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MODULE SYMMETRICALLY AMENABLE BANACH
ALGEBRAS

HÜLYA İNCEBOZ, BERNA ARSLAN, AND ABASALT BODAGHI

Abstract. In this article, we develop the concept of symmetric amenabil-
ity for a Banach algebra A to the case that there is an extra A-module
structure on A. For every inverse semigroup S with the set E of idempo-
tents, we find necessary and sufficient conditions for the l1(S) to be module
symmetrically amenable (as a l1(E)-module). We also present some module
symmetrically amenable semigroup algebras to show that this new notion
of amenability is different from the classical case introduced by Johnson.

1. Introduction

A Banach algebra A is amenable if every bounded derivation from A into
any dual Banach A-bimodule is inner, equivalently if H1(A, X∗) = {0} for
every Banach A-module X, where H1(A, X∗) is the first Hochschild cohomol-
ogy group of A with coefficients in X∗. This concept was first introduced and
studied by Johnson [9] in 1972. He also gave an alternative formulation of the
notion of amenability in [10], and proved that a Banach algebra A is amenable
if and only if A has a bounded approximate diagonal; i.e. a bounded net {dα}
in the projective tensor product A⊗̂A such that

‖π(dα)a− a‖ → 0 and ‖a · dα − dα · a‖ → 0

for all a ∈ A, where the operations on A⊗̂A are defined by a · (b⊗ c) = ab⊗ c,
(b⊗ c) · a = b⊗ ca and π(b⊗ c) = bc for all a, b, c ∈ A. The flip map on A⊗̂A
is defined by

(a⊗ b)◦ = b⊗ a (a, b ∈ A),

and an element E of A⊗̂A is called symmetric if E◦ = E. A Banach algebra
A is called symmetrically amenable if A has a bounded approximate diago-
nal consisting of symmetric tensors. Symmetrically amenable Banach algebras
were defined by Johnson in [11]. Using this concept, he found some hereditary
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properties and examples which are similar to those in [9] for amenable Ba-
nach algebras. However, unlike amenability, the proofs of that results do not
depend on homological characterizations, because symmetric amenability has
been considered only by the existence of a bounded (symmetric) approximate
diagonal. The most important example in [11] asserts that the group algebra
L1(G) of a locally compact group G is symmetrically amenable if and only if
G is amenable.

In 2004, M. Amini [1] introduced the notion of module amenability for a
class of Banach algebras which could be considered as a generalization of the
Johnson’s amenability [9]. He showed that for an inverse semigroup S with
the set of idempotents E, the semigroup algebra l1(S) is module amenable, as
a Banach module over l1(E), if and only if S is amenable. Other concepts of
module amenability can be found in [3], [4], [5] and [13].

In this paper, we firstly define the concept of module symmetric amenability
for a Banach algebra A which is a Banach module on another Banach algebra
A with compatible actions. Among many other things, we show that under
some mild conditions, symmetric amenability of the quotient Banach algebra
A/J implies module symmetric amenability of A, where J is the closed ideal
of A generated by (a ·α)b−a(α · b) for all a ∈ A and α ∈ A. As a consequence
of this result, we prove that for an inverse semigroup S with the set E of
idempotents so that E satisfies the condition Dk [7] for some k, then l1(S) is
module symmetrically amenable (as an l1(E)-module) with trivial left action,
if and only if S is amenable.

2. Module symmetric amenability for Banach algebras

Let A and A be Banach algebras such that A is a Banach A-bimodule with
compatible actions as follows:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Furthermore, if α · a = a · α for all α ∈ A and a ∈ A, then A is called a
commutative A-bimodule.

Let X be a left Banach A-module and a Banach A-bimodule with the fol-
lowing compatible actions:

α·(a·x) = (α·a)·x, a·(α·x) = (a·α)·x, a·(x·α) = (a·x)·α (a ∈ A, α ∈ A, x ∈ X).

