Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 33 (2017), 233-245 www.emis.de/journals ISSN 1786-0091

MODULE SYMMETRICALLY AMENABLE BANACH ALGEBRAS

HÜLYA İNCEBOZ, BERNA ARSLAN, AND ABASALT BODAGHI

ABSTRACT. In this article, we develop the concept of symmetric amenability for a Banach algebra \mathcal{A} to the case that there is an extra \mathfrak{A} -module structure on \mathcal{A} . For every inverse semigroup S with the set E of idempotents, we find necessary and sufficient conditions for the $l^1(S)$ to be module symmetrically amenable (as a $l^1(E)$ -module). We also present some module symmetrically amenable semigroup algebras to show that this new notion of amenability is different from the classical case introduced by Johnson.

1. INTRODUCTION

A Banach algebra \mathcal{A} is *amenable* if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A} -bimodule is inner, equivalently if $H^1(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -module X, where $H^1(\mathcal{A}, X^*)$ is the *first Hochschild cohomol*ogy group of \mathcal{A} with coefficients in X^* . This concept was first introduced and studied by Johnson [9] in 1972. He also gave an alternative formulation of the notion of amenability in [10], and proved that a Banach algebra \mathcal{A} is amenable if and only if \mathcal{A} has a bounded approximate diagonal; i.e. a bounded net $\{d_{\alpha}\}$ in the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that

$$\|\pi(d_{\alpha})a - a\| \to 0 \text{ and } \|a \cdot d_{\alpha} - d_{\alpha} \cdot a\| \to 0$$

for all $a \in \mathcal{A}$, where the operations on $\mathcal{A} \widehat{\otimes} \mathcal{A}$ are defined by $a \cdot (b \otimes c) = ab \otimes c$, $(b \otimes c) \cdot a = b \otimes ca$ and $\pi(b \otimes c) = bc$ for all $a, b, c \in \mathcal{A}$. The flip map on $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is defined by

$$(a \otimes b)^{\circ} = b \otimes a \qquad (a, b \in \mathcal{A}),$$

and an element \mathfrak{E} of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is called *symmetric* if $\mathfrak{E}^{\circ} = \mathfrak{E}$. A Banach algebra \mathcal{A} is called *symmetrically amenable* if \mathcal{A} has a bounded approximate diagonal consisting of symmetric tensors. Symmetrically amenable Banach algebras were defined by Johnson in [11]. Using this concept, he found some hereditary

²⁰¹⁰ Mathematics Subject Classification. Primary 46H25; Secondary 43A07.

Key words and phrases. Banach modules, module symmetric amenability, semigroup algebra, inverse semigroup.

properties and examples which are similar to those in [9] for amenable Banach algebras. However, unlike amenability, the proofs of that results do not depend on homological characterizations, because symmetric amenability has been considered only by the existence of a bounded (symmetric) approximate diagonal. The most important example in [11] asserts that the group algebra $L^1(G)$ of a locally compact group G is symmetrically amenable if and only if G is amenable.

In 2004, M. Amini [1] introduced the notion of module amenability for a class of Banach algebras which could be considered as a generalization of the Johnson's amenability [9]. He showed that for an inverse semigroup S with the set of idempotents E, the semigroup algebra $l^1(S)$ is module amenable, as a Banach module over $l^1(E)$, if and only if S is amenable. Other concepts of module amenability can be found in [3], [4], [5] and [13].

In this paper, we firstly define the concept of module symmetric amenability for a Banach algebra \mathcal{A} which is a Banach module on another Banach algebra \mathfrak{A} with compatible actions. Among many other things, we show that under some mild conditions, symmetric amenability of the quotient Banach algebra \mathcal{A}/J implies module symmetric amenability of \mathcal{A} , where J is the closed ideal of \mathcal{A} generated by $(a \cdot \alpha)b - a(\alpha \cdot b)$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. As a consequence of this result, we prove that for an inverse semigroup S with the set E of idempotents so that E satisfies the condition D_k [7] for some k, then $l^1(S)$ is module symmetrically amenable (as an $l^1(E)$ -module) with trivial left action, if and only if S is amenable.

2. MODULE SYMMETRIC AMENABILITY FOR BANACH ALGEBRAS

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions as follows:

 $\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \qquad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$

Furthermore, if $\alpha \cdot a = a \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, then \mathcal{A} is called a *commutative* \mathfrak{A} -*bimodule*.

Let X be a left Banach \mathcal{A} -module and a Banach \mathfrak{A} -bimodule with the following compatible actions:

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \ a \cdot (x \cdot \alpha) = (a \cdot x) \cdot \alpha \ (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X) \cdot \alpha = (a \cdot x$$

Then, we say that X is a left Banach \mathcal{A} - \mathfrak{A} -module. Right Banach \mathcal{A} - \mathfrak{A} -modules and (two-sided) Banach \mathcal{A} - \mathfrak{A} -modules are defined similarly. If moreover, $\alpha \cdot x = x \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $x \in X$, then X is called a *commutative* left (right or two-sided) Banach \mathcal{A} - \mathfrak{A} -module. If X is a (commutative) Banach \mathcal{A} - \mathfrak{A} -module, then so is X^* , where the actions of \mathcal{A} and \mathfrak{A} on X^* are defined as usual [1]. Note that in general, \mathcal{A} is not an \mathcal{A} - \mathfrak{A} -module because \mathcal{A} does not satisfy the compatibility condition $a \cdot (\alpha \cdot b) = (a \cdot \alpha) \cdot b$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. But when \mathcal{A} is a commutative \mathfrak{A} -module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A} -module.

