MODULE SYMMETRICALLY AMENABLE BANACH ALGEBRAS

HÜLYA İNCEBOZ, BERNA ARSLAN, AND ABASALT BODAGHI

Abstract

In this article, we develop the concept of symmetric amenability for a Banach algebra \mathcal{A} to the case that there is an extra \mathfrak{A}-module structure on \mathcal{A}. For every inverse semigroup S with the set E of idempotents, we find necessary and sufficient conditions for the $l^{1}(S)$ to be module symmetrically amenable (as a $l^{1}(E)$-module). We also present some module symmetrically amenable semigroup algebras to show that this new notion of amenability is different from the classical case introduced by Johnson.

1. Introduction

A Banach algebra \mathcal{A} is amenable if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A}-bimodule is inner, equivalently if $H^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-module X, where $H^{1}\left(\mathcal{A}, X^{*}\right)$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in X^{*}. This concept was first introduced and studied by Johnson [9] in 1972. He also gave an alternative formulation of the notion of amenability in [10], and proved that a Banach algebra \mathcal{A} is amenable if and only if \mathcal{A} has a bounded approximate diagonal; i.e. a bounded net $\left\{d_{\alpha}\right\}$ in the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that

$$
\left\|\pi\left(d_{\alpha}\right) a-a\right\| \rightarrow 0 \text { and }\left\|a \cdot d_{\alpha}-d_{\alpha} \cdot a\right\| \rightarrow 0
$$

for all $a \in \mathcal{A}$, where the operations on $\mathcal{A} \widehat{\otimes} \mathcal{A}$ are defined by $a \cdot(b \otimes c)=a b \otimes c$, $(b \otimes c) \cdot a=b \otimes c a$ and $\pi(b \otimes c)=b c$ for all $a, b, c \in \mathcal{A}$. The flip map on $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is defined by

$$
(a \otimes b)^{\circ}=b \otimes a \quad(a, b \in \mathcal{A})
$$

and an element \mathfrak{E} of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is called symmetric if $\mathfrak{E}^{\circ}=\mathfrak{E}$. A Banach algebra \mathcal{A} is called symmetrically amenable if \mathcal{A} has a bounded approximate diagonal consisting of symmetric tensors. Symmetrically amenable Banach algebras were defined by Johnson in [11]. Using this concept, he found some hereditary

[^0]properties and examples which are similar to those in [9] for amenable Banach algebras. However, unlike amenability, the proofs of that results do not depend on homological characterizations, because symmetric amenability has been considered only by the existence of a bounded (symmetric) approximate diagonal. The most important example in [11] asserts that the group algebra $L^{1}(G)$ of a locally compact group G is symmetrically amenable if and only if G is amenable.

In 2004, M. Amini [1] introduced the notion of module amenability for a class of Banach algebras which could be considered as a generalization of the Johnson's amenability [9]. He showed that for an inverse semigroup S with the set of idempotents E, the semigroup algebra $l^{1}(S)$ is module amenable, as a Banach module over $l^{1}(E)$, if and only if S is amenable. Other concepts of module amenability can be found in [3], [4], [5] and [13].

In this paper, we firstly define the concept of module symmetric amenability for a Banach algebra \mathcal{A} which is a Banach module on another Banach algebra \mathfrak{A} with compatible actions. Among many other things, we show that under some mild conditions, symmetric amenability of the quotient Banach algebra \mathcal{A} / J implies module symmetric amenability of \mathcal{A}, where J is the closed ideal of \mathcal{A} generated by $(a \cdot \alpha) b-a(\alpha \cdot b)$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. As a consequence of this result, we prove that for an inverse semigroup S with the set E of idempotents so that E satisfies the condition $D_{k}[7]$ for some k, then $l^{1}(S)$ is module symmetrically amenable (as an $l^{1}(E)$-module) with trivial left action, if and only if S is amenable.

2. Module symmetric amenability for Banach algebras

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A}-bimodule with compatible actions as follows:

$$
\alpha \cdot(a b)=(\alpha \cdot a) b, \quad(a b) \cdot \alpha=a(b \cdot \alpha) \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}) .
$$

Furthermore, if $\alpha \cdot a=a \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, then \mathcal{A} is called a commutative \mathfrak{A}-bimodule.

Let X be a left Banach \mathcal{A}-module and a Banach \mathfrak{A}-bimodule with the following compatible actions:
$\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x, a \cdot(\alpha \cdot x)=(a \cdot \alpha) \cdot x, a \cdot(x \cdot \alpha)=(a \cdot x) \cdot \alpha(a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)$.
Then, we say that X is a left Banach \mathcal{A} - \mathfrak{A}-module. Right Banach \mathcal{A} - \mathfrak{A}-modules and (two-sided) Banach $\mathcal{A}-\mathfrak{A}$-modules are defined similarly. If moreover, $\alpha \cdot x=$ $x \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $x \in X$, then X is called a commutative left (right or two-sided) Banach \mathcal{A} - \mathfrak{A}-module. If X is a (commutative) Banach \mathcal{A} - \mathfrak{A}-module, then so is X^{*}, where the actions of \mathcal{A} and \mathfrak{A} on X^{*} are defined as usual [1]. Note that in general, \mathcal{A} is not an $\mathcal{A}-\mathfrak{A}$-module because \mathcal{A} does not satisfy the compatibility condition $a \cdot(\alpha \cdot b)=(a \cdot \alpha) \cdot b$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. But when \mathcal{A} is a commutative \mathfrak{A}-module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A}-module.

Let \mathcal{A} and \mathcal{B} be Banach \mathfrak{A}-bimodules with compatible actions. Then, a \mathfrak{A}-module map is a bounded mapping $T: \mathcal{A} \longrightarrow \mathcal{B}$ with

$$
T(a \pm b)=T(a) \pm T(b), T(\alpha \cdot a)=\alpha \cdot T(a) \text { and } T(a \cdot \alpha)=T(a) \cdot \alpha
$$

for all $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. Note that h is not necessarily linear, so it is not necessarily a \mathfrak{A}-module homomorphism.