Then, we say that X is a left Banach A-A-module. Right Banach A-A-modules
and (two-sided) Banach A-A-modules are defined similarly. If moreover, α·x =
x · α for all α ∈ A and x ∈ X, then X is called a commutative left (right or
two-sided) Banach A-A-module. If X is a (commutative) Banach A-A-module,
then so is X∗, where the actions of A and A on X∗ are defined as usual [1].
Note that in general, A is not an A-A-module because A does not satisfy the
compatibility condition a · (α · b) = (a · α) · b for α ∈ A, a, b ∈ A. But when
A is a commutative A-module and acts on itself by multiplication from both
sides, then it is also a Banach A-A-module.
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Let A and B be Banach A-bimodules with compatible actions. Then, a
A-module map is a bounded mapping T : A −→ B with

T (a± b) = T (a)± T (b), T (α · a) = α · T (a) and T (a · α) = T (a) · α

for all a, b ∈ A and α ∈ A. Note that h is not necessarily linear, so it is not
necessarily a A-module homomorphism.

Let A and A be as above and X be a Banach A-A-module. A (A-)module
derivation is a bounded A-bimodule map D : A −→ X satisfying

D(ab) = D(a) · b+ a ·D(b)

for all a, b ∈ A. One should note that D is not necessarily linear, but its
boundedness (defined as the existence of M > 0 such that ‖D(a)‖ ≤ M‖a‖,
for all a ∈ A) still implies its continuity, as it preserves subtraction. When X
is commutative Banach A-A-module, each x ∈ X defines a module derivation
Dx(a) = a · x− x · a (a ∈ A). Module derivations of this kind are called inner.
A derivation D : A −→ X is said to be approximately inner if there exists a
net (xi) ⊆ X such that D(a) = limi(a · xi − xi · a) for all a ∈ A.

Consider the module projective tensor product A⊗̂AA which is isomorphic
to the quotient space (A⊗̂A)/IA, where IA is the closed linear span of {a ·
α ⊗ b − a ⊗ α · b : α ∈ A, a, b ∈ A}. Also consider the closed ideal JA of
A generated by elements of the form (a · α)b − a(α · b) for α ∈ A, a, b ∈ A.
We shall denote IA and JA by I and J , respectively, if there is no risk of
confusion. Then, I and J are A-submodules and A-submodules of A⊗̂A and
A, respectively, and the quotients A⊗̂AA and A/J are A-modules and A-
modules. Also, A/J is a Banach A-A-module when A acts on A/J canonically.
Also, let ωA : A⊗̂A −→ A be the product map, i.e., ωA(a ⊗ b) = ab, and let
ω̃A : A⊗̂AA = (A⊗̂A)/I −→ A/J be its induced product map, i.e., ω̃A(a ⊗
b+ I) = ab+ J and extended by continuity and linearity.

Recall that a module approximate diagonal for A is a bounded net {ũj} in
A⊗̂AA such that

(2.1) (a+ J)w̃A(ũj)→ a+ J

and

(2.2) lim
j
‖ũj · a− a · ũj‖ = 0

for each a ∈ A [1]. We define the module flip map on A⊗̂AA by

(a⊗ b+ I)◦ = b⊗ a+ I (a, b ∈ A).

We say an element u of A⊗̂AA is module symmetric if u◦ = u.

Definition 2.1. A Banach algebra A is module symmetrically amenable if A
has a module approximate diagonal {ũj} such that all the elements of the net
{ũj} are module symmetric.
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The opposite algebra Aop is the Banach space A with product a ◦ b = ba.
Now we rewrite the above definitions for Aop in the module version. The
bounded net {ũj} in A⊗̂AA is a module approximate diagonal for Aop if

(2.3) w̃◦A(ũj)(a+ J)→ a+ J

and

(2.4) lim
j
‖ũj ◦ a− a ◦ ũj‖ = 0

for all a ∈ A, where a◦ (b⊗ c) = b⊗ac, (b⊗ c)◦a = ba⊗ c and w̃◦A(b⊗ c+ I) =
cb+ J .

The following proposition is the module version of [11, Proposition 2.2].

Proposition 2.2. A Banach algebra A is module symmetrically amenable if
and only if there is a bounded net {ũj} in A⊗̂AA which satisfies (2.1), (2.2),
(2.3) and (2.4).