234

Let \mathcal{A} and \mathcal{B} be Banach \mathfrak{A} -bimodules with compatible actions. Then, a \mathfrak{A} -module map is a bounded mapping $T: \mathcal{A} \longrightarrow \mathcal{B}$ with

$$T(a \pm b) = T(a) \pm T(b), \ T(\alpha \cdot a) = \alpha \cdot T(a) \text{ and } T(a \cdot \alpha) = T(a) \cdot \alpha$$

for all $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Note that h is not necessarily linear, so it is not necessarily a \mathfrak{A} -module homomorphism.

Let \mathcal{A} and \mathfrak{A} be as above and X be a Banach \mathcal{A} - \mathfrak{A} -module. A (\mathfrak{A}) -module derivation is a bounded \mathfrak{A} -bimodule map $D: \mathcal{A} \longrightarrow X$ satisfying

$$D(ab) = D(a) \cdot b + a \cdot D(b)$$

for all $a, b \in \mathcal{A}$. One should note that D is not necessarily linear, but its boundedness (defined as the existence of M > 0 such that $||D(a)|| \leq M||a||$, for all $a \in \mathcal{A}$) still implies its continuity, as it preserves subtraction. When Xis commutative Banach \mathcal{A} - \mathfrak{A} -module, each $x \in X$ defines a module derivation $D_x(a) = a \cdot x - x \cdot a \ (a \in \mathcal{A})$. Module derivations of this kind are called *inner*. A derivation $D: \mathcal{A} \longrightarrow X$ is said to be *approximately inner* if there exists a net $(x_i) \subseteq X$ such that $D(a) = \lim_i (a \cdot x_i - x_i \cdot a)$ for all $a \in \mathcal{A}$.

Consider the module projective tensor product $\widehat{\mathcal{A}} \otimes_{\mathfrak{A}} \mathcal{A}$ which is isomorphic to the quotient space $(\widehat{\mathcal{A}} \otimes \mathcal{A})/I_{\mathcal{A}}$, where $I_{\mathcal{A}}$ is the closed linear span of $\{a \cdot \alpha \otimes b - a \otimes \alpha \cdot b : \alpha \in \mathfrak{A}, a, b \in \mathcal{A}\}$. Also consider the closed ideal $J_{\mathcal{A}}$ of \mathcal{A} generated by elements of the form $(a \cdot \alpha)b - a(\alpha \cdot b)$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. We shall denote $I_{\mathcal{A}}$ and $J_{\mathcal{A}}$ by I and J, respectively, if there is no risk of confusion. Then, I and J are \mathcal{A} -submodules and \mathfrak{A} -submodules of $\widehat{\mathcal{A}} \otimes \mathcal{A}$ and \mathcal{A} , respectively, and the quotients $\widehat{\mathcal{A}} \otimes_{\mathfrak{A}} \mathcal{A}$ and \mathcal{A}/J are \mathcal{A} -modules and \mathfrak{A} modules. Also, \mathcal{A}/J is a Banach \mathcal{A} - \mathfrak{A} -module when \mathcal{A} acts on \mathcal{A}/J canonically. Also, let $\omega_{\mathcal{A}} : \widehat{\mathcal{A}} \otimes \mathcal{A} \longrightarrow \mathcal{A}$ be the product map, i.e., $\omega_{\mathcal{A}}(a \otimes b) = ab$, and let $\widetilde{\omega}_{\mathcal{A}} : \widehat{\mathcal{A}} \otimes_{\mathfrak{A}} \mathcal{A} = (\widehat{\mathcal{A}} \otimes \mathcal{A})/I \longrightarrow \mathcal{A}/J$ be its induced product map, i.e., $\widetilde{\omega}_{\mathcal{A}}(a \otimes b) = ab + J$ and extended by continuity and linearity.

Recall that a module approximate diagonal for \mathcal{A} is a bounded net $\{\widetilde{u}_j\}$ in $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ such that

$$(2.1) \qquad (a+J)\widetilde{w}_{\mathcal{A}}(\widetilde{u}_j) \to a+J$$

and

(2.2)
$$\lim_{j} \|\widetilde{u}_{j} \cdot a - a \cdot \widetilde{u}_{j}\| = 0$$

for each $a \in \mathcal{A}$ [1]. We define the module flip map on $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ by

$$(a \otimes b + I)^{\circ} = b \otimes a + I \qquad (a, b \in \mathcal{A}).$$

We say an element u of $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is module symmetric if $u^{\circ} = u$.

Definition 2.1. A Banach algebra \mathcal{A} is module symmetrically amenable if \mathcal{A} has a module approximate diagonal $\{\widetilde{u}_j\}$ such that all the elements of the net $\{\widetilde{u}_j\}$ are module symmetric.

The opposite algebra \mathcal{A}^{op} is the Banach space \mathcal{A} with product $a \circ b = ba$. Now we rewrite the above definitions for \mathcal{A}^{op} in the module version. The bounded net $\{\widetilde{u}_j\}$ in $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ is a module approximate diagonal for \mathcal{A}^{op} if

(2.3)
$$\widetilde{w}^{\circ}_{\mathcal{A}}(\widetilde{u}_j)(a+J) \to a+J$$

and

(2.4)
$$\lim_{i} \|\widetilde{u}_{j} \circ a - a \circ \widetilde{u}_{j}\| = 0$$

for all $a \in \mathcal{A}$, where $a \circ (b \otimes c) = b \otimes ac$, $(b \otimes c) \circ a = ba \otimes c$ and $\widetilde{w}^{\circ}_{\mathcal{A}}(b \otimes c + I) = cb + J$.

The following proposition is the module version of [11, Proposition 2.2].

