$$
where $a=(1,2)$ and $b=(1,2,3,4,5)$.

2. Preliminaries

Through out the paper, \mathbb{F} will denote a finite field with p^{n} elements and G will denote a finite group. We shall need the following results from Ferraz [1].

An element $x \in G$ is called p-regular if $p \nmid|x|$. Let s be the l.c.m. of the orders of the p-regular elements of G and θ be a primitive $s^{\text {th }}$ root of unity over \mathbb{F}, the multiplicative group $T_{G, \mathbb{F}}$ is defined by

$$
T_{G, \mathbb{F}}=\left\{t \mid \theta \rightarrow \theta^{t} \text { is an automorphism of } \mathbb{F}(\theta) \text { over } \mathbb{F}\right\} .
$$

For p-regular elements g, denote by γ_{g} the sum of all conjugates of g in G. The cyclotomic \mathbb{F}-class of γ_{g} is to be the set

$$
S_{\mathbb{F}}\left(\gamma_{g}\right)=\left\{\gamma_{g^{t}} \mid t \in T_{G, \mathbb{F}}\right\} .
$$

Proposition 2.1 ([1]). The number of simple components of $\frac{\mathbb{F} G}{J(\mathbb{F} G)}$ is equal to the number of cyclotomic \mathbb{F}-classes in G.

Proposition $2.2([1])$. Suppose the Galois group $\operatorname{Gal}(\mathbb{F}(\theta): \mathbb{F})$ is cyclic and t be the number of cyclotomic \mathbb{F}-classes in G. If $K_{1}, K_{2}, \ldots, K_{t}$ are the simple components of $\mathcal{Z}\left(\frac{\mathbb{F} G}{J(\mathbb{F} G)}\right)$ and $S_{1}, S_{2}, \ldots, S_{t}$ are the cyclotomic \mathbb{F}-classes of G, then $\left|S_{i}\right|=\left[K_{i}: \mathbb{F}\right]$ with a suitable ordering of the indices.

From the above proposition it follows that

$$
\mathcal{Z}\left(\frac{\mathbb{F} G}{J(\mathbb{F} G)}\right) \cong \mathbb{F}_{p^{n_{1}}} \oplus \mathbb{F}_{p^{n_{2}}} \oplus \cdots \oplus \mathbb{F}_{p^{n_{t}}}
$$

where $\mathbb{F}_{n_{i}}$ denotes the unique field between $\mathbb{F}(\theta)$ and \mathbb{F} such that $\left[\mathbb{F}_{n_{i}}: \mathbb{F}\right]=n_{i}$.
We shall freely use Feeraz's [1] result, since every finite extension of a finite field is a cyclic extension which gives $\operatorname{Gal}(\mathbb{F}(\theta): \mathbb{F})$ cyclic group. Again, $T_{G, \mathbb{F}_{q}}=\left\{q^{i} \operatorname{mods} \mid 0 \leq i \leq d-1\right\}$, where d is the order of $q \bmod s$. We shall use the above form of $T_{G, \mathbb{F}}$ to compute order of the cyclotomic \mathbb{F}-classes in G, and the relation given in proposition 2.2.

3. The structure of the unit group $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right), p>5$

We need the following result given in [11]
Proposition 3.1 (Prop. 3.6.11, [11]). Let $\mathbb{F} G$ be a semisimple group algebra. If G^{\prime} denotes the commutator subgroup of G then we can write

$$
\mathbb{F} G \cong \mathbb{F} G_{e_{G^{\prime}}} \oplus \triangle\left(G, G^{\prime}\right)
$$

where $\mathbb{F} G_{e_{G^{\prime}}} \cong \mathbb{F}\left(\frac{G}{G^{\prime}}\right)$ is the sum of all commutative simple components of $\mathbb{F} G$ and $\triangle\left(G, G^{\prime}\right)$ is the sum of all the others. Here $e_{G^{\prime}}=\frac{\widehat{G^{\prime}}}{\left|G^{\prime}\right|}$ where $\widehat{G^{\prime}}$ is the sum of all elements of G^{\prime}.