Proof. Let A be module symmetrically amenable. Then, A has a module
approximate diagonal {ũj} which satisfies (2.1) and (2.2). Since ũj = ũ◦j , we
know that {ũj} also satisfies (2.3) and (2.4).

Conversely, if the bounded net {ũj} satisfies (2.1), (2.2), (2.3) and (2.4), so

does {ũ◦j}. Hence, {1

2
(ũj + ũ◦j)} is a net of symmetric tensors in A⊗̂AA satisfy-

ing (2.1) and (2.2). This means that A is module symmetrically amenable. �

Corollary 2.3. If A is a commutative module amenable Banach algebra, then
it is module symmetrically amenable.

Recall that a (bounded) left approximate identity in a Banach algebra A is
a (bounded) net {el}l∈L in A such that liml ela = a for all a ∈ A. Similarly,
a (bounded) right approximate identity can be defined in A. A (bounded)
approximate identity in A is both a (bounded) left approximate identity and
a (bounded) right approximate identity.

It is easy to see that K = ker w̃A is an A-A-submodule of A⊗̂AA. In
fact, K is a left ideal in A⊗̂AAop. Aghababa and Bodaghi [15, Theorem 4.4]
have shown that, if A is a commutative Banach A-bimodule, then A is module
amenable if and only if A has a bounded approximate identity and K = ker w̃A
has a bounded right approximate identity, where w̃A : A⊗̂AAop −→ A is the
usual multiplication map. Similarly, one can show that if A is a commutative
Banach A-bimodule, then A is module symmetrically amenable if and only if
A has a bounded approximate identity and the subalgebra ker w̃A ∩ ker w̃◦A of
A⊗̂AAop has a bounded two sided approximate identity.

Now, we give some hereditary properties of module symmetrically amenable
for Banach algebras.

Theorem 2.4. Let A be a Banach A-bimodule and I be a closed two sided
ideal and A-submodule of A. If A is module symmetrically amenable and I
has a bounded approximate identity, then I is module symmetrically amenable.
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Proof. Let {ũi} be a module symmetric approximate diagonal for A, where
ũi =

∑
k

aik⊗bik+IA is in A⊗̂AA. Assume that {ej} is the bounded approximate

identity of I. For each a, b ∈ A and α ∈ A, we have

(((a · α)⊗ b− a⊗ (α · b)) ◦ ej)ej = ej((a · α)⊗ b)ej − ej(a⊗ (α · b))ej
= ej(a · α)⊗ bej − eja⊗ (α · b)ej
= (eja) · α⊗ bej − eja⊗ α · (bej) ∈ II ,

where II is the corresponding ideal of I⊗̂I. Put d̃ij = (ũi ◦ ej)ej. Then,

d̃ij =
∑
k

eja
i
k ⊗ bikej + II ∈ I⊗̂AI is a bounded symmetric subnet of A⊗̂AA.

For x ∈ I, we get

d̃ij · x− x · d̃ij = [(ũi · x− x · ũi) ◦ ej]ej + (ũi ◦ ej)(ejx− xej).

Since {ũi} is a module symmetric approximate diagonal for A, we have ũi ·x−
x · ũi → 0. On the other hand, {ej} is a bounded approximate identity for I.

So, ejx− xej → 0. Hence, limi,j(d̃ij · x− x · d̃ij) = 0. Also,

(x+ JI) · w̃I(d̃ij) = (xej − x+ JI) · w̃I(ũi ◦ ej) + (x+ JI) · w̃I(ũi ◦ ej)
→ (x+ JI) · w̃I(ũi).

Thus, limi limj(x+ JI) · w̃I(d̃ij) = x+ JI . Therefore, {d̃ij} becomes a module
symmetric approximate diagonal for I. �

Theorem 2.5. Let A and B be Banach algebras and Banach A-bimodules. If
A is module symmetrically amenable and φ : A −→ B is a continuous module
homomorphism with dense range, then B is module symmetrically amenable.