Let \mathcal{A} and \mathfrak{A} be as above and X be a Banach $\mathcal{A}-\mathfrak{A}$-module. A (\mathfrak{A}-) module derivation is a bounded \mathfrak{A}-bimodule map $D: \mathcal{A} \longrightarrow X$ satisfying

$$
D(a b)=D(a) \cdot b+a \cdot D(b)
$$

for all $a, b \in \mathcal{A}$. One should note that D is not necessarily linear, but its boundedness (defined as the existence of $M>0$ such that $\|D(a)\| \leq M\|a\|$, for all $a \in \mathcal{A}$) still implies its continuity, as it preserves subtraction. When X is commutative Banach \mathcal{A} - \mathfrak{A}-module, each $x \in X$ defines a module derivation $D_{x}(a)=a \cdot x-x \cdot a(a \in \mathcal{A})$. Module derivations of this kind are called inner. A derivation $D: \mathcal{A} \longrightarrow X$ is said to be approximately inner if there exists a net $\left(x_{i}\right) \subseteq X$ such that $D(a)=\lim _{i}\left(a \cdot x_{i}-x_{i} \cdot a\right)$ for all $a \in \mathcal{A}$.

Consider the module projective tensor product $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ which is isomorphic to the quotient space $(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I_{\mathcal{A}}$, where $I_{\mathcal{A}}$ is the closed linear span of $\{a$. $\alpha \otimes b-a \otimes \alpha \cdot b: \alpha \in \mathfrak{A}, a, b \in \mathcal{A}\}$. Also consider the closed ideal $J_{\mathcal{A}}$ of \mathcal{A} generated by elements of the form $(a \cdot \alpha) b-a(\alpha \cdot b)$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. We shall denote $I_{\mathcal{A}}$ and $J_{\mathcal{A}}$ by I and J, respectively, if there is no risk of confusion. Then, I and J are \mathcal{A}-submodules and \mathfrak{A}-submodules of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ and \mathcal{A}, respectively, and the quotients $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ and \mathcal{A} / J are \mathcal{A}-modules and \mathfrak{A} modules. Also, \mathcal{A} / J is a Banach \mathcal{A} - \mathfrak{A}-module when \mathcal{A} acts on \mathcal{A} / J canonically. Also, let $\omega_{\mathcal{A}}: \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow \mathcal{A}$ be the product map, i.e., $\omega_{\mathcal{A}}(a \otimes b)=a b$, and let $\widetilde{\omega}_{\mathcal{A}}: \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}=(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I \longrightarrow \mathcal{A} / J$ be its induced product map, i.e., $\widetilde{\omega}_{\mathcal{A}}(a \otimes$ $b+I)=a b+J$ and extended by continuity and linearity.

Recall that a module approximate diagonal for \mathcal{A} is a bounded net $\left\{\widetilde{u}_{j}\right\}$ in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ such that

$$
\begin{equation*}
(a+J) \widetilde{w}_{\mathcal{A}}\left(\widetilde{u}_{j}\right) \rightarrow a+J \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{j}\left\|\widetilde{u}_{j} \cdot a-a \cdot \widetilde{u}_{j}\right\|=0 \tag{2.2}
\end{equation*}
$$

for each $a \in \mathcal{A}[1]$. We define the module flip map on $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ by

$$
(a \otimes b+I)^{\circ}=b \otimes a+I \quad(a, b \in \mathcal{A}) .
$$

We say an element u of $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is module symmetric if $u^{\circ}=u$.
Definition 2.1. A Banach algebra \mathcal{A} is module symmetrically amenable if \mathcal{A} has a module approximate diagonal $\left\{\widetilde{u}_{j}\right\}$ such that all the elements of the net $\left\{\widetilde{u}_{j}\right\}$ are module symmetric.

The opposite algebra $\mathcal{A}^{o p}$ is the Banach space \mathcal{A} with product $a \circ b=b a$. Now we rewrite the above definitions for $\mathcal{A}^{o p}$ in the module version. The bounded net $\left\{\widetilde{u}_{j}\right\}$ in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is a module approximate diagonal for $\mathcal{A}^{o p}$ if

$$
\begin{equation*}
\widetilde{w}_{\mathcal{A}}^{\circ}\left(\widetilde{u}_{j}\right)(a+J) \rightarrow a+J \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{j}\left\|\widetilde{u}_{j} \circ a-a \circ \widetilde{u}_{j}\right\|=0 \tag{2.4}
\end{equation*}
$$

for all $a \in \mathcal{A}$, where $a \circ(b \otimes c)=b \otimes a c,(b \otimes c) \circ a=b a \otimes c$ and $\widetilde{w}_{\mathcal{A}}^{\circ}(b \otimes c+I)=$ $c b+J$.

The following proposition is the module version of [11, Proposition 2.2].
Proposition 2.2. A Banach algebra \mathcal{A} is module symmetrically amenable if and only if there is a bounded net $\left\{\widetilde{u}_{j}\right\}$ in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ which satisfies (2.1), (2.2), (2.3) and (2.4).

Proof. Let \mathcal{A} be module symmetrically amenable. Then, \mathcal{A} has a module approximate diagonal $\left\{\widetilde{u}_{j}\right\}$ which satisfies (2.1) and (2.2). Since $\widetilde{u}_{j}=\widetilde{u}_{j}^{\circ}$, we know that $\left\{\widetilde{u}_{j}\right\}$ also satisfies (2.3) and (2.4).