Theorem 3.2. Let $q=p^{n}, p>5$ be a prime then, $\mathbb{F}_{q} S_{5}$ is isomorphic to one of the following:
(i) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{9}\left(\mathbb{F}_{q}\right)$,
(ii) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{6}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{7}\left(\mathbb{F}_{q}\right)$,
(iii) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{3}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{8}\left(\mathbb{F}_{q}\right)$,
(iv) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{6}\left(\mathbb{F}_{q}\right)$.

Proof. In our case $\frac{S_{5}}{S_{5}^{\prime}} \cong C_{2}$ as $S_{5}^{\prime}=A_{5}$. Also, $\left|S_{5}\right|=2^{3} \cdot 3 \cdot 5$ and therefore group algebra $\mathbb{F}_{q} S_{5}$ is semi-simple as $p \nmid|G|$. Here $q=p^{n}, p>5$.

By proposition 3.1

$$
\mathbb{F}_{q} S_{5}=\mathbb{F}_{q} S_{5} e_{S_{5}^{\prime}} \oplus \mathbb{F}_{q} S_{5}\left(S_{5}^{\prime}-1\right)
$$

where $e_{S_{5}^{\prime}}=e_{A_{5}}=\frac{\widehat{A_{5}^{\prime}}}{\left|A_{5}\right|}=\frac{\sum_{\sigma \in A_{5}} \sigma}{60}$

$$
\mathbb{F}_{q} S_{5} e_{S_{5}^{\prime}}=\text { sum of all commutative simple components of } \mathbb{F}_{q} S_{5}
$$

However,

$$
\mathbb{F}_{q} S_{5} e_{S_{5}^{\prime}} \cong \mathbb{F}_{q}\left(\frac{S_{5}}{S_{5}^{\prime}}\right) \cong \mathbb{F}_{q}\left(C_{2}\right) \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q} .
$$

Therefore, by Wedderburn Decomposition Theorem

$$
\mathbb{F}_{q} S_{5} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \sum_{i=1}^{5} \mathbb{M}_{n_{i}}\left(\mathbb{F}_{q^{k_{i}}}\right),
$$

for $n_{i} \geq 2$ all are the seven simple components.
Now $p>5$, so $q=p^{n} \equiv \pm 1 \bmod 6$. Again $\left|S_{\mathbb{F}_{q}}\left(\gamma_{g}\right)\right|=1$, for each $g \in S_{5}$. Hence each $k_{i}=1$ in the Wedderburn Decomposition of $\mathbb{F}_{q} S_{5}$. Since $p>5$, therefore each element of S_{5} is p-regular.

By dimension constraints, we have

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q} S_{5}\right)=1+1+n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2}+n_{5}^{2} \\
120=1+1+\sum_{k=1}^{5} n_{k}^{2} \\
118=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2}+n_{5}^{2}
\end{gathered}
$$

Possible solutions of the equation are

$$
\begin{aligned}
& 2,2,2,5,9 \\
& 2,2,5,6,7 \\
& 2,3,4,5,8 \\
& 4,4,5,5,6 .
\end{aligned}
$$

Hence $\mathbb{F}_{q} S_{5}$ is isomorphic to one of the following:
(i) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{9}\left(\mathbb{F}_{q}\right)$,
(ii) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{6}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{7}\left(\mathbb{F}_{q}\right)$,
(iii) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{2}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{3}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{8}\left(\mathbb{F}_{q}\right)$,
(iv) $\mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{4}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{5}\left(\mathbb{F}_{q}\right) \oplus \mathbb{M}_{6}\left(\mathbb{F}_{q}\right)$.

