LEGENDRE CURVES ON THREE-DIMENSIONAL QUASI-SASAKIAN MANIFOLDS WITH SEMI SYMMETRIC METRIC CONNECTION

AVIJIT SARKAR AND AMIT SIL

Abstract

The object of the present paper is to study Legendre curves on three-dimensional quasi-Sasakian manifolds with semi-symmetric metric connection.

1. Introduction

In the study of contact manifolds, Legendre curve play an important role e.g., a diffeomorphism of a contact manifold is a contact transformation if and only if it maps Legendre curves to Legendre curves. Legendre curves on contact manifolds have been studied by C. Baikoussis and D. E. Blair [1]. Legendre curves with Pseudo-Hermitian connection have been studied by J. T. Cho [5]. The first author of the paper has studied Legendre curves in the papers [11], [12]. Again Legendre curves on three-dimensional quasi-Sasakian manifold has been studied in the paper [2]. In this paper we are interested to study Legendre curves on three-dimensional quasi-Sasakian manifolds with respect to semi-symmetric metric connection. The notion of quasi-Sasakian manifolds was given by D. E. Blair in the paper [4]. Again Z. Olszak [10] studied quasi-Sasakian manifolds. Semi-symmetric metric connection was studied by K. Yano [14]. Semi-symmetric connection was introduced by Schouten [7]. Later Hayden [8] has introduced the idea of metric connection with torsion in a Riemannian manifold. A. Sharfuddin and S. I. Hussain [13] introduced the study of almost contact manifolds with semi-symmetric metric connection. The present paper is organized as follows:

After the introduction we give some preliminaries in Section 2. Section 3 is devoted to study biharmonic Legendre curves on three-dimensional quasiSasakian manifolds with respect to semi symmetric metric connection. In

[^0]Section 4, we study locally ϕ-symmetric Legendre curves on three-dimensional quasi-Sasakian manifolds with respect to semi-symmetric metric connection.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) i.e., ϕ is a 1-1 tensor field, ξ is a unit vector field, η is a 1 -form and g is a Riemannian metric such that [3]

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \eta(\xi)=1, \phi \xi=0, \eta(\phi)=0 \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), g(X, \xi)=\eta(X) \tag{2.2}
\end{gather*}
$$

for all $X, Y \in \chi(M)$.
An almost contact metric manifold of dimension three is quasi-Sasakian if and only if

$$
\begin{equation*}
\nabla_{X} \xi=-\beta \phi X \tag{2.3}
\end{equation*}
$$

for $X \in \chi(M)$ and a function β defined on the manifold [10].
As a consequence of (2.3), we have [9]

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\beta(g(X, Y) \xi-\eta(Y) X), X, Y \in \chi(M) \tag{2.4}\\
\left(\nabla_{X} \eta\right) Y=g\left(\nabla_{X} \xi, Y\right)=-\beta g(\phi X, Y) \tag{2.5}\\
\left(\nabla_{X} \eta\right) \xi=-\beta \eta(\phi X)=0 \tag{2.6}
\end{gather*}
$$

The curvature tensor of a three-dimensional quasi-Sasakian manifold is given by [6]

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z)\left[\left(\frac{r}{2}-\beta^{2}\right) X+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \xi+\eta(X)(\phi \operatorname{grad} \beta)\right. \\
& -d \beta(\phi X) \xi]-g(X, Z)\left[\left(\frac{r}{2}-\beta^{2}\right) Y+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(Y) \xi\right. \\
& +\eta(Y)(\phi \operatorname{grad} \beta)-d \beta(\phi Y) \xi]+\left[\left(\frac{r}{2}-\beta^{2}\right) g(Y, Z)\right. \\
& \left.+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(Y) \eta(Z)-\eta(Y) d \beta(\phi Z)-\eta(Z) d \beta(\phi Y)\right] X \tag{2.7}\\
& -\left[\left(\frac{r}{2}-\beta^{2}\right) g(X, Z)+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \eta(Z)-\eta(X) d \beta(\phi Z)\right. \\
& -\eta(Z) d \beta(\phi X)] Y-\frac{r}{2}[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

A curve γ on a manifold M is called Legendre curve if it satisfies [1]

$$
\begin{equation*}
\eta(\dot{\gamma})=0 \tag{2.8}
\end{equation*}
$$

The semi symmetric metric connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ on an almost contact metric manifold are related by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{2.9}
\end{equation*}
$$

for all vector fields X, Y on M.