Conversely, if the bounded net $\left\{\widetilde{u}_{j}\right\}$ satisfies (2.1), (2.2), (2.3) and (2.4), so does $\left\{\widetilde{u}_{j}^{\circ}\right\}$. Hence, $\left\{\frac{1}{2}\left(\widetilde{u}_{j}+\widetilde{u}_{j}^{\circ}\right)\right\}$ is a net of symmetric tensors in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ satisfying (2.1) and (2.2). This means that \mathcal{A} is module symmetrically amenable.
Corollary 2.3. If \mathcal{A} is a commutative module amenable Banach algebra, then it is module symmetrically amenable.
Recall that a (bounded) left approximate identity in a Banach algebra \mathcal{A} is a (bounded) net $\left\{e_{l}\right\}_{l \in \mathcal{L}}$ in \mathcal{A} such that $\lim _{l} e_{l} a=a$ for all $a \in \mathcal{A}$. Similarly, a (bounded) right approximate identity can be defined in \mathcal{A}. A (bounded) approximate identity in \mathcal{A} is both a (bounded) left approximate identity and a (bounded) right approximate identity.

It is easy to see that $K=\operatorname{ker} \widetilde{w}_{\mathcal{A}}$ is an $\mathcal{A}-\mathfrak{A}$-submodule of $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. In fact, K is a left ideal in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}^{o p}$. Aghababa and Bodaghi [15, Theorem 4.4] have shown that, if \mathcal{A} is a commutative Banach \mathfrak{A}-bimodule, then \mathcal{A} is module amenable if and only if \mathcal{A} has a bounded approximate identity and $K=\operatorname{ker} \widetilde{w}_{\mathcal{A}}$ has a bounded right approximate identity, where $\widetilde{w}_{\mathcal{A}}: \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}^{o p} \longrightarrow \mathcal{A}$ is the usual multiplication map. Similarly, one can show that if \mathcal{A} is a commutative Banach \mathfrak{A}-bimodule, then \mathcal{A} is module symmetrically amenable if and only if \mathcal{A} has a bounded approximate identity and the subalgebra $\operatorname{ker} \widetilde{w}_{\mathcal{A}} \cap \operatorname{ker} \widetilde{w}_{\mathcal{A}}^{o}$ of $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}^{o p}$ has a bounded two sided approximate identity.

Now, we give some hereditary properties of module symmetrically amenable for Banach algebras.
Theorem 2.4. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule and \mathcal{I} be a closed two sided ideal and \mathfrak{A}-submodule of A. If \mathcal{A} is module symmetrically amenable and \mathcal{I} has a bounded approximate identity, then \mathcal{I} is module symmetrically amenable.

Proof. Let $\left\{\widetilde{u}_{i}\right\}$ be a module symmetric approximate diagonal for \mathcal{A}, where $\widetilde{u}_{i}=\sum_{k} a_{k}^{i} \otimes b_{k}^{i}+I_{\mathcal{A}}$ is in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. Assume that $\left\{e_{j}\right\}$ is the bounded approximate identity of \mathcal{I}. For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$
\begin{aligned}
\left(((a \cdot \alpha) \otimes b-a \otimes(\alpha \cdot b)) \circ e_{j}\right) e_{j} & =e_{j}((a \cdot \alpha) \otimes b) e_{j}-e_{j}(a \otimes(\alpha \cdot b)) e_{j} \\
& =e_{j}(a \cdot \alpha) \otimes b e_{j}-e_{j} a \otimes(\alpha \cdot b) e_{j} \\
& =\left(e_{j} a\right) \cdot \alpha \otimes b e_{j}-e_{j} a \otimes \alpha \cdot\left(b e_{j}\right) \in I_{\mathcal{I}},
\end{aligned}
$$

where $I_{\mathcal{I}}$ is the corresponding ideal of $\mathcal{I} \widehat{\otimes} \mathcal{I}$. Put $\widetilde{d}_{i j}=\left(\widetilde{u}_{i} \circ e_{j}\right) e_{j}$. Then, $\widetilde{d}_{i j}=\sum_{k} e_{j} a_{k}^{i} \otimes b_{k}^{i} e_{j}+I_{\mathcal{I}} \in \mathcal{I} \hat{\otimes}_{\mathfrak{A}} \mathcal{I}$ is a bounded symmetric subnet of $\mathcal{A} \widehat{\otimes}_{\mathfrak{H}} \mathcal{A}$. For $x \in \mathcal{I}$, we get

$$
\widetilde{d}_{i j} \cdot x-x \cdot \widetilde{d}_{i j}=\left[\left(\widetilde{u}_{i} \cdot x-x \cdot \widetilde{u}_{i}\right) \circ e_{j}\right] e_{j}+\left(\widetilde{u}_{i} \circ e_{j}\right)\left(e_{j} x-x e_{j}\right) .
$$

Since $\left\{\widetilde{u}_{i}\right\}$ is a module symmetric approximate diagonal for \mathcal{A}, we have $\widetilde{u}_{i} \cdot x-$ $x \cdot \widetilde{u}_{i} \rightarrow 0$. On the other hand, $\left\{e_{j}\right\}$ is a bounded approximate identity for \mathcal{I}. So, $e_{j} x-x e_{j} \rightarrow 0$. Hence, $\lim _{i, j}\left(\tilde{d}_{i j} \cdot x-x \cdot \widetilde{d}_{i j}\right)=0$. Also,

$$
\begin{aligned}
\left(x+J_{\mathcal{I}}\right) \cdot \widetilde{w}_{\mathcal{I}}\left(\widetilde{d}_{i j}\right) & =\left(x e_{j}-x+J_{\mathcal{I}}\right) \cdot \widetilde{w}_{\mathcal{I}}\left(\widetilde{u}_{i} \circ e_{j}\right)+\left(x+J_{\mathcal{I}}\right) \cdot \widetilde{w}_{\mathcal{I}}\left(\widetilde{u}_{i} \circ e_{j}\right) \\
& \rightarrow\left(x+J_{\mathcal{I}}\right) \cdot \widetilde{w}_{\mathcal{I}}\left(\widetilde{u}_{i}\right) .
\end{aligned}
$$

Thus, $\lim _{i} \lim _{j}\left(x+J_{\mathcal{I}}\right) \cdot \widetilde{w}_{\mathcal{I}}\left(\widetilde{d}_{i j}\right)=x+J_{\mathcal{I}}$. Therefore, $\left\{\widetilde{d}_{i j}\right\}$ becomes a module symmetric approximate diagonal for \mathcal{I}.