Proof. Let {ũi} be a module symmetric approximate diagonal in A such that

ũi =
∑
k

aik ⊗ bik + IA is in A⊗̂AA. Define the map φ̃ : A/JA −→ B/JB by

φ̃(a+ JA) = φ(a) + JB. For each a, b ∈ A and α ∈ A, we obtain

φ((a · α)b− a(α · b)) = (φ(a) · α)φ(b)− φ(a)(α · φ(b)) ∈ JB.
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So, the map φ̃ is well-defined. Put ṽi =
∑
k

φ(aik)⊗ φ(bik) + IB. For each a ∈ A,

we have

lim
i

(φ(a) + JB) · w̃B(ṽi) = lim
i

(φ(a) + JB) ·

(∑
k

φ(aik)φ(bik) + JB

)

= lim
i

(∑
k

φ(aaikb
i
k) + JB

)

= lim
i
φ̃

(
(a+ JA) ·

(∑
k

aikb
i
k + JA

))
= lim

i
φ̃((a+ JA) · w̃B(ũi)) = φ̃(a+ JA) = φ(a) + JB.

Also, we get

w̃◦B(ṽi) · lim
i

(φ(a) + JB) = lim
i

(∑
k

φ(bik)φ(aik) + JB

)
· (φ(a) + JB)

= lim
i

(∑
k

φ(bika
i
ka) + JB

)

= lim
i
φ̃

((∑
k

bika
i
k + JA

)
· (a+ JA)

)
= lim

i
φ̃(w̃◦B(ũi) · (a+ JA)) = φ̃(a+ JA) = φ(a) + JB.

Since the range of φ is dense and φ is continuous, we get lim
i

(b+JB) · w̃B(ṽi) =

b + JB and w̃◦B(ṽi) · lim
i

(b + JB) = b + JB for all b ∈ B. Now, we consider

the map φ : A⊗̂AA ∼= (A⊗̂A)/IA −→ B⊗̂AB ∼= (B⊗̂B)/IB defined through
φ(a⊗ b+IA) = φ(a)⊗φ(b)+IB, (a, b ∈ A). The map φ is well-defined because
for each a, b ∈ A and α ∈ A, we have

(φ⊗ φ)((a · α)⊗ b− a⊗ (α · b)) = (φ(a) · α)⊗ φ(b)− φ(a)(α · φ(b)) ∈ IB.

It is easily to chek that φ is a module homomorphism. For each a ∈ A, we
find

lim
i

(ṽi · φ(a)− φ(a) · ṽi) = lim
i

(∑
k

(φ(aik)⊗ φ(bika)− φ(aaik)⊗ φ(bik)) + IB

)

= φ

(
lim
i

(∑
k

(aik ⊗ bika− aaik ⊗ bik) + IA

))
= φ(lim

i
(ũi · a− a · ũi)) = 0,
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On the other hand,

lim
i

(ṽi ◦ φ(a)− φ(a) ◦ ṽi) = lim
i

(∑
k

(φ(aika)⊗ φ(bik)− φ(aik)⊗ φ(abik)) + IB

)

= φ

(
lim
i

(∑
k

(aika⊗ bik − aik ⊗ abik) + IA

))
= φ(lim

i
(ũi ◦ a− a ◦ ũi)) = 0.

Hence, for each b ∈ A, we arrive at limi(ṽi·b−b·ṽi) = 0 and limi(ṽi◦b−b◦ṽi) = 0.
So, {ṽi} is a module symmetric approximate diagonal in B. This finishes the
proof. �

Corollary 2.6. Let A be a Banach A-bimodule and I be a closed ideal in A.
If A is module symmetrically amenable, then so is A/I.

Proof. If q : A −→ A/I is the natural A-module map and {ũi} is a module
symmetric approximate diagonal for A, then {(q⊗q)ũi} is a module symmetric
approximate diagonal for A/I. �

Lemma 2.7. Let A be a Banach A-bimodule with compatible actions. If A is
module symmetrically amenable and X is a commutative Banach A-A-module,
then every module derivation from A into X, is approximately inner.