Proposition 2.2. A Banach algebra \mathcal{A} is module symmetrically amenable if and only if there is a bounded net $\{\widetilde{u}_j\}$ in $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ which satisfies (2.1), (2.2), (2.3) and (2.4).

Proof. Let \mathcal{A} be module symmetrically amenable. Then, \mathcal{A} has a module approximate diagonal $\{\widetilde{u}_j\}$ which satisfies (2.1) and (2.2). Since $\widetilde{u}_j = \widetilde{u}_j^\circ$, we know that $\{\widetilde{u}_j\}$ also satisfies (2.3) and (2.4).

Conversely, if the bounded net $\{\widetilde{u}_j\}$ satisfies (2.1), (2.2), (2.3) and (2.4), so does $\{\widetilde{u}_j^\circ\}$. Hence, $\{\frac{1}{2}(\widetilde{u}_j + \widetilde{u}_j^\circ)\}$ is a net of symmetric tensors in $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ satisfying (2.1) and (2.2). This means that \mathcal{A} is module symmetrically amenable. \Box

Corollary 2.3. If \mathcal{A} is a commutative module amenable Banach algebra, then it is module symmetrically amenable.

Recall that a (bounded) left approximate identity in a Banach algebra \mathcal{A} is a (bounded) net $\{e_l\}_{l \in \mathcal{L}}$ in \mathcal{A} such that $\lim_l e_l a = a$ for all $a \in \mathcal{A}$. Similarly, a (bounded) right approximate identity can be defined in \mathcal{A} . A (bounded) approximate identity in \mathcal{A} is both a (bounded) left approximate identity and a (bounded) right approximate identity.

It is easy to see that $K = \ker \widetilde{w}_{\mathcal{A}}$ is an \mathcal{A} - \mathfrak{A} -submodule of $\mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A}$. In fact, K is a left ideal in $\mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A}^{op}$. Aghababa and Bodaghi [15, Theorem 4.4] have shown that, if \mathcal{A} is a commutative Banach \mathfrak{A} -bimodule, then \mathcal{A} is module amenable if and only if \mathcal{A} has a bounded approximate identity and $K = \ker \widetilde{w}_{\mathcal{A}}$ has a bounded right approximate identity, where $\widetilde{w}_{\mathcal{A}} : \mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A}^{op} \longrightarrow \mathcal{A}$ is the usual multiplication map. Similarly, one can show that if \mathcal{A} is a commutative Banach \mathfrak{A} -bimodule, then \mathcal{A} is module symmetrically amenable if and only if \mathcal{A} has a bounded approximate identity and the subalgebra ker $\widetilde{w}_{\mathcal{A}} \cap \ker \widetilde{w}_{\mathcal{A}}^{\circ}$ of $\mathcal{A} \otimes_{\mathfrak{A}} \mathcal{A}^{op}$ has a bounded two sided approximate identity.

Now, we give some hereditary properties of module symmetrically amenable for Banach algebras.

Theorem 2.4. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule and \mathcal{I} be a closed two sided ideal and \mathfrak{A} -submodule of A. If \mathcal{A} is module symmetrically amenable and \mathcal{I} has a bounded approximate identity, then \mathcal{I} is module symmetrically amenable.

Proof. Let $\{\widetilde{u}_i\}$ be a module symmetric approximate diagonal for \mathcal{A} , where $\widetilde{u}_i = \sum_k a_k^i \otimes b_k^i + I_{\mathcal{A}}$ is in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. Assume that $\{e_j\}$ is the bounded approximate identity of \mathcal{I} . For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$(((a \cdot \alpha) \otimes b - a \otimes (\alpha \cdot b)) \circ e_j)e_j = e_j((a \cdot \alpha) \otimes b)e_j - e_j(a \otimes (\alpha \cdot b))e_j$$
$$= e_j(a \cdot \alpha) \otimes be_j - e_ja \otimes (\alpha \cdot b)e_j$$
$$= (e_ja) \cdot \alpha \otimes be_j - e_ja \otimes \alpha \cdot (be_j) \in I_{\mathcal{I}},$$

where $I_{\mathcal{I}}$ is the corresponding ideal of $\mathcal{I}\widehat{\otimes}\mathcal{I}$. Put $\widetilde{d}_{ij} = (\widetilde{u}_i \circ e_j)e_j$. Then, $\widetilde{d}_{ij} = \sum_k e_j a_k^i \otimes b_k^i e_j + I_{\mathcal{I}} \in \mathcal{I}\widehat{\otimes}_{\mathfrak{A}}\mathcal{I}$ is a bounded symmetric subnet of $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$. For $x \in \mathcal{I}$, we get

$$\widetilde{d}_{ij} \cdot x - x \cdot \widetilde{d}_{ij} = [(\widetilde{u}_i \cdot x - x \cdot \widetilde{u}_i) \circ e_j]e_j + (\widetilde{u}_i \circ e_j)(e_j x - xe_j).$$

Since $\{\widetilde{u}_i\}$ is a module symmetric approximate diagonal for \mathcal{A} , we have $\widetilde{u}_i \cdot x - x \cdot \widetilde{u}_i \to 0$. On the other hand, $\{e_j\}$ is a bounded approximate identity for \mathcal{I} . So, $e_j x - x e_j \to 0$. Hence, $\lim_{i,j} (\widetilde{d}_{ij} \cdot x - x \cdot \widetilde{d}_{ij}) = 0$. Also,

$$\begin{aligned} (x+J_{\mathcal{I}}) \cdot \widetilde{w}_{\mathcal{I}}(\widetilde{d}_{ij}) &= (xe_j - x + J_{\mathcal{I}}) \cdot \widetilde{w}_{\mathcal{I}}(\widetilde{u}_i \circ e_j) + (x+J_{\mathcal{I}}) \cdot \widetilde{w}_{\mathcal{I}}(\widetilde{u}_i \circ e_j) \\ &\to (x+J_{\mathcal{I}}) \cdot \widetilde{w}_{\mathcal{I}}(\widetilde{u}_i). \end{aligned}$$

Thus, $\lim_{i} \lim_{j} (x + J_{\mathcal{I}}) \cdot \widetilde{w}_{\mathcal{I}}(\widetilde{d}_{ij}) = x + J_{\mathcal{I}}$. Therefore, $\{\widetilde{d}_{ij}\}$ becomes a module symmetric approximate diagonal for \mathcal{I} .