Theorem 2.5. Let \mathcal{A} and \mathcal{B} be Banach algebras and Banach \mathfrak{A}-bimodules. If \mathcal{A} is module symmetrically amenable and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ is a continuous module homomorphism with dense range, then \mathcal{B} is module symmetrically amenable.

Proof. Let $\left\{\widetilde{u}_{i}\right\}$ be a module symmetric approximate diagonal in \mathcal{A} such that $\widetilde{u}_{i}=\sum_{k} a_{k}^{i} \otimes b_{k}^{i}+I_{\mathcal{A}}$ is in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. Define the $\operatorname{map} \widetilde{\phi}: \mathcal{A} / J_{\mathcal{A}} \longrightarrow \mathcal{B} / J_{\mathcal{B}}$ by $\widetilde{\phi}\left(a+J_{\mathcal{A}}\right)=\phi(a)+J_{\mathcal{B}}$. For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we obtain

$$
\phi((a \cdot \alpha) b-a(\alpha \cdot b))=(\phi(a) \cdot \alpha) \phi(b)-\phi(a)(\alpha \cdot \phi(b)) \in J_{\mathcal{B}} .
$$

So, the map $\widetilde{\phi}$ is well-defined. Put $\widetilde{v}_{i}=\sum_{k} \phi\left(a_{k}^{i}\right) \otimes \phi\left(b_{k}^{i}\right)+I_{\mathcal{B}}$. For each $a \in \mathcal{A}$, we have

$$
\begin{aligned}
\lim _{i}\left(\phi(a)+J_{\mathcal{B}}\right) \cdot \widetilde{w}_{\mathcal{B}}\left(\widetilde{v}_{i}\right) & =\lim _{i}\left(\phi(a)+J_{\mathcal{B}}\right) \cdot\left(\sum_{k} \phi\left(a_{k}^{i}\right) \phi\left(b_{k}^{i}\right)+J_{\mathcal{B}}\right) \\
& =\lim _{i}\left(\sum_{k} \phi\left(a a_{k}^{i} b_{k}^{i}\right)+J_{\mathcal{B}}\right) \\
& =\lim _{i} \widetilde{\phi}\left(\left(a+J_{\mathcal{A}}\right) \cdot\left(\sum_{k} a_{k}^{i} b_{k}^{i}+J_{\mathcal{A}}\right)\right) \\
& =\lim _{i} \widetilde{\phi}\left(\left(a+J_{\mathcal{A}}\right) \cdot \widetilde{w}_{\mathcal{B}}\left(\widetilde{u}_{i}\right)\right)=\widetilde{\phi}\left(a+J_{\mathcal{A}}\right)=\phi(a)+J_{\mathcal{B}}
\end{aligned}
$$

Also, we get

$$
\begin{aligned}
\left.\widetilde{w}_{\mathcal{B}}^{(} \widetilde{v}_{i}\right) \cdot \lim _{i}\left(\phi(a)+J_{\mathcal{B}}\right) & =\lim _{i}\left(\sum_{k} \phi\left(b_{k}^{i}\right) \phi\left(a_{k}^{i}\right)+J_{\mathcal{B}}\right) \cdot\left(\phi(a)+J_{\mathcal{B}}\right) \\
& =\lim _{i}\left(\sum_{k} \phi\left(b_{k}^{i} a_{k}^{i} a\right)+J_{\mathcal{B}}\right) \\
& =\lim _{i} \widetilde{\phi}\left(\left(\sum_{k} b_{k}^{i} a_{k}^{i}+J_{\mathcal{A}}\right) \cdot\left(a+J_{\mathcal{A}}\right)\right) \\
& =\lim _{i} \widetilde{\phi}\left(\widetilde{w}_{\mathcal{B}}^{0}\left(\widetilde{u}_{i}\right) \cdot\left(a+J_{\mathcal{A}}\right)\right)=\widetilde{\phi}\left(a+J_{\mathcal{A}}\right)=\phi(a)+J_{\mathcal{B}}
\end{aligned}
$$

Since the range of ϕ is dense and ϕ is continuous, we get $\lim _{i}\left(b+J_{\mathcal{B}}\right) \cdot \widetilde{w}_{\mathcal{B}}\left(\widetilde{v}_{i}\right)=$ $b+J_{\mathcal{B}}$ and $\widetilde{w}_{\mathcal{B}}^{o}\left(\widetilde{v}_{i}\right) \cdot \lim _{i}\left(b+J_{\mathcal{B}}\right)=b+J_{\mathcal{B}}$ for all $b \in \mathcal{B}$. Now, we consider the map $\bar{\phi}: \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A} \cong(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I_{\mathcal{A}} \longrightarrow \mathcal{B} \widehat{\otimes}_{\mathfrak{A}} \mathcal{B} \cong(B \widehat{\otimes} \mathcal{B}) / I_{\mathcal{B}}$ defined through $\bar{\phi}\left(a \otimes b+I_{\mathcal{A}}\right)=\phi(a) \otimes \phi(b)+I_{\mathcal{B}},(a, b \in \mathcal{A})$. The map $\bar{\phi}$ is well-defined because for each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$
(\phi \otimes \phi)((a \cdot \alpha) \otimes b-a \otimes(\alpha \cdot b))=(\phi(a) \cdot \alpha) \otimes \phi(b)-\phi(a)(\alpha \cdot \phi(b)) \in I_{\mathcal{B}}
$$