The torsion tensor of a semi symmetric metric connection on almost contact metric manifold is given by

$$
\begin{equation*}
\tilde{T}(X, Y)=\eta(Y) X-\eta(X) Y \tag{2.10}
\end{equation*}
$$

A curve γ on M is called Frenet curve with respect to semi-symmetric metric connections if it satisfies

$$
\begin{gather*}
\tilde{\nabla}_{T} T=\tilde{k} N \tag{2.11}\\
\tilde{\nabla}_{T} N=-\tilde{k} T+\tilde{\tau} B \tag{2.12}\\
\tilde{\nabla}_{T} B=-\tilde{\tau} N \tag{2.13}
\end{gather*}
$$

where $\tilde{k}, \tilde{\tau}$ are the curvature and torsion of the curve with respect to semi symmetric metric connection, $\{T, N, B\}$ is an orthonormal frame with $\dot{\gamma}=T$.

3. Biharmonic Legendre curves with respect to semi symmetric METRIC CONNECTION

Definition 3.1. A Legendre curve on three-dimensional quasi-Sasakian manifold will be called biharmonic with respect to semi-symmetric metric connection if it satisfies [5]

$$
\begin{equation*}
\tilde{\nabla}_{T}^{3} T+\tilde{\nabla}_{T} \tilde{\tau}\left(\tilde{\nabla}_{T} T, T\right) T+\tilde{R}\left(\tilde{\nabla}_{T} T, T\right) T=0 \tag{3.1}
\end{equation*}
$$

where $\tilde{\tau}$ is torsion of semi symmetric connection and T is tangent vector field of the curve.

Let us consider a Legendre curve γ and T be the tangent. We take $T, \phi T, \xi$ as the orthonormal right handed system where $\phi T=-N, \phi N=T$. For semi-symmetric metric connection, we have $\tilde{\nabla}_{T} \tilde{\tau}\left(\tilde{\nabla}_{T} T, T\right) T=0$.

Hence (3.1) reduces to

$$
\begin{equation*}
\tilde{\nabla}_{T}^{3} T+\tilde{k} \tilde{R}(N, T) T=0 \tag{3.2}
\end{equation*}
$$

Let \tilde{R} and R be the curvature tensor of a three-dimensional quasi-Sasakian manifold with respect to semi-symmetric metric connection and Levi-Civita connection respectively. Then the relation between \tilde{R} and R is given by [14]

$$
\begin{align*}
\tilde{R}(X, Y) Z & =R(X, Y) Z-L(Y, Z) X+L(X, Z) Y \\
& +2 g\left(\nabla_{Y} X, Z\right) \xi-2 g\left(\nabla_{X} Y, Z\right) \xi+\eta(Z)([X, Y]) \tag{3.3}\\
& +\eta(X) g(Y, Z) \xi+\eta(Y) g(X, Z) \xi
\end{align*}
$$

where

$$
\begin{equation*}
L(Y, Z)=\left(\nabla_{Y} \eta\right) Z-\eta(Y) \eta(Z)+g(Y, Z) \tag{3.4}
\end{equation*}
$$

Now using (2.5) in (3.4) we get

$$
\begin{equation*}
L(Y, Z)=-\beta g(\phi Y, Z)-\eta(Y) \eta(Z)+g(Y, Z) \tag{3.5}
\end{equation*}
$$

Using (3.5) in (3.3) we get
(3.6)

$$
\begin{aligned}
\tilde{R}(X, Y) Z & =R(X, Y) Z+\beta(g(\phi Y, Z) X-g(\phi X, Z) Y) \\
& +\eta(Z)(\eta(Y) X-\eta(X) Y)-(g(Y, Z) X-g(X, Z) Y) \\
& +2\left(g\left(\nabla_{Y} X, Z\right)-g\left(\nabla_{X} Y, Z\right)\right) \xi+(\eta(X) g(Y, Z) \xi+\eta(Y) g(X, Z) \xi) \\
& +\eta(Z)([X, Y])
\end{aligned}
$$

Since we have considered Frenet Frame as $T, \phi T, \xi$ where $\phi T=-N$, so for a Legendre curve we get $\eta(T)=0, \eta(N)=0$. Using this fact and putting $X=N, Y=T, Z=T$ in (3.6) we get

$$
\begin{equation*}
\tilde{R}(N, T) T=R(N, T) T-N+\beta T+2\left[g\left(\nabla_{T} N, T\right)-g\left(\nabla_{N} T, T\right)\right] \xi \tag{3.7}
\end{equation*}
$$