Theorem 2.5. Let \mathcal{A} and \mathcal{B} be Banach algebras and Banach \mathfrak{A} -bimodules. If \mathcal{A} is module symmetrically amenable and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ is a continuous module homomorphism with dense range, then \mathcal{B} is module symmetrically amenable.

Proof. Let $\{\widetilde{u}_i\}$ be a module symmetric approximate diagonal in \mathcal{A} such that $\widetilde{u}_i = \sum_k a_k^i \otimes b_k^i + I_{\mathcal{A}}$ is in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. Define the map $\widetilde{\phi} : \mathcal{A}/J_{\mathcal{A}} \longrightarrow \mathcal{B}/J_{\mathcal{B}}$ by $\widetilde{\phi}(a + J_{\mathcal{A}}) = \phi(a) + J_{\mathcal{B}}$. For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we obtain

$$\phi((a \cdot \alpha)b - a(\alpha \cdot b)) = (\phi(a) \cdot \alpha)\phi(b) - \phi(a)(\alpha \cdot \phi(b)) \in J_{\mathcal{B}}.$$

So, the map ϕ is well-defined. Put $\tilde{v}_i = \sum_k \phi(a_k^i) \otimes \phi(b_k^i) + I_{\mathcal{B}}$. For each $a \in \mathcal{A}$, we have

$$\begin{split} \lim_{i} (\phi(a) + J_{\mathcal{B}}) \cdot \widetilde{w}_{\mathcal{B}}(\widetilde{v}_{i}) &= \lim_{i} (\phi(a) + J_{\mathcal{B}}) \cdot \left(\sum_{k} \phi(a_{k}^{i})\phi(b_{k}^{i}) + J_{\mathcal{B}}\right) \\ &= \lim_{i} \left(\sum_{k} \phi(aa_{k}^{i}b_{k}^{i}) + J_{\mathcal{B}}\right) \\ &= \lim_{i} \widetilde{\phi} \left((a + J_{\mathcal{A}}) \cdot \left(\sum_{k} a_{k}^{i}b_{k}^{i} + J_{\mathcal{A}}\right) \right) \\ &= \lim_{i} \widetilde{\phi}((a + J_{\mathcal{A}}) \cdot \widetilde{w}_{\mathcal{B}}(\widetilde{u}_{i})) = \widetilde{\phi}(a + J_{\mathcal{A}}) = \phi(a) + J_{\mathcal{B}} \end{split}$$

Also, we get

$$\widetilde{w}_{\mathcal{B}}^{\circ}(\widetilde{v}_{i}) \cdot \lim_{i} (\phi(a) + J_{\mathcal{B}}) = \lim_{i} \left(\sum_{k} \phi(b_{k}^{i})\phi(a_{k}^{i}) + J_{\mathcal{B}} \right) \cdot (\phi(a) + J_{\mathcal{B}})$$
$$= \lim_{i} \left(\sum_{k} \phi(b_{k}^{i}a_{k}^{i}a) + J_{\mathcal{B}} \right)$$
$$= \lim_{i} \widetilde{\phi} \left(\left(\sum_{k} b_{k}^{i}a_{k}^{i} + J_{\mathcal{A}} \right) \cdot (a + J_{\mathcal{A}}) \right)$$
$$= \lim_{i} \widetilde{\phi}(\widetilde{w}_{\mathcal{B}}^{\circ}(\widetilde{u}_{i}) \cdot (a + J_{\mathcal{A}})) = \widetilde{\phi}(a + J_{\mathcal{A}}) = \phi(a) + J_{\mathcal{B}}.$$

Since the range of ϕ is dense and ϕ is continuous, we get $\lim_{i} (b+J_{\mathcal{B}}) \cdot \widetilde{w}_{\mathcal{B}}(\widetilde{v}_{i}) = b + J_{\mathcal{B}}$ and $\widetilde{w}_{\mathcal{B}}^{\circ}(\widetilde{v}_{i}) \cdot \lim_{i} (b+J_{\mathcal{B}}) = b + J_{\mathcal{B}}$ for all $b \in \mathcal{B}$. Now, we consider the map $\overline{\phi} : \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A} \cong (\mathcal{A} \widehat{\otimes} \mathcal{A})/I_{\mathcal{A}} \longrightarrow \mathcal{B} \widehat{\otimes}_{\mathfrak{A}} \mathcal{B} \cong (\mathcal{B} \widehat{\otimes} \mathcal{B})/I_{\mathcal{B}}$ defined through $\overline{\phi}(a \otimes b + I_{\mathcal{A}}) = \phi(a) \otimes \phi(b) + I_{\mathcal{B}}, (a, b \in \mathcal{A})$. The map $\overline{\phi}$ is well-defined because for each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$(\phi \otimes \phi)((a \cdot \alpha) \otimes b - a \otimes (\alpha \cdot b)) = (\phi(a) \cdot \alpha) \otimes \phi(b) - \phi(a)(\alpha \cdot \phi(b)) \in I_{\mathcal{B}}.$$