Proof. Let {ũj} ⊆ A⊗̂AA be a module symmetric approximate diagonal for A
such that ũj =

∑
k

ajk ⊗ b
j
k + I and D : A −→ X be a module derivation. It is

clear that J ·X = X ·J = {0}. Obviously, X becomes a Banach A/J-bimodule
with the following module actions

(a+ J) · x := a · x , x · (a+ J) := x · a (x ∈ X, a ∈ A).

Define D̃ : A/J −→ X by D̃(a + J) = D(a) for a ∈ A. Hence, D̃ is a module

derivation. Let xj =
∑
k

D̃(ajk + J) · bjk. For each ϕ ∈ X∗, we have

〈ϕ, xj · (a+ J)〉 = 〈ϕ, (
∑
k

D̃(ajk + J) · bjk) · (a+ J)〉 = 〈ϕ,
∑
k

D̃(aajk + J) · bjk〉

= 〈ϕ, D̃(a+ J) · (
∑
k

ajkb
j
k + J)〉+ 〈ϕ, (a+ J) ·

∑
k

D̃(ajk + J) · bjk〉

= 〈ϕ, D̃(a+ J) · w̃A(ũj)〉+ 〈ϕ, (a+ J) · xj〉.

Then, D̃(a+ J) = lim
j
xj · (a+ J)− (a+ J) · xj for all a ∈ A. Therefore, D̃ is

approximately inner and thus D is an approximately inner module derivation.
�

Theorem 2.8. Let A be a Banach A-bimodule with bounded approximate iden-
tity and A⊗̂AA be a commutative A-bimodule such that each net of A⊗̂AA is
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bounded. Suppose that I is a closed ideal and A-submodule of A. If I and
A/I are module symmetrically amenable, then so is A.

Proof. Let X be a commutative Banach A-A-module with compatible actions
and D : A −→ X be a module derivation. Since I is module symmetri-
cally amenable, the restriction of D to I, i.e. D|I , is approximately inner

by Lemma 2.7. Thus, the map D̃ = D−D|I vanishes on I. This map induces

a module derivation from A/I into X defined via D̃(a + I) = D̃(a). Due to

the module symmetric amenability of A/I, D̃ is also approximately inner by
Lemma 2.7. It follows from that D is an approximately inner module deriva-
tion. Let {ej} be a bounded approximate identity for A. Then, passing to a
subnet we may assume that ej ⊗ ej + I is w∗-convergent to T in A⊗̂AA. By
the continuity of w̃A and w̃◦A, we have

w̃A(DT (a)) = w̃A(lim
j
a · T − T · a) = lim

j
w̃A(a · T − T · a)

= lim
j
w̃A(aej ⊗ ej − ej ⊗ eja+ I)

= lim
j

(ae2j − e2ja+ J) = J,

w̃◦A(DT (a)) = w̃◦A(lim
j
a · T − T · a)

= lim
j
w̃◦A(aej ⊗ ej − ej ⊗ eja+ I)

= lim
j

(ejaej − ejaej + J) = J

for all a ∈ A. So, both w̃A and w̃◦A vanishes on the range of DT , and DT could
be regarded as a module derivation from A into K = ker w̃A ∩ ker w̃◦A. Since
A⊗̂AA is commutative A-bimodule, there is a (bounded) net {Nj} ∈ K such
that

(2.5) DT (a) = lim
j
a ·Nj −Nj · a = DNj

(a)

for all a ∈ A. Letting ũj = T −Nj ∈ A⊗̂AA, we get

(a+ J)w̃A(ũj) = (a+ J)(w̃A(T )− w̃A(Nj))

= (a+ J)(e2j + J)

= aej + J → a+ J

for all a ∈ A. The relation (2.5) implies that a · ũj − ũj · a → 0. Similarly,
we can obtain that w̃◦A(ũj)(a + J) → a + J and a ◦ ũj − ũj ◦ a → 0. Hence,
{ũj} is a module symmetric approximate diagonal in A. This completes the
proof. �

We say the Banach algebra A acts trivially on A from left (right) if there is
a continuous linear functional f on A such that α · a = f(α)a (a · α = f(α)a)
for all α ∈ A and a ∈ A.