Corollary 3.3. Let $q=p^{n}$, where $p>5$ be a prime, then $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right)$ is isomorphic to one of the following:
(i) $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right) \cong \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*} \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{5}\left(\mathbb{F}_{q}\right) \times G L_{9}\left(\mathbb{F}_{q}\right)$,
(ii) $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right) \cong \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*} \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{5}\left(\mathbb{F}_{q}\right) \times G L_{6}\left(\mathbb{F}_{q}\right) \times G L_{7}\left(\mathbb{F}_{q}\right)$,
(iii) $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right) \cong \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*} \times G L_{2}\left(\mathbb{F}_{q}\right) \times G L_{3}\left(\mathbb{F}_{q}\right) \times G L_{4}\left(\mathbb{F}_{q}\right) \times G L_{5}\left(\mathbb{F}_{q}\right) \times G L_{8}\left(\mathbb{F}_{q}\right)$,
(iv) $\mathcal{U}\left(\mathbb{F}_{q} S_{5}\right) \cong \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*} \times G L_{4}\left(\mathbb{F}_{q}\right) \times G L_{4}\left(\mathbb{F}_{q}\right) \times G L_{5}\left(\mathbb{F}_{q}\right) \times G L_{5}\left(\mathbb{F}_{q}\right) \times G L_{6}\left(\mathbb{F}_{q}\right)$.

4. Acknowledgements

The first author is supported by Council of Scientific and Industrial Research (CSIR), New Delhi, Govt. of India, Under Grant No. F. No:09/086(1133)/2012-EMR-I.

References

[1] R.A. Ferraz, Simple components of center of $F G / J(F G)$. Comm. Algebra, 36(9):31913199, 2008.
[2] J. Gildea, The structure of the unitary units of the group algebra $\mathbb{F}_{2^{k}} D_{8}$. Int. Electron. J. Algebra, 9:171-176, 2011.
[3] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}\left(C_{3} \times D_{6}\right)$. Comm. Algebra, 38(9):3311-331, 2010.
[4] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} A_{4}$. Czechoslovak. Math. J., 61(136)(2):531-539, 2011.
[5] J. Gildea, Units of the group algebra $\mathbb{F}_{2^{k}}\left(C_{2} \times D_{8}\right)$. J. Algebra Appl., 10(4):643-647, 2011.
[6] J. Gildea, Units of the group algebra $\mathbb{F}_{3^{k}}\left(C_{3}^{2} \rtimes C_{2}\right)$. Acta Sci. Math. (Szeged), 77:53-62, 2011.
[7] J. Gildea and L. Creedon, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} D_{8}$. Canad. Math. Bull., 54(2):237-243, 2011.
[8] N. Makhijani, R.K. Sharma, and J.B. Srivastava, The unit group of finite group algebra of a generalized dihedral group. Asian European J. Math., 7(2):1450034, DOI:10.1142/S179355711450034X, 2014.
[9] N. Makhijani, R.K. Sharma, and J.B. Srivastava, Units in $\mathbb{F}_{2^{k}} D_{2 n}$. Int. J. Group Theory, 3(3):25-34,2014.
[10] N. Makhijani, R.K. Sharma, and J.B. Srivastava, A note on the structure of $\mathbb{F}_{p^{k}} A_{5} / J\left(\mathbb{F}_{p^{k}} A_{5}\right)$. To appear in Journal Acta Scientiarum mathematicarum.
[11] C.P. Miles and S.K. Sehgal, An introduction to group rings. Kluwer Academic Publishers, Dordrecht, 2002.
[12] R.K. Sharma, J.B. Srivastava, and M. Khan, The unit group of $\mathbb{F} A_{4}$. Publ. Math Debrecen, 71:21-26,2007.

Received September 24, 2015.

Department of Mathematics,
Indian Institute of Technology Delhi, New Delhi-110016,
India
E-mail address: kumaryogeshiitd@gmail.com
E-mail address: rksharmaiitd@gmai.com
E-mail address: jbsrivas@gmail.com

[^0]: 2010 Mathematics Subject Classification. 16U60.
 Key words and phrases. Group algebra, Wedderburn Decomposition, Unit Group.