It is easily to chek that $\overline{\phi}$ is a module homomorphism. For each $a \in \mathcal{A}$, we find

$$\lim_{i} (\widetilde{v}_{i} \cdot \phi(a) - \phi(a) \cdot \widetilde{v}_{i}) = \lim_{i} \left(\sum_{k} (\phi(a_{k}^{i}) \otimes \phi(b_{k}^{i}a) - \phi(aa_{k}^{i}) \otimes \phi(b_{k}^{i})) + I_{\mathcal{B}} \right)$$
$$= \overline{\phi} \left(\lim_{i} \left(\sum_{k} (a_{k}^{i} \otimes b_{k}^{i}a - aa_{k}^{i} \otimes b_{k}^{i}) + I_{\mathcal{A}} \right) \right)$$
$$= \overline{\phi} (\lim_{i} (\widetilde{u}_{i} \cdot a - a \cdot \widetilde{u}_{i})) = 0,$$

238

On the other hand,

$$\begin{split} \lim_{i} (\widetilde{v}_{i} \circ \phi(a) - \phi(a) \circ \widetilde{v}_{i}) &= \lim_{i} \left(\sum_{k} (\phi(a_{k}^{i}a) \otimes \phi(b_{k}^{i}) - \phi(a_{k}^{i}) \otimes \phi(ab_{k}^{i})) + I_{\mathcal{B}} \right) \\ &= \overline{\phi} \left(\lim_{i} \left(\sum_{k} (a_{k}^{i}a \otimes b_{k}^{i} - a_{k}^{i} \otimes ab_{k}^{i}) + I_{\mathcal{A}} \right) \right) \\ &= \overline{\phi} (\lim_{i} (\widetilde{u}_{i} \circ a - a \circ \widetilde{u}_{i})) = 0. \end{split}$$

Hence, for each $b \in \mathcal{A}$, we arrive at $\lim_{i} (\tilde{v}_i \cdot b - b \cdot \tilde{v}_i) = 0$ and $\lim_{i} (\tilde{v}_i \circ b - b \circ \tilde{v}_i) = 0$. So, $\{\tilde{v}_i\}$ is a module symmetric approximate diagonal in \mathcal{B} . This finishes the proof.

Corollary 2.6. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule and \mathcal{I} be a closed ideal in \mathcal{A} . If \mathcal{A} is module symmetrically amenable, then so is \mathcal{A}/\mathcal{I} .

Proof. If $q: \mathcal{A} \longrightarrow \mathcal{A}/\mathcal{I}$ is the natural \mathfrak{A} -module map and $\{\widetilde{u}_i\}$ is a module symmetric approximate diagonal for \mathcal{A} , then $\{(q \otimes q)\widetilde{u}_i\}$ is a module symmetric approximate diagonal for \mathcal{A}/\mathcal{I} .

Lemma 2.7. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule with compatible actions. If \mathcal{A} is module symmetrically amenable and X is a commutative Banach \mathcal{A} - \mathfrak{A} -module, then every module derivation from \mathcal{A} into X, is approximately inner.

Proof. Let $\{\widetilde{u}_j\} \subseteq \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ be a module symmetric approximate diagonal for \mathcal{A} such that $\widetilde{u}_j = \sum_k a_k^j \otimes b_k^j + I$ and $D: \mathcal{A} \longrightarrow X$ be a module derivation. It is clear that $J \cdot X = X \cdot J = \{0\}$. Obviously, X becomes a Banach \mathcal{A}/J -bimodule with the following module actions

$$(a+J) \cdot x := a \cdot x$$
, $x \cdot (a+J) := x \cdot a$ $(x \in X, a \in \mathcal{A}).$

Define $\widetilde{D}: \mathcal{A}/J \longrightarrow X$ by $\widetilde{D}(a+J) = D(a)$ for $a \in \mathcal{A}$. Hence, \widetilde{D} is a module derivation. Let $x_j = \sum_k \widetilde{D}(a_k^j + J) \cdot b_k^j$. For each $\varphi \in X^*$, we have

$$\begin{split} \langle \varphi, x_j \cdot (a+J) \rangle &= \langle \varphi, (\sum_k \widetilde{D}(a_k^j+J) \cdot b_k^j) \cdot (a+J) \rangle = \langle \varphi, \sum_k \widetilde{D}(aa_k^j+J) \cdot b_k^j \rangle \\ &= \langle \varphi, \widetilde{D}(a+J) \cdot (\sum_k a_k^j b_k^j+J) \rangle + \langle \varphi, (a+J) \cdot \sum_k \widetilde{D}(a_k^j+J) \cdot b_k^j \rangle \\ &= \langle \varphi, \widetilde{D}(a+J) \cdot \widetilde{w}_A(\widetilde{u}_j) \rangle + \langle \varphi, (a+J) \cdot x_j \rangle. \end{split}$$

Then, $\widetilde{D}(a+J) = \lim_{j} x_j \cdot (a+J) - (a+J) \cdot x_j$ for all $a \in \mathcal{A}$. Therefore, \widetilde{D} is approximately inner and thus D is an approximately inner module derivation.

Theorem 2.8. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule with bounded approximate identity and $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ be a commutative \mathfrak{A} -bimodule such that each net of $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ is bounded. Suppose that \mathcal{I} is a closed ideal and \mathfrak{A} -submodule of \mathcal{A} . If \mathcal{I} and \mathcal{A}/\mathcal{I} are module symmetrically amenable, then so is \mathcal{A} .

