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EXTENSIONS FOR A REGULAR FUNCTION WITH VALUES
IN DUAL QUATERNIONS (CORRIGENDUM)

JI EUN KIM

Abstract. This paper researches properties of a regular function defined
on a domain in Clifford analysis. Also, the paper investigates properties of
extensions for a regular function with values in DH and the corresponding
Cauchy-Riemann system for a regular function of dual quaternionic vari-
ables.

1. Introduction

Dual quaternions generalize the notion of quaternions to an 8-tuple, and
provide a convenient representation of rigid body transformations containing
both rotations and translations in three-dimensional space. The mathematical
structure of dual quaternions uses two quaternions that are combined using
the algebra of dual numbers. A dual quaternion can be represented in the form
p+ εq, where p, q are ordinary quaternions and ε is the dual unit with ε2 = 0.
The set of dual quaternions is a Clifford algebra which has the following form:

DH := {Z = p1 + εp2 | p1, p2 ∈ H}

and it is isomorphic with H2 and R8, where H is the set of quaternions whose
the basis elements are 1, i, j and k. It has the product rule for i, j and k is
written by

i2 = j2 = k2 = ijk = −1,

and

ij = −ji = k, jk = −kj = i, ki = −ik = j.

For two quaternions p = z1 + z2j and q = w1 + w2j, where z1 = x0 + ix1,
z2 = x2 + ix3, w1 = y0 + iy1 and w2 = y2 + iy3, the rule of additions and
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multiplications are:

p+ q = (z1 + w1) + (z2 + w2)j,

pq = (z1w1 − z2w2) + (z1w2 + z2w1)j.

From the above rules, we give the norm for a quaternion as follows:

|p|2 := pp∗ = z1z1 + z2z2,

where p∗ = z1 + z2j is the conjugation of p with zr (r = 1, 2) are the classical
complex numbers. Hamilton [3] introduced quaternions in 1843, and by 1873
Clifford [1] obtained a broad generalization of these numbers that he called
biquaternions, which is an example of what is now called a Clifford algebra
[13]. Kotelnikov [12] developed dual vectors and dual quaternions. Study [15]
realized that this associative algebra was the ideal for describing the group of
motions of the three-dimensional space. Favaro [2] introduced spaces of entire
functions of θ-holomorphy type of bounded type and proved results involving
these spaces. Saric [14] researched a real valued function F defined at the end-

points of an interval [a, b] in R and showed that KH − vt
∫ b

a
f = F(b) − F(a),

where KH−vt denotes the total value of the Kurzweil-Henstock integral. Ka-
jiwara et al. [4] gave an inhomogeneous Cauchy Riemann system and applied
the theory on a closed densely defined operator in a Hilbert space and brcon-
vex domains. Kim et al. [5, 6, 8] obtained the regularity of functions on the
reduced quaternion field and compared with hyperholomorphic functions and
regular functions on the form of dual split quaternions in Clifford analysis.
Also, Kim et al. [7, 9, 10] researched corresponding Cauchy-Riemann systems
and properties of functions with values in special quaternions. We [11] inves-
tigated the differentiation and integration for regular functions of bicomplex
numbers satisfying the commutative multiplicative rule.

This paper gives some differential conditions and operators in DH. From
the definition of these operators, the paper researches properties of a function,
called a regular function, defined on a domain in DH. Also, the paper inves-
tigates some results of the extension for functions satisfying conditions of the
differentiable cases on DH in Clifford analysis.

2. Preliminaries

We give a scalar part of Z is

Sc(Z) = Sc(p1) = x0,

a dual part of Z is

Du(Z) = p2 = y0 + iy1 + jy2 + ky3

and a vector part of Z is

V e(Z) = V e(p1) + V e(p2) = iλ1 + jλ2 + kλ3,

where λr is a dual number xr + εyr with xr, yr ∈ R (r = 0, 1, 2, 3).
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For Z = p1+εp2 and W = q1+εq2, we have the following rules of an addition
on DH:

Z +W = (p1 + q1) + ε(p2 + q2)

and a multiplication on DH:

ZW = p1q1 + ε(p1q2 + p2q1).

We give a complex conjugate element of DH as follows:

Z∗ = p∗1 − εp∗1p2p−11

and then, the module of Z, denoted by M(Z), is described by

M(Z) = ZZ∗ = p1p
∗
1 =

3∑
r=0

x2r.