The following result is main key to achieve our purpose of this paper.



MODULE SYMMETRIC AMENABILITY 241

Proposition 2.9. Let A be a Banach A-bimodule with trivial left action and A
has a bounded approximate identity. If A/J is symmetrically amenable, then
A is module symmetrically amenable.

Proof. Suppose that {di} is a bounded approximate diagonal for A/J , that is
di =

∑
k(a

i
k+J)⊗(bik+J) ∈ (A/J)⊗̂(A/J). Define the map φ : (A/J)⊗̂(A/J) −→

(A⊗̂A)/I ∼= A⊗̂AA via φ((a+ J)⊗ (b+ J)) := (a⊗ b) + I. Assume that {ej}
is a bounded approximate identity for A. For each a, b, c ∈ A and α ∈ A, we
obtain

[(a · α)b− a(α · b)]⊗ c = (a · α)b⊗ c− a(α · b)⊗ c
= lim

j
[((a · α)b⊗ cej)− (a(α · b)⊗ ejc)]

= lim
j

[((a · α)⊗ c)(b⊗ ej)− (a⊗ ej)((α · b)⊗ c)]

= lim
j

[((a · α)⊗ c)(b⊗ ej)− (a⊗ (α · c))(b⊗ ej)

+(a⊗ (α · c))(b⊗ ej)− (a⊗ ej)((α · b)⊗ c)
+(a⊗ ej)(b⊗ (α · c))− (a⊗ ej)(b⊗ (α · c))]

= lim
j

[((a · α)⊗ c− a⊗ (α · c))(b⊗ ej)

+(a⊗ (α · c))(b⊗ ej)− (a⊗ ej)((α · b)⊗ c
−b⊗ (α · c))− (a⊗ ej)(b⊗ (α · c))]

= lim
j

[((a · α)⊗ c− a⊗ (α · c))(b⊗ ej)

+(ab⊗ (α · c)ej)− (a⊗ ej)(f(α)b⊗ c
−b⊗ f(α)c)− (ab⊗ ej(α · c))]

= lim
j

[((a · α)⊗ c− a⊗ (α · c))(b⊗ ej)

+(ab⊗ (α · c)ej)− (a⊗ ej)f(α)(b⊗ c− b⊗ c)
−(ab⊗ ej(α · c))]

= lim
j

[((a · α)⊗ c− a⊗ (α · c))(b⊗ ej) ∈ I.

Similarly, c⊗[(a·α)b−a(α·b)] ∈ I. Hence, φ is well-defined. Also, φ is a module
homomorphism. It is easily verified that {φ(di)} is a bounded symmetric net
in A⊗̂AA. Put ũi = φ(di) =

∑
k

aik ⊗ bik + I. By [11, Proposition 2.2], we have

lim
i

(a+ J) · w̃A(ũi) = lim
i

(a+ J) ·

(∑
k

aikb
i
k + J

)

= lim
i

(a+ J) ·

(∑
k

(aik + J)(bik + J)

)
= lim

i
(a+ J) · w◦A/J(di) = a+ J
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for each a ∈ A. Also,

lim
i

(ũi · a− a · ũi) = lim
i

(∑
k

(aik ⊗ bika− aaik ⊗ bik) + I

)

= φ

(
lim
i

(∑
k

(aik + J)⊗ (bika+ J)− (aaik + J)⊗ (bik + J)

))
= φ(lim

i
(a · di − di · a)) = 0.

Thus, {ũi} is a module symmetric approximate diagonal for A. This shows
that A is module symmetrically amenable. �

3. Application to semigroup algebras

By an inverse semigroup S we shall mean a discrete semigroup such that for
any s ∈ S there is a unique element s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. An
element e ∈ S is called an idempotent if e2 = e∗ = e. Here and subsequently,
S will always denote an inverse semigroup with the set of idempotents ES (or
E), where the order of E is defined by

e ≤ d⇔ ed = e (e, d ∈ E).