Proof. Let X be a commutative Banach \mathcal{A} - \mathfrak{A} -module with compatible actions and $D: \mathcal{A} \longrightarrow X$ be a module derivation. Since \mathcal{I} is module symmetrically amenable, the restriction of D to \mathcal{I} , i.e. $D|_{\mathcal{I}}$, is approximately inner by Lemma 2.7. Thus, the map $\widetilde{D} = D - D|_{\mathcal{I}}$ vanishes on \mathcal{I} . This map induces a module derivation from A/\mathcal{I} into X defined via $\widetilde{D}(a + \mathcal{I}) = \widetilde{D}(a)$. Due to the module symmetric amenability of \mathcal{A}/\mathcal{I} , \widetilde{D} is also approximately inner by Lemma 2.7. It follows from that D is an approximately inner module derivation. Let $\{e_j\}$ be a bounded approximate identity for \mathcal{A} . Then, passing to a subnet we may assume that $e_j \otimes e_j + I$ is w^* -convergent to T in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. By the continuity of $\widetilde{w}_{\mathcal{A}}$ and $\widetilde{w}_{\mathcal{A}}^{\circ}$, we have

$$\widetilde{w}_{\mathcal{A}}(D_{T}(a)) = \widetilde{w}_{\mathcal{A}}(\lim_{j} a \cdot T - T \cdot a) = \lim_{j} \widetilde{w}_{\mathcal{A}}(a \cdot T - T \cdot a)$$

$$= \lim_{j} \widetilde{w}_{\mathcal{A}}(ae_{j} \otimes e_{j} - e_{j} \otimes e_{j}a + I)$$

$$= \lim_{j} (ae_{j}^{2} - e_{j}^{2}a + J) = J,$$

$$\widetilde{w}_{\mathcal{A}}^{\circ}(D_{T}(a)) = \widetilde{w}_{\mathcal{A}}^{\circ}(\lim_{j} a \cdot T - T \cdot a)$$

$$= \lim_{j} \widetilde{w}_{\mathcal{A}}^{\circ}(ae_{j} \otimes e_{j} - e_{j} \otimes e_{j}a + I)$$

$$= \lim_{j} (e_{j}ae_{j} - e_{j}ae_{j} + J) = J$$

for all $a \in \mathcal{A}$. So, both $\widetilde{w}_{\mathcal{A}}$ and $\widetilde{w}_{\mathcal{A}}^{\circ}$ vanishes on the range of D_T , and D_T could be regarded as a module derivation from \mathcal{A} into $K = \ker \widetilde{w}_{\mathcal{A}} \cap \ker \widetilde{w}_{\mathcal{A}}^{\circ}$. Since $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is commutative \mathfrak{A} -bimodule, there is a (bounded) net $\{N_j\} \in K$ such that

(2.5)
$$D_T(a) = \lim_j a \cdot N_j - N_j \cdot a = D_{N_j}(a)$$

for all $a \in A$. Letting $\widetilde{u}_j = T - N_j \in \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$, we get

$$(a+J)\widetilde{w}_{\mathcal{A}}(\widetilde{u}_j) = (a+J)(\widetilde{w}_{\mathcal{A}}(T) - \widetilde{w}_{\mathcal{A}}(N_j))$$
$$= (a+J)(e_j^2 + J)$$
$$= ae_j + J \to a + J$$

for all $a \in \mathcal{A}$. The relation (2.5) implies that $a \cdot \widetilde{u}_j - \widetilde{u}_j \cdot a \to 0$. Similarly, we can obtain that $\widetilde{w}^{\circ}_{\mathcal{A}}(\widetilde{u}_j)(a+J) \to a+J$ and $a \circ \widetilde{u}_j - \widetilde{u}_j \circ a \to 0$. Hence, $\{\widetilde{u}_j\}$ is a module symmetric approximate diagonal in \mathcal{A} . This completes the proof.

We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if there is a continuous linear functional f on \mathfrak{A} such that $\alpha \cdot a = f(\alpha)a$ $(a \cdot \alpha = f(\alpha)a)$ for all $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$.

The following result is main key to achieve our purpose of this paper.

Proposition 2.9. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule with trivial left action and \mathcal{A} has a bounded approximate identity. If \mathcal{A}/J is symmetrically amenable, then \mathcal{A} is module symmetrically amenable.

Proof. Suppose that $\{d_i\}$ is a bounded approximate diagonal for \mathcal{A}/J , that is $d_i = \sum_k (a_k^i + J) \otimes (b_k^i + J) \in (\mathcal{A}/J) \widehat{\otimes} (\mathcal{A}/J)$. Define the map $\phi : (\mathcal{A}/J) \widehat{\otimes} (\mathcal{A}/J) \longrightarrow (\mathcal{A} \widehat{\otimes} \mathcal{A})/I \cong \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ via $\phi((a + J) \otimes (b + J)) := (a \otimes b) + I$. Assume that $\{e_j\}$ is a bounded approximate identity for \mathcal{A} . For each $a, b, c \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we obtain