It is easily to chek that $\bar{\phi}$ is a module homomorphism. For each $a \in \mathcal{A}$, we find

$$
\begin{aligned}
\lim _{i}\left(\widetilde{v}_{i} \cdot \phi(a)-\phi(a) \cdot \widetilde{v}_{i}\right) & =\lim _{i}\left(\sum_{k}\left(\phi\left(a_{k}^{i}\right) \otimes \phi\left(b_{k}^{i} a\right)-\phi\left(a a_{k}^{i}\right) \otimes \phi\left(b_{k}^{i}\right)\right)+I_{\mathcal{B}}\right) \\
& =\bar{\phi}\left(\lim _{i}\left(\sum_{k}\left(a_{k}^{i} \otimes b_{k}^{i} a-a a_{k}^{i} \otimes b_{k}^{i}\right)+I_{\mathcal{A}}\right)\right) \\
& =\bar{\phi}\left(\lim _{i}\left(\widetilde{u}_{i} \cdot a-a \cdot \widetilde{u}_{i}\right)\right)=0,
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\lim _{i}\left(\widetilde{v}_{i} \circ \phi(a)-\phi(a) \circ \widetilde{v}_{i}\right) & =\lim _{i}\left(\sum_{k}\left(\phi\left(a_{k}^{i} a\right) \otimes \phi\left(b_{k}^{i}\right)-\phi\left(a_{k}^{i}\right) \otimes \phi\left(a b_{k}^{i}\right)\right)+I_{\mathcal{B}}\right) \\
& =\bar{\phi}\left(\lim _{i}\left(\sum_{k}\left(a_{k}^{i} a \otimes b_{k}^{i}-a_{k}^{i} \otimes a b_{k}^{i}\right)+I_{\mathcal{A}}\right)\right) \\
& =\bar{\phi}\left(\lim _{i}\left(\widetilde{u}_{i} \circ a-a \circ \widetilde{u}_{i}\right)\right)=0 .
\end{aligned}
$$

Hence, for each $b \in \mathcal{A}$, we arrive at $\lim _{i}\left(\widetilde{v}_{i} \cdot b-b \cdot \widetilde{v}_{i}\right)=0$ and $\lim _{i}\left(\widetilde{v}_{i} \circ b-b \circ \widetilde{v}_{i}\right)=0$. So, $\left\{\widetilde{v}_{i}\right\}$ is a module symmetric approximate diagonal in \mathcal{B}. This finishes the proof.

Corollary 2.6. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule and \mathcal{I} be a closed ideal in \mathcal{A}. If \mathcal{A} is module symmetrically amenable, then so is $\mathcal{A} / \mathcal{I}$.

Proof. If $q: \mathcal{A} \longrightarrow \mathcal{A} / \mathcal{I}$ is the natural \mathfrak{A}-module map and $\left\{\widetilde{u}_{i}\right\}$ is a module symmetric approximate diagonal for \mathcal{A}, then $\left\{(q \otimes q) \widetilde{u}_{i}\right\}$ is a module symmetric approximate diagonal for $\mathcal{A} / \mathcal{I}$.
Lemma 2.7. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule with compatible actions. If \mathcal{A} is module symmetrically amenable and X is a commutative Banach \mathcal{A} - \mathfrak{A}-module, then every module derivation from \mathcal{A} into X, is approximately inner.

Proof. Let $\left\{\widetilde{u}_{j}\right\} \subseteq \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ be a module symmetric approximate diagonal for \mathcal{A} such that $\widetilde{u}_{j}=\sum_{k} a_{k}^{j} \otimes b_{k}^{j}+I$ and $D: \mathcal{A} \longrightarrow X$ be a module derivation. It is clear that $J \cdot X=X \cdot J=\{0\}$. Obviously, X becomes a Banach \mathcal{A} / J-bimodule with the following module actions

$$
(a+J) \cdot x:=a \cdot x, \quad x \cdot(a+J):=x \cdot a \quad(x \in X, a \in \mathcal{A})
$$

Define $\widetilde{D}: \mathcal{A} / J \longrightarrow X$ by $\widetilde{D}(a+J)=D(a)$ for $a \in \mathcal{A}$. Hence, \widetilde{D} is a module derivation. Let $x_{j}=\sum_{k} \widetilde{D}\left(a_{k}^{j}+J\right) \cdot b_{k}^{j}$. For each $\varphi \in X^{*}$, we have

$$
\begin{aligned}
\left\langle\varphi, x_{j} \cdot(a+J)\right\rangle & =\left\langle\varphi,\left(\sum_{k} \widetilde{D}\left(a_{k}^{j}+J\right) \cdot b_{k}^{j}\right) \cdot(a+J)\right\rangle=\left\langle\varphi, \sum_{k} \widetilde{D}\left(a a_{k}^{j}+J\right) \cdot b_{k}^{j}\right\rangle \\
& =\left\langle\varphi, \widetilde{D}(a+J) \cdot\left(\sum_{k} a_{k}^{j} b_{k}^{j}+J\right)\right\rangle+\left\langle\varphi,(a+J) \cdot \sum_{k} \widetilde{D}\left(a_{k}^{j}+J\right) \cdot b_{k}^{j}\right\rangle \\
& =\left\langle\varphi, \widetilde{D}(a+J) \cdot \widetilde{w}_{A}\left(\widetilde{u}_{j}\right)\right\rangle+\left\langle\varphi,(a+J) \cdot x_{j}\right\rangle .
\end{aligned}
$$

Then, $\widetilde{D}(a+J)=\lim _{j} x_{j} \cdot(a+J)-(a+J) \cdot x_{j}$ for all $a \in \mathcal{A}$. Therefore, \widetilde{D} is approximately inner and thus D is an approximately inner module derivation.

Theorem 2.8. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule with bounded approximate identity and $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ be a commutative \mathfrak{A}-bimodule such that each net of $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is
bounded. Suppose that \mathcal{I} is a closed ideal and \mathfrak{A}-submodule of \mathcal{A}. If \mathcal{I} and $\mathcal{A} / \mathcal{I}$ are module symmetrically amenable, then so is \mathcal{A}.