Now putting $X=N, Y=T, Z=T$ in (2.7) we get

$$
\begin{equation*}
R(N, T) T=\frac{r}{2} N-2 \beta^{2} N-d \beta(\phi N) \xi \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8) after some simplification and setting $\xi=B$ we get

$$
\begin{equation*}
\tilde{R}(N, T) T=\frac{r}{2} N-2 \beta^{2} N-d \beta(\phi N) B-N+\beta T-2 \tilde{k} B \tag{3.9}
\end{equation*}
$$

Again by Serret-Frenet formula we get,

$$
\begin{equation*}
\tilde{\nabla^{3}}{ }_{T} T=-3 \tilde{k} \tilde{k^{\prime}} T+\left(\tilde{k^{\prime \prime}}-\tilde{k^{3}}-\tilde{k} \tilde{\tau}^{2}\right) N+\left(2 \tilde{\tau} \tilde{k^{\prime}}+\tilde{k} \tilde{\tau^{\prime}}\right) B \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) we get,

$$
\begin{aligned}
\tilde{\nabla}^{3}{ }_{T} T+\tilde{k} \tilde{R}(N, T) T=\left(-3 \tilde{k} \tilde{k^{\prime}}-\tilde{k} \beta\right) T & +\left(\tilde{k^{\prime \prime}}-\tilde{k^{3}}-\tilde{k} \tilde{\tau}^{2}+\tilde{k} \frac{r}{2}-2 \tilde{k} \beta^{2}+\tilde{k}\right) N \\
& +\left(2 \tilde{\tau} \tilde{k^{\prime}}+\tilde{k} \tilde{\tau^{\prime}}-\tilde{k} d \beta(\phi N)+2 \tilde{k^{2}}\right) B
\end{aligned}
$$

If the Legendre curve is biharmonic, then we have $\tilde{\nabla}^{3}{ }_{T} T+\tilde{k} \tilde{R}(N, T) T=0$. So we have

$$
\begin{gather*}
-3 \tilde{k} \tilde{k}^{\prime}-\tilde{k} \beta=0 \tag{3.11}\\
\tilde{k^{\prime \prime}}-\tilde{k^{3}}-\tilde{k} \tilde{\tau^{2}}+\tilde{k} \frac{r}{2}-2 \tilde{k} \beta^{2}+\tilde{k}=0 \tag{3.12}\\
2 \tilde{\tau} \tilde{k^{\prime}}+\tilde{k} \tilde{\tau^{\prime}}-\tilde{k} d \beta(\phi N)+2 \tilde{k^{2}}=0 . \tag{3.13}
\end{gather*}
$$

In view of (3.11), we obtain the following theorem:
Theorem 3.1. The curvature of a non-geodesic biharmonic Legendre curve on a three-dimensional quasi-Sasakian manifold with respect to semi-symmetric connection is given by $\tilde{k}=-\frac{1}{3} \int \beta d s$, where s is the arc length parameter.

4. Locally ϕ-symmetric Legendre curves

Definition 4.1. With respect to semi-symmetric metric connection a Legendre curve on a three-dimensional quasi-Sasakian manifold is called locally ϕ-symmetric if it satisfies [11]

$$
\begin{equation*}
\phi^{2}\left(\tilde{\nabla}_{T} \tilde{R}\right)\left(\tilde{\nabla}_{T} T, T\right) T=0 \tag{4.1}
\end{equation*}
$$

Now putting $X=\tilde{\nabla}_{T} T, Y=Z=T$ in (3.6) and (2.7) and then using Serret-Frenet formula, after some calculations we get

$$
\begin{equation*}
\tilde{R}\left(\tilde{\nabla}_{T} T, T\right) T=\beta \tilde{k} T+\left(\frac{r}{2} \tilde{k}-2 \beta \tilde{k}-\tilde{k}\right) N-\left(\tilde{k} d \beta(\phi N)+2 \tilde{k}^{2}\right) B . \tag{4.2}
\end{equation*}
$$

Again putting $X=B, Y=Z=T$ in (3.6) and (2.7) and then using $\phi T=-N$ we get

$$
\begin{equation*}
\tilde{R}(B, T) T=\beta^{2} B+\phi \operatorname{grad} \beta+d \beta(N) T \tag{4.3}
\end{equation*}
$$

By definition of covariant differentiation of \tilde{R} and using Serret-Frenet formula, we get

$$
\begin{align*}
&\left(\tilde{\nabla}_{T} \tilde{R}\right)\left(\tilde{\nabla}_{T} T, T\right) T=\tilde{\nabla}_{T} \tilde{R}\left(\tilde{\nabla}_{T} T, T\right) T \tag{4.4}\\
& \quad-\tilde{k} \tilde{\tau} \tilde{R}(B, T) T-\tilde{k} \tilde{R}(N, T) T-\tilde{k}^{2} \tilde{R}(N, T) N
\end{align*}
$$