$$\begin{split} [(a \cdot \alpha)b - a(\alpha \cdot b)] \otimes c &= (a \cdot \alpha)b \otimes c - a(\alpha \cdot b) \otimes c \\ &= \lim_{j} [((a \cdot \alpha)b \otimes ce_{j}) - (a(\alpha \cdot b) \otimes e_{j}c)] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c)(b \otimes e_{j}) - (a \otimes e_{j})((\alpha \cdot b) \otimes c)] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c)(b \otimes e_{j}) - (a \otimes (\alpha \cdot c))(b \otimes e_{j}) \\ &+ (a \otimes (\alpha \cdot c))(b \otimes e_{j}) - (a \otimes e_{j})((\alpha \cdot b) \otimes c) \\ &+ (a \otimes e_{j})(b \otimes (\alpha \cdot c)) - (a \otimes e_{j})(b \otimes (\alpha \cdot c))] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c - a \otimes (\alpha \cdot c))(b \otimes e_{j}) \\ &+ (a \otimes (\alpha \cdot c))(b \otimes e_{j}) - (a \otimes e_{j})((\alpha \cdot b) \otimes c \\ &- b \otimes (\alpha \cdot c)) - (a \otimes e_{j})(b \otimes (\alpha \cdot c))] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c - a \otimes (\alpha \cdot c))(b \otimes e_{j}) \\ &+ (ab \otimes (\alpha \cdot c)e_{j}) - (a \otimes e_{j})(f(\alpha)b \otimes c \\ &- b \otimes f(\alpha)c) - (ab \otimes e_{j}(\alpha \cdot c))] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c - a \otimes (\alpha \cdot c))(b \otimes e_{j}) \\ &+ (ab \otimes (\alpha \cdot c)e_{j}) - (a \otimes e_{j})f(\alpha)(b \otimes c - b \otimes c) \\ &- (ab \otimes e_{j}(\alpha \cdot c))] \\ &= \lim_{j} [((a \cdot \alpha) \otimes c - a \otimes (\alpha \cdot c))(b \otimes e_{j}) \in I. \end{split}$$

Similarly, $c \otimes [(a \cdot \alpha)b - a(\alpha \cdot b)] \in I$. Hence, ϕ is well-defined. Also, ϕ is a module homomorphism. It is easily verified that $\{\phi(d_i)\}$ is a bounded symmetric net in $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$. Put $\widetilde{u}_i = \phi(d_i) = \sum_k a_k^i \otimes b_k^i + I$. By [11, Proposition 2.2], we have

$$\lim_{i} (a+J) \cdot \widetilde{w}_{\mathcal{A}}(\widetilde{u}_{i}) = \lim_{i} (a+J) \cdot \left(\sum_{k} a_{k}^{i} b_{k}^{i} + J\right)$$
$$= \lim_{i} (a+J) \cdot \left(\sum_{k} (a_{k}^{i} + J)(b_{k}^{i} + J)\right)$$
$$= \lim_{i} (a+J) \cdot w_{\mathcal{A}/J}^{\circ}(d_{i}) = a+J$$

for each $a \in A$. Also,

$$\lim_{i} (\widetilde{u}_i \cdot a - a \cdot \widetilde{u}_i) = \lim_{i} \left(\sum_k (a_k^i \otimes b_k^i a - a a_k^i \otimes b_k^i) + I \right)$$
$$= \phi \left(\lim_{i} \left(\sum_k (a_k^i + J) \otimes (b_k^i a + J) - (a a_k^i + J) \otimes (b_k^i + J) \right) \right)$$
$$= \phi (\lim_{i} (a \cdot d_i - d_i \cdot a)) = 0.$$

Thus, $\{\widetilde{u}_i\}$ is a module symmetric approximate diagonal for A. This shows that \mathcal{A} is module symmetrically amenable.

3. Application to semigroup algebras

By an inverse semigroup S we shall mean a discrete semigroup such that for any $s \in S$ there is a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. An element $e \in S$ is called an idempotent if $e^2 = e^* = e$. Here and subsequently, S will always denote an inverse semigroup with the set of idempotents E_S (or E), where the order of E is defined by

$$e \le d \Leftrightarrow ed = e \quad (e, d \in E).$$

Since E is a (commutative) subsemigroup of S (see [8, Theorem V.1.2]) and a semilattice, the algebra $l^1(E)$ could be regarded as a commutative subalgebra of $l^1(S)$. Hence, $l^1(S)$ is a Banach algebra and a Banach $l^1(E)$ -module with compatible actions [1]. We impose the following actions of $l^1(E)$ on $l^1(S)$:

$$\delta_e \cdot \delta_s = \delta_s, \quad \delta_s \cdot \delta_e = \delta_{se} = \delta_s * \delta_e \quad (e \in E, s \in S).$$

With these actions, we consider $l^1(S)$ as a Banach $l^1(E)$ -module. In this case, the ideal J (see section 2) is the closed linear span of $\{\delta_{set} - \delta_{st} \mid e \in E, s, t \in S\}$.

We consider an equivalence relation on S as follows:

$$s \approx t \iff \delta_s - \delta_t \in J \qquad (s, t \in S).$$

In this case the quotient S/\approx is a discrete group (see [2] and [13]). In fact, S/\approx is homomorphic to the maximal group homomorphic image \mathcal{G}_S [12] of S [14]. In particular, S is amenable if and only if $S/\approx = \mathcal{G}_S$ is amenable [7, 12]. As in [16, Theorem 3.3], we may observe that $l^1(S)/J \cong l^1(\mathcal{G}_S)$. With the notations of the previous section, $l^1(S)/J$ is a commutative $l^1(E)$ -bimodule with the following actions

$$\delta_e \cdot \delta_{[s]} = \delta_{[s]}, \ \delta_{[s]} \cdot \delta_e = \delta_{[se]} \quad (s \in S, e \in E),$$

where [s] denotes the equivalence class of s in \mathcal{G}_S .

Suppose that $k \in \mathbb{N}$. If there exist $e \in E$ and $i, j \in \mathbb{N}$ such that

$$1 \le i < j \le k+1, \quad f_i e = f_i, \quad f_j e = f_j \quad (f_1, f_2, \dots, f_{k+1} \in E),$$

242

then we say that E satisfies condition D_k [7]. In [7, Theorem 16], the authors proved that for any inverse semigroup S, $l^1(S)$ has a bounded approximate identity if and only if E satisfies condition D_k for some k.