Proof. Let X be a commutative Banach \mathcal{A} - \mathfrak{A}-module with compatible actions and $D: \mathcal{A} \longrightarrow X$ be a module derivation. Since \mathcal{I} is module symmetrically amenable, the restriction of D to \mathcal{I}, i.e. $\left.D\right|_{\mathcal{I}}$, is approximately inner by Lemma 2.7. Thus, the map $\widetilde{D}=D-\left.D\right|_{\mathcal{I}}$ vanishes on \mathcal{I}. This map induces a module derivation from A / \mathcal{I} into X defined via $\widetilde{D}(a+\mathcal{I})=\widetilde{D}(a)$. Due to the module symmetric amenability of $\mathcal{A} / \mathcal{I}, \widetilde{D}$ is also approximately inner by Lemma 2.7. It follows from that D is an approximately inner module derivation. Let $\left\{e_{j}\right\}$ be a bounded approximate identity for \mathcal{A}. Then, passing to a subnet we may assume that $e_{j} \otimes e_{j}+I$ is w^{*}-convergent to T in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. By the continuity of $\widetilde{w}_{\mathcal{A}}$ and $\widetilde{w}_{\mathcal{A}}^{\circ}$, we have

$$
\begin{aligned}
& \widetilde{w}_{\mathcal{A}}\left(D_{T}(a)\right)=\widetilde{w}_{\mathcal{A}}\left(\lim _{j} a \cdot T-T \cdot a\right)=\lim _{j} \widetilde{w}_{\mathcal{A}}(a \cdot T-T \cdot a) \\
& =\lim _{j} \widetilde{w}_{\mathcal{A}}\left(a e_{j} \otimes e_{j}-e_{j} \otimes e_{j} a+I\right) \\
& =\lim _{j}\left(a e_{j}^{2}-e_{j}^{2} a+J\right)=J, \\
& \widetilde{w}_{\mathcal{A}}^{\circ}\left(D_{T}(a)\right)=\widetilde{w}_{\mathcal{A}}^{\circ}\left(\lim _{j} a \cdot T-T \cdot a\right) \\
& \quad=\lim _{j} \widetilde{w}_{\mathcal{A}}^{o}\left(a e_{j} \otimes e_{j}-e_{j} \otimes e_{j} a+I\right) \\
& \quad=\lim _{j}\left(e_{j} a e_{j}-e_{j} a e_{j}+J\right)=J
\end{aligned}
$$

for all $a \in \mathcal{A}$. So, both $\widetilde{w}_{\mathcal{A}}$ and $\widetilde{w}_{\mathcal{A}}^{o}$ vanishes on the range of D_{T}, and D_{T} could be regarded as a module derivation from \mathcal{A} into $K=\operatorname{ker} \widetilde{w}_{\mathcal{A}} \cap \operatorname{ker} \widetilde{w}_{\mathcal{A}}^{\circ}$. Since $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ is commutative \mathfrak{A}-bimodule, there is a (bounded) net $\left\{N_{j}\right\} \in K$ such that

$$
\begin{equation*}
D_{T}(a)=\lim _{j} a \cdot N_{j}-N_{j} \cdot a=D_{N_{j}}(a) \tag{2.5}
\end{equation*}
$$

for all $a \in A$. Letting $\widetilde{u}_{j}=T-N_{j} \in \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$, we get

$$
\begin{aligned}
(a+J) \widetilde{w}_{\mathcal{A}}\left(\widetilde{u}_{j}\right) & =(a+J)\left(\widetilde{w}_{A}(T)-\widetilde{w}_{\mathcal{A}}\left(N_{j}\right)\right) \\
& =(a+J)\left(e_{j}^{2}+J\right) \\
& =a e_{j}+J \rightarrow a+J
\end{aligned}
$$

for all $a \in \mathcal{A}$. The relation (2.5) implies that $a \cdot \widetilde{u}_{j}-\widetilde{u}_{j} \cdot a \rightarrow 0$. Similarly, we can obtain that $\widetilde{w}_{\mathcal{A}}^{\circ}\left(\widetilde{u}_{j}\right)(a+J) \rightarrow a+J$ and $a \circ \widetilde{u}_{j}-\widetilde{u}_{j} \circ a \rightarrow 0$. Hence, $\left\{\widetilde{u}_{j}\right\}$ is a module symmetric approximate diagonal in \mathcal{A}. This completes the proof.

We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if there is a continuous linear functional f on \mathfrak{A} such that $\alpha \cdot a=f(\alpha) a(a \cdot \alpha=f(\alpha) a)$ for all $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$.

The following result is main key to achieve our purpose of this paper.

Proposition 2.9. Let \mathcal{A} be a Banach \mathfrak{A}-bimodule with trivial left action and \mathcal{A} has a bounded approximate identity. If \mathcal{A} / J is symmetrically amenable, then \mathcal{A} is module symmetrically amenable.

Proof. Suppose that $\left\{d_{i}\right\}$ is a bounded approximate diagonal for \mathcal{A} / J, that is $d_{i}=\sum_{k}\left(a_{k}^{i}+J\right) \otimes\left(b_{k}^{i}+J\right) \in(\mathcal{A} / J) \widehat{\otimes}(\mathcal{A} / J)$. Define the map $\phi:(\mathcal{A} / J) \widehat{\otimes}(\mathcal{A} / J) \longrightarrow$ $(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I \cong \mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ via $\phi((a+J) \otimes(b+J)):=(a \otimes b)+I$. Assume that $\left\{e_{j}\right\}$ is a bounded approximate identity for \mathcal{A}. For each $a, b, c \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we obtain