Hence, the inverse element of DH is

Z−1 =
p∗1 − εp∗1p2p−11

M(Z)
= p−11 − εp−11 p2p

−1
1 .

Remark 2.1. Since p1p
∗
1 ∈ R, we have

p∗1p2p
−1
1 = p∗1p2

p∗1
p1p∗1

=
p∗1
p1p∗1

p2p
∗
1 = p−11 p2p

∗
1.

Hence, the module M(Z) satisfies the following equations:

M(Z) = ZZ∗ = Z∗Z.

3. Regular functions of dual quaternionic variables

We consider an open subset Ω of DH and a function F : Ω → DH of class
C1(Ω,DH).

Now, we give the existence of a dual quaternionic derivative defined as the
limit of a difference quotient using quaternionic derivative.

Definition 3.1. Let Ω be an open set of DH. A function F is dual quaternionic
diffenrentiable on the left at Z if the limit

(3.1)
dF

dZ
:= lim

h→0
h−1{F (Z + h)− F (Z)}

exists, where h = h1 + εh2 which is in the set of no zero divisors in dual
quaternions and h → 0 means each component approaches to zero such that
both h1 → 0 and h2 → 0.



202 JI EUN KIM

Remark 3.2. The above limit has the form

dF

dZ
= lim

h→0
h−1{F (Z + h)− F (Z)}

= lim
h→0

(h−11 − εh−11 h2h
−1
1 ){(f1(p1 + h1, p2 + h2)− f1(p1, p2))

+ε(f2(p1 + h1, p2 + h2)− f2(p1, p2))}
= lim

h→0
{h−11 (f1(p1 + h1, p2 + h2)− f1(p1, p2))

+ε{h−11 (f2(p1 + h1, p2 + h2)− f2(p1, p2))
−h−11 h2h

−1
1 (f1(p1 + h1, p2 + h2)− f1(p1, p2))}.

If a function F is dual quaternionic diffenrentiable on the left at Z, then for
any pathes, the limit dF

dZ
exists. Hence, for h1 → 0 and h2 = 0, we have

dF

dZ
= lim

h→0
{h−11 (f1(p1 + h1, p2)− f1(p1, p2))

+ε{h−11 (f2(p1 + h1, p2)− f2(p1, p2))}.

So, we obtain

(3.2)
dF

dZ
=
∂f1
∂p1

+ ε
∂f2
∂p1

.

Also, for h1 = h2 and h1 → 0, we have

dF

dZ
= lim

h→0
{h−11 (f1(p1 + h1, p2 + h1)− f1(p1, p2))

+ε{h−11 (f2(p1 + h1, p2 + h1)− f2(p1, p2))
−h−11 (f1(p1 + h1, p2 + h1)− f1(p1, p2))}.

and then, we obtain

(3.3)
dF

dZ
=
∂f1
∂p1

+
∂f1
∂p2

+ ε{∂f2
∂p1

+
∂f2
∂p2
− ∂f1
∂p1
− ∂f1
∂p2
},

where ∂fr
∂pt

(r, t = 1, 2) are quaternion-differentiable on the left, cited by [16].

Therefore, from the relation between equations (3.2) and (3.3), we have the
following corresponding Cauchy-Riemann system:

0 =
∂f1
∂p2

+ ε{∂f2
∂p2
− ∂f1
∂p1
},

that is,

(3.4)


∂f1
∂p2

= 0,

∂f2
∂p2

=
∂f1
∂p1

.
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We give a differential, denoted by dFZ , of F at Z ∈ DH such that

dFZ :=
∂f1
∂p1

dp1 +
∂f1
∂p2

dp2 + ε(
∂f2
∂p1

dp1 +
∂f2
∂p2

dp2),

where

∂ft
∂p1

dp1 :=
3∑

r=0

∂ft
∂xr

dxr and
∂ft
∂p2

dp2 :=
3∑

r=0

∂ft
∂yr

dyr (t = 1, 2).

Theorem 3.3. Let Ω be an open subset of DH. If a function F is dual quater-
nionic diffenrentiable for the left at Z, defined on Ω, then F has the form

F (Z) = A+ Zβ

for A ∈ DH and β ∈ H.