Theorem 3.1. Let S be an inverse semigroup with the set of idempotents E and $l^1(S)$ be a Banach $l^1(E)$ -module with trivial left action. If E satisfies condition D_k for some k, then $l^1(S)$ is module symmetrically amenable if and only if S is amenable.

Proof. Firstly, we assume that $l^1(S)$ is module symmetrically amenable. Then, it is module amenable. Now, Theorem 3.1 from [1] necessities that S is amenable.

Conversely, suppose that S is amenable. Then, the (discrete) group \mathcal{G}_S is amenable by [7, Theorem 1], and so $l^1(\mathcal{G}_S)$ is symmetrically amenable by [11, Theorem 4.1]. The result follows from Proposition 2.9 with $\mathcal{A} = l^1(S)$ and $\mathfrak{A} = l^1(E)$.

In the following we bring two examples to show that there are some module symmetrically amenable semigroup algebras which are not symmetrically amenable.

Example 3.2. Let G be a group with identity e, and let \mathfrak{I} be a non-empty set. Then, the Brandt inverse semigroup corresponding to G and \mathfrak{I} , denoted by $S = \mathcal{M}(G, \mathfrak{I})$, is the collection of all $\mathfrak{I} \times \mathfrak{I}$ matrices $(g)_{ij}$ with $g \in G$ in the $(i, j)^{\text{th}}$ place and 0 (zero) elsewhere and the $\mathfrak{I} \times \mathfrak{I}$ zero matrix 0. Multiplication in S is given by the formula

$$(g)_{ij}(h)_{kl} = \begin{cases} (gh)_{il} & \text{if } j = k\\ 0 & \text{if } j \neq k \end{cases} \qquad (g, h \in G, \, i, j, k, l \in \mathfrak{I}),$$

and $(g)_{ij}^* = (g^{-1})_{ji}$ and $0^* = 0$. The set of all idempotents is $E_S = \{(e)_{ii} : i \in \mathfrak{I}\} \bigcup \{0\}$. It is shown in [13, Example 3.2] that \mathcal{G}_S is the trivial group, and so $l^1(S)$ is module symmetrically amenable by Theorem 3.1. Note that if G is not amenable or \mathfrak{I} is not finite, then $l^1(S)$ is not amenable by Theorems 7 and 12 from [7] and hence it is not symmetrically amenable.

Example 3.3. Let C be the bicyclic inverse semigroup generated by p and q, that is

$$C = \{p^a q^b : a, b \ge 0\}, \ (p^a q^b)^* = p^b q^a.$$

The multiplication operation is defined by

 $(p^{a}q^{b})(p^{c}q^{d}) = p^{a-b+max\{b,c\}}q^{d-c+max\{b,c\}}.$

The set of idempotents of C is $E_{C} = \{p^{a}q^{a} : a = 0, 1, ...\}$ which is also totally ordered with the following order

$$p^a q^b \le p^b q^b \iff a \le b.$$

Therefore, E satisfies condition D_1 . It is shown in [2] that $\mathcal{G}_{\mathcal{C}}$ is isomorphic to the group of integers \mathbb{Z} , hence $l^1(\mathcal{C})$ is module symmetrically amenable by

Theorem 3.1. On the other hand, $l^1(\mathcal{C})$ is not symmetrically amenable since it is not amenable [7].

Acknowledgement

The third author (Corresponding Author) would like to thanks Islamic Azad University of Garmsar for its financial support.

References

- M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243-254.
- [2] M. Amini, A. Bodaghi, D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80, No.2 (2010), 302-312.
- [3] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math (Basel). 99 (2012), 353–365.
- [4] A. Bodaghi, M. Amini and R. Babaee, Module derivations into iterated duals of Banach algebras, Proc. Romanian Acad., Series A. 12 (2011), 277–284.
- [5] A. Bodaghi, H. Ebrahimi and M. Lashkarizaheh Bami, Generalized notions of module character amenability, Filomat, 31, No. 6 (2017), 1639–1654.
- [6] H.G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
- J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh, 80A (1988), 309-321.
- [8] J. M. Howie, Fundamentals of semigroup theory, London Math. Society Monographs, Clarendon Press, Oxford, 1995.
- [9] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, 1972.
- [10] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685-698.
- [11] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473.
- [12] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41–48.
- [13] H. Pourmahmood-Aghbaba, (Super) module amenability, module topological centre and semigroup algebras, Semigroup Forum, 81 (2010), No.2, 344-356.
- [14] H. Pourmahmood-Aghbaba, A note on an equivalence relation on an inverse semigroup, Semigroup Forum, 84 (2012), 200-202.
- [15] H. Pourmahmood-Aghbaba, A. Bodaghi, Module approximate amenability of Banach algebras, Bull. Iran. Math. Soc., 39, No.2 (2013), 1137-1158.
- [16] R. Rezavand, M. Amini, M.H. Sattari, D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum, 77 (2008), 300-305.

Received May 17, 2016.

DEPARTMENT OF MATHEMATICS, Adnan Menderes University, Aydin, Turkey *E-mail address*: hinceboz@adu.edu.tr

DEPARTMENT OF MATHEMATICS, Adnan Menderes University, Aydin, Turkey *E-mail address*: byorganci@adu.edu.tr

DEPARTMENT OF MATHEMATICS, GARMSAR BRANCH, ISLAMIC AZAD UNIVERSITY, GARMSAR, IRAN *E-mail address*: abasalt.bodaghi@gmail.com