$$
\begin{aligned}
{[(a \cdot \alpha) b-a(\alpha \cdot b)] \otimes c=} & (a \cdot \alpha) b \otimes c-a(\alpha \cdot b) \otimes c \\
= & \lim _{j}\left[\left((a \cdot \alpha) b \otimes c e_{j}\right)-\left(a(\alpha \cdot b) \otimes e_{j} c\right)\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c)\left(b \otimes e_{j}\right)-\left(a \otimes e_{j}\right)((\alpha \cdot b) \otimes c)\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c)\left(b \otimes e_{j}\right)-(a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)\right. \\
& +(a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)-\left(a \otimes e_{j}\right)((\alpha \cdot b) \otimes c) \\
& \left.+\left(a \otimes e_{j}\right)(b \otimes(\alpha \cdot c))-\left(a \otimes e_{j}\right)(b \otimes(\alpha \cdot c))\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c-a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)\right. \\
& +(a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)-\left(a \otimes e_{j}\right)((\alpha \cdot b) \otimes c \\
& \left.-b \otimes(\alpha \cdot c))-\left(a \otimes e_{j}\right)(b \otimes(\alpha \cdot c))\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c-a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)\right. \\
& +\left(a b \otimes(\alpha \cdot c) e_{j}\right)-\left(a \otimes e_{j}\right)(f(\alpha) b \otimes c \\
& \left.-b \otimes f(\alpha) c)-\left(a b \otimes e_{j}(\alpha \cdot c)\right)\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c-a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right)\right. \\
& +\left(a b \otimes(\alpha \cdot c) e_{j}\right)-\left(a \otimes e_{j}\right) f(\alpha)(b \otimes c-b \otimes c) \\
& \left.-\left(a b \otimes e_{j}(\alpha \cdot c)\right)\right] \\
= & \lim _{j}\left[((a \cdot \alpha) \otimes c-a \otimes(\alpha \cdot c))\left(b \otimes e_{j}\right) \in I .\right.
\end{aligned}
$$

Similarly, $c \otimes[(a \cdot \alpha) b-a(\alpha \cdot b)] \in I$. Hence, ϕ is well-defined. Also, ϕ is a module homomorphism. It is easily verified that $\left\{\phi\left(d_{i}\right)\right\}$ is a bounded symmetric net in $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$. Put $\widetilde{u}_{i}=\phi\left(d_{i}\right)=\sum_{k} a_{k}^{i} \otimes b_{k}^{i}+I$. By [11, Proposition 2.2], we have

$$
\begin{aligned}
\lim _{i}(a+J) \cdot \widetilde{w}_{\mathcal{A}}\left(\widetilde{u}_{i}\right) & =\lim _{i}(a+J) \cdot\left(\sum_{k} a_{k}^{i} b_{k}^{i}+J\right) \\
& =\lim _{i}(a+J) \cdot\left(\sum_{k}\left(a_{k}^{i}+J\right)\left(b_{k}^{i}+J\right)\right) \\
& =\lim _{i}(a+J) \cdot w_{\mathcal{A} / J}^{\circ}\left(d_{i}\right)=a+J
\end{aligned}
$$

for each $a \in A$. Also,

$$
\begin{aligned}
\lim _{i}\left(\widetilde{u}_{i} \cdot a-a \cdot \widetilde{u}_{i}\right) & =\lim _{i}\left(\sum_{k}\left(a_{k}^{i} \otimes b_{k}^{i} a-a a_{k}^{i} \otimes b_{k}^{i}\right)+I\right) \\
& =\phi\left(\lim _{i}\left(\sum_{k}\left(a_{k}^{i}+J\right) \otimes\left(b_{k}^{i} a+J\right)-\left(a a_{k}^{i}+J\right) \otimes\left(b_{k}^{i}+J\right)\right)\right) \\
& =\phi\left(\lim _{i}\left(a \cdot d_{i}-d_{i} \cdot a\right)\right)=0
\end{aligned}
$$

Thus, $\left\{\widetilde{u}_{i}\right\}$ is a module symmetric approximate diagonal for A. This shows that \mathcal{A} is module symmetrically amenable.

3. Application to semigroup algebras

By an inverse semigroup S we shall mean a discrete semigroup such that for any $s \in S$ there is a unique element $s^{*} \in S$ with $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. An element $e \in S$ is called an idempotent if $e^{2}=e^{*}=e$. Here and subsequently, S will always denote an inverse semigroup with the set of idempotents E_{S} (or $E)$, where the order of E is defined by

$$
e \leq d \Leftrightarrow e d=e \quad(e, d \in E)
$$

Since E is a (commutative) subsemigroup of S (see [8, Theorem V.1.2]) and a semilattice, the algebra $l^{1}(E)$ could be regarded as a commutative subalgebra of $l^{1}(S)$. Hence, $l^{1}(S)$ is a Banach algebra and a Banach $l^{1}(E)$-module with compatible actions [1]. We impose the following actions of $l^{1}(E)$ on $l^{1}(S)$:

$$
\delta_{e} \cdot \delta_{s}=\delta_{s}, \quad \delta_{s} \cdot \delta_{e}=\delta_{s e}=\delta_{s} * \delta_{e} \quad(e \in E, s \in S)
$$

With these actions, we consider $l^{1}(S)$ as a Banach $l^{1}(E)$-module. In this case, the ideal J (see section 2) is the closed linear span of $\left\{\delta_{\text {set }}-\delta_{\text {st }} \mid e \in E, s, t \in S\right\}$.
We consider an equivalence relation on S as follows:

$$
s \approx t \Longleftrightarrow \delta_{s}-\delta_{t} \in J \quad(s, t \in S)
$$

In this case the quotient S / \approx is a discrete group (see [2] and [13]). In fact, S / \approx is homomorphic to the maximal group homomorphic image $\mathcal{G}_{S}[12]$ of S [14]. In particular, S is amenable if and only if $S / \approx=\mathcal{G}_{S}$ is amenable [7, 12]. As in [16, Theorem 3.3], we may observe that $l^{1}(S) / J \cong l^{1}\left(\mathcal{G}_{S}\right)$. With the notations of the previous section, $l^{1}(S) / J$ is a commutative $l^{1}(E)$-bimodule with the following actions

$$
\delta_{e} \cdot \delta_{[s]}=\delta_{[s]}, \delta_{[s]} \cdot \delta_{e}=\delta_{[s e]} \quad(s \in S, e \in E),
$$

where $[s]$ denotes the equivalence class of s in \mathcal{G}_{S}.
Suppose that $k \in \mathbb{N}$. If there exist $e \in E$ and $i, j \in \mathbb{N}$ such that

$$
1 \leq i<j \leq k+1, \quad f_{i} e=f_{i}, \quad f_{j} e=f_{j} \quad\left(f_{1}, f_{2}, \ldots, f_{k+1} \in E\right)
$$

then we say that E satisfies condition $D_{k}[7]$. In [7, Theorem 16], the authors proved that for any inverse semigroup $S, l^{1}(S)$ has a bounded approximate identity if and only if E satisfies condition D_{k} for some k.