Proof. From the definition 3.1, if F is dual quaternionic diffenrentiable, then
the function F satisfies

dFZ(h) = h
dF

dZ
,

that is,

dFZ = dZ
dF

dZ
.

By the existence of the limit (3.1), the limit gives the equations (3.4). Hence,
by using relations between the two equations in (3.4) and citing [16], we have

df1
dp1

=
df1
dx0

= −i df1
dx1

= −j df1
dx2

= −k df1
dx3

and
df2
dp2

=
df2
dy0

= −i df2
dy1

= −j df2
dy2

= −k df2
dy3

.

Hence, we have

f1 = α + p1β and f2 = γ + p2β (α, β, γ ∈ H).

Therefore, we obtain

F (Z) = f1 + εf2 = A+ Zβ,

where A = α + εγ ∈ DH and β ∈ H on Ω. �

We give differential operators in DH.

D̃ := D∗p2 − εD
∗
p1
,

where

D∗p1 =
∂

∂z1
+ j

∂

∂z2
, D∗p2 =

∂

∂w1

+ j
∂

∂w2
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with ∂/∂zr and ∂/∂wr (r = 1, 2) are usual differential operators in complex

analysis. Then the equation (3.4) is equal to the equation D̃F = 0 in DH.

Definition 3.4. The function F is said to be (L-)regular in Ω of DH if the
function F has continuously differentiable components f1 and f2 and satisfies
the equation

(3.5) D̃F = 0.

Example. Let a function F (Z) = Z. Then the function F satisfies

D̃Z = D∗p2f1 + ε(−D∗p1f1 +D∗p2f2) = 0.

Hence, the function F (Z) = Z is regular in Ω. Also, for a function F (Z) =

Zn (n ≥ 1), it satisfies D̃Zn = 0. Thus, the function Zn is regular in Ω. Since
F (Z) = Z∗ and F (Z) = Z−1 don’t satisfy the equation (3.5), so both functions
are not regular in Ω.

Theorem 3.5. Let Ω be an open subset of DH. If a function F satisfies

dZ ∧ dF = 0,

where dZ = dp1 + εdp2 with dp1 = dx0 + idx1 + jdx2 + kdx3 and dp2 =
dy0 + idy1 + jdy2 + kdy3, then F is regular in Ω.

Proof. Since F satisfies

0 = dZ ∧ dF = (dp1 + εdp2) ∧ {D∗p1f1dp1 +D∗p2f1dp2

+ε(D∗p1f2dp1 +D∗p2f2dp2)}
= D∗p2f1dp1 ∧ dp2 + ε(D∗p2f2dp1 ∧ dp2 +D∗p1f1dp2 ∧ dp1),

we have the system {
D∗p2f1 = 0,

D∗p2f2 −D
∗
p1
f1 = 0.

Therefore, the function F is regular in Ω. �

Consider a function F = ϕ1 + ϕ2j + ε(ψ1 + ψ2j), where ϕr and ψr are
continuously differential functions with values in C and the equation ∂G = F ,
where

∂ =
∂

∂z1
dz1 +

∂

∂z2
dz2 +

∂

∂w1

dw1 +
∂

∂w2

dw2.
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Theorem 3.6. Let Ω be an open set in DH. Suppose two functions F and G
satisfy the following equation

∂G = F.

Then F is regular if and only if G is regular in DH.

Proof. Suppose a function F is regular in DH. Since the equation ∂G = F is
represented by

∂G =
∂g1
∂z1

dz1 +
∂g1
∂z2

dz2 +
∂g1
∂w1

dw1 +
∂g1
∂w2

dw2

+ε
(∂g2
∂z1

dz1 +
∂g2
∂z2

dz2 +
∂g2
∂w1

dw1 +
∂g2
∂w2

dw2

)
,

we have the following equations:

∂g1
∂w1

=
∂g1
∂w2

= 0,
∂g1
∂z1

=
∂g2
∂w1

,
∂g1
∂z2

=
∂g2
∂w2

,

by multiplying each the following terms

∂

∂zr
and

∂

∂wr

(r = 1, 2).

Thus, G satisfies the equation (3.4). Conversely, if a function G is regular,
then we have the system which is equal to the equation (3.4), by multiplying

∂

∂zr
and

∂

∂wr

(r = 1, 2),

respectively. Therefore, we obtain the result. �
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