Since E is a (commutative) subsemigroup of S (see [8, Theorem V.1.2]) and a
semilattice, the algebra l1(E) could be regarded as a commutative subalgebra
of l1(S). Hence, l1(S) is a Banach algebra and a Banach l1(E)-module with
compatible actions [1]. We impose the following actions of l1(E) on l1(S):

δe · δs = δs, δs · δe = δse = δs ∗ δe (e ∈ E, s ∈ S).

With these actions, we consider l1(S) as a Banach l1(E)-module. In this case,
the ideal J (see section 2) is the closed linear span of {δset−δst | e ∈ E, s, t ∈ S}.

We consider an equivalence relation on S as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

In this case the quotient S/≈ is a discrete group (see [2] and [13]). In fact,
S/≈ is homomorphic to the maximal group homomorphic image GS [12] of S
[14]. In particular, S is amenable if and only if S/≈ = GS is amenable [7, 12].
As in [16, Theorem 3.3], we may observe that l1(S)/J ∼= l1(GS). With the
notations of the previous section, l1(S)/J is a commutative l1(E)-bimodule
with the following actions

δe · δ[s] = δ[s], δ[s] · δe = δ[se] (s ∈ S, e ∈ E),

where [s] denotes the equivalence class of s in GS.
Suppose that k ∈ N. If there exist e ∈ E and i, j ∈ N such that

1 ≤ i < j ≤ k + 1, fie = fi, fje = fj (f1, f2, . . . , fk+1 ∈ E),
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then we say that E satisfies condition Dk [7]. In [7, Theorem 16], the authors
proved that for any inverse semigroup S, l1(S) has a bounded approximate
identity if and only if E satisfies condition Dk for some k.

Theorem 3.1. Let S be an inverse semigroup with the set of idempotents E
and l1(S) be a Banach l1(E)-module with trivial left action. If E satisfies
condition Dk for some k, then l1(S) is module symmetrically amenable if and
only if S is amenable.

Proof. Firstly, we assume that l1(S) is module symmetrically amenable. Then,
it is module amenable. Now, Theorem 3.1 from [1] necessities that S is
amenable.

Conversely, suppose that S is amenable. Then, the (discrete) group GS is
amenable by [7, Theorem 1], and so l1(GS) is symmetrically amenable by [11,
Theorem 4.1]. The result follows from Proposition 2.9 with A = l1(S) and
A = l1(E). �

In the following we bring two examples to show that there are some mod-
ule symmetrically amenable semigroup algebras which are not symmetrically
amenable.

Example 3.2. Let G be a group with identity e, and let I be a non-empty set.
Then, the Brandt inverse semigroup corresponding to G and I, denoted by
S = M(G, I), is the collection of all I × I matrices (g)ij with g ∈ G in the
(i, j)th place and 0 (zero) elsewhere and the I×I zero matrix 0. Multiplication
in S is given by the formula

(g)ij(h)kl =

{
(gh)il if j = k

0 if j 6= k
(g, h ∈ G, i, j, k, l ∈ I),

and (g)∗ij = (g−1)ji and 0∗ = 0. The set of all idempotents is ES = {(e)ii : i ∈
I}
⋃
{0}. It is shown in [13, Example 3.2] that GS is the trivial group, and so

l1(S) is module symmetrically amenable by Theorem 3.1. Note that if G is
not amenable or I is not finite, then l1(S) is not amenable by Theorems 7 and
12 from [7] and hence it is not symmetrically amenable.

Example 3.3. Let C be the bicyclic inverse semigroup generated by p and q,
that is

C = {paqb : a, b ≥ 0}, (paqb)∗ = pbqa.

The multiplication operation is defined by

(paqb)(pcqd) = pa−b+max{b,c}qd−c+max{b,c}.

The set of idempotents of C is EC = {paqa : a = 0, 1, . . . } which is also totally
ordered with the following order

paqb ≤ pbqb ⇐⇒ a ≤ b.

Therefore, E satisfies condition D1. It is shown in [2] that GC is isomorphic
to the group of integers Z, hence l1(C) is module symmetrically amenable by
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Theorem 3.1. On the other hand, l1(C) is not symmetrically amenable since it
is not amenable [7].
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