Theorem 3.1. Let S be an inverse semigroup with the set of idempotents E and $l^{1}(S)$ be a Banach $l^{1}(E)$-module with trivial left action. If E satisfies condition D_{k} for some k, then $l^{1}(S)$ is module symmetrically amenable if and only if S is amenable.
Proof. Firstly, we assume that $l^{1}(S)$ is module symmetrically amenable. Then, it is module amenable. Now, Theorem 3.1 from [1] necessities that S is amenable.

Conversely, suppose that S is amenable. Then, the (discrete) group \mathcal{G}_{S} is amenable by $[7$, Theorem 1$]$, and so $l^{1}\left(\mathcal{G}_{S}\right)$ is symmetrically amenable by [11, Theorem 4.1]. The result follows from Proposition 2.9 with $\mathcal{A}=l^{1}(S)$ and $\mathfrak{A}=l^{1}(E)$.

In the following we bring two examples to show that there are some module symmetrically amenable semigroup algebras which are not symmetrically amenable.

Example 3.2. Let G be a group with identity e, and let \mathfrak{I} be a non-empty set. Then, the Brandt inverse semigroup corresponding to G and \mathfrak{I}, denoted by $S=\mathcal{M}(G, \mathfrak{I})$, is the collection of all $\mathfrak{I} \times \mathfrak{I}$ matrices $(g)_{i j}$ with $g \in G$ in the $(i, j)^{\text {th }}$ place and 0 (zero) elsewhere and the $\mathfrak{I} \times \mathfrak{I}$ zero matrix 0 . Multiplication in S is given by the formula

$$
(g)_{i j}(h)_{k l}=\left\{\begin{array}{cl}
(g h)_{i l} & \text { if } j=k \\
0 & \text { if } j \neq k
\end{array} \quad(g, h \in G, i, j, k, l \in \mathfrak{I}),\right.
$$

and $(g)_{i j}^{*}=\left(g^{-1}\right)_{j i}$ and $0^{*}=0$. The set of all idempotents is $E_{S}=\left\{(e)_{i i}: i \in\right.$ $\Im\} \bigcup\{0\}$. It is shown in [13, Example 3.2] that \mathcal{G}_{S} is the trivial group, and so $l^{1}(S)$ is module symmetrically amenable by Theorem 3.1. Note that if G is not amenable or \mathfrak{I} is not finite, then $l^{1}(S)$ is not amenable by Theorems 7 and 12 from [7] and hence it is not symmetrically amenable.

Example 3.3. Let \mathcal{C} be the bicyclic inverse semigroup generated by p and q, that is

$$
\mathcal{C}=\left\{p^{a} q^{b}: a, b \geq 0\right\}, \quad\left(p^{a} q^{b}\right)^{*}=p^{b} q^{a} .
$$

The multiplication operation is defined by

$$
\left(p^{a} q^{b}\right)\left(p^{c} q^{d}\right)=p^{a-b+\max \{b, c\}} q^{d-c+\max \{b, c\}}
$$

The set of idempotents of \mathcal{C} is $E_{\mathcal{C}}=\left\{p^{a} q^{a}: a=0,1, \ldots\right\}$ which is also totally ordered with the following order

$$
p^{a} q^{b} \leq p^{b} q^{b} \Longleftrightarrow a \leq b .
$$

Therefore, E satisfies condition D_{1}. It is shown in [2] that $\mathcal{G}_{\mathcal{C}}$ is isomorphic to the group of integers \mathbb{Z}, hence $l^{1}(\mathcal{C})$ is module symmetrically amenable by

Theorem 3.1. On the other hand, $l^{1}(\mathcal{C})$ is not symmetrically amenable since it is not amenable [7].

Acknowledgement

The third author (Corresponding Author) would like to thanks Islamic Azad University of Garmsar for its financial support.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243-254.
[2] M. Amini, A. Bodaghi, D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80, No. 2 (2010), 302-312.
[3] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math (Basel). 99 (2012), 353-365.
[4] A. Bodaghi, M. Amini and R. Babaee, Module derivations into iterated duals of Banach algebras, Proc. Romanian Acad., Series A. 12 (2011), 277-284.
[5] A. Bodaghi, H. Ebrahimi and M. Lashkarizaheh Bami, Generalized notions of module character amenability, Filomat, 31, No. 6 (2017), 1639-1654.
[6] H.G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
[7] J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh, 80A (1988), 309-321.
[8] J. M. Howie, Fundamentals of semigroup theory, London Math. Society Monographs, Clarendon Press, Oxford, 1995.
[9] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, 1972.
[10] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685-698.
[11] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473.
[12] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41-48.
[13] H. Pourmahmood-Aghbaba, (Super) module amenability, module topological centre and semigroup algebras, Semigroup Forum, 81 (2010), No.2, 344-356.
[14] H. Pourmahmood-Aghbaba, A note on an equivalence relation on an inverse semigroup, Semigroup Forum, 84 (2012), 200-202.
[15] H. Pourmahmood-Aghbaba, A. Bodaghi, Module approximate amenability of Banach algebras, Bull. Iran. Math. Soc., 39, No. 2 (2013), 1137-1158.
[16] R. Rezavand, M. Amini, M.H. Sattari, D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum, 77 (2008), 300-305.

Department of Mathematics, Adnan Menderes University, Aydin, Turkey
E-mail address: hinceboz@adu.edu.tr
Department of Mathematics, Adnan Menderes University, Aydin, Turkey
E-mail address: byorganci@adu.edu.tr
Department of Mathematics, Garmsar Branch,
Islamic Azad University,
Garmsar, Iran
E-mail address: abasalt.bodaghi@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 46H25; Secondary 43A07.
 Key words and phrases. Banach modules, module symmetric amenability, semigroup algebra, inverse semigroup.