Again putting $X=N, Y=T, Z=N$ in (3.6) and (2.7) and setting $\xi=B$ we get

$$
\begin{equation*}
\tilde{R}(N, T) N=2 \beta^{2} T-\frac{r}{2} T+d \beta(N) B-\beta N+T-2 g\left(\nabla_{N} T, N\right) B \tag{4.5}
\end{equation*}
$$

Now using (4.2) and Serret-Frenet formula we get

$$
\begin{align*}
\tilde{\nabla}_{T} \tilde{R}\left(\tilde{\nabla}_{T} T, T\right) T & =\left[(\beta \tilde{k})^{\prime}-\frac{r}{2} \tilde{k}^{2}+2 \beta \tilde{k}^{2}+\tilde{k}^{2}\right] T \\
& +\left[\beta \tilde{k}^{2}+\left(\frac{r}{2} \tilde{k}\right)^{\prime}-2(\beta \tilde{k})^{\prime}-\tilde{k}^{\prime}+\tilde{k} d \beta(\phi N) \tilde{\tau}\right. \tag{4.6}\\
& \left.+2 \tilde{k}^{2} \tilde{\tau}\right] N+\left[\frac{r}{2} \tilde{k} \tilde{\tau}-2 \beta \tilde{k} \tilde{\tau}-\tilde{k} \tilde{\tau}\right. \\
& \left.-\tilde{k} \tilde{\nabla}_{T}(d \beta(\phi N)) \tilde{k}^{\prime} d \beta(\phi N)-4 \tilde{k} \tilde{k}^{\prime}\right] B
\end{align*}
$$

Now from (3.9), (4.3), (4.4), (4.5), (4.6) we get

$$
\begin{align*}
\left(\tilde{\nabla}_{T} \tilde{R}\right)\left(\tilde{\nabla}_{T} T, T\right) T & =\left[(\beta \tilde{k})^{\prime}+2 \beta \tilde{k}^{2}-\tilde{k} \tilde{\tau} d \beta(N)-\tilde{k} \beta-2 \beta^{2} \tilde{k}\right] T \\
& +\left[\beta \tilde{k}^{2}+\left(\frac{r}{2} \tilde{k}\right)^{\prime}-2(\beta \tilde{k})^{\prime}-\tilde{k}^{\prime}+\tilde{k} d \beta(\phi N) \tilde{\tau}\right. \\
& \left.+2 \tilde{k}^{2} \tilde{\tau}-\tilde{k} \frac{r}{2}+2 \tilde{k} \beta^{2}+\tilde{k}^{2} \beta\right] N \tag{4.7}\\
& +\left[\frac{r}{2} \tilde{k} \tilde{\tau}-2 \beta \tilde{k} \tilde{\tau}-\tilde{k} \tilde{\tau}-\tilde{k} \tilde{\nabla}_{T}(d \beta(\phi N))\right. \\
& -\tilde{k}^{\prime} d \beta(\phi N)-4 \tilde{k} \tilde{k}^{\prime}-\tilde{k} \tilde{\tau} \beta^{2}+\tilde{k} d \beta(\phi N)+2 \tilde{k}^{2} \\
& \left.-\tilde{k}^{2} d \beta(N)+2 \tilde{k}^{2} g\left(\nabla_{N} T, N\right)\right] B-\tilde{k} \tilde{\tau} \phi \operatorname{grad} \beta
\end{align*}
$$

Applying ϕ^{2} on both sides, we get,

$$
\begin{align*}
\phi^{2}\left(\tilde{\nabla}_{T} \tilde{R}\right)\left(\tilde{\nabla}_{T} T, T\right) T & =-\left[(\beta \tilde{k})^{\prime}+2 \beta \tilde{k}^{2}-\tilde{k} \tilde{\tau} d \beta(N)-\tilde{k} \beta-2 \beta^{2} \tilde{k}\right] T \\
& -\left[\beta \tilde{k}^{2}+\left(\frac{r}{2} \tilde{k}\right)^{\prime}-2(\beta \tilde{k})^{\prime}-\tilde{k}^{\prime}+\tilde{k} d \beta(\phi N) \tilde{\tau}\right. \\
& \left.+2 \tilde{k}^{2} \tilde{\tau}-\tilde{k} \frac{r}{2}+2 \tilde{k} \beta^{2}+\tilde{k}^{2} \beta\right] N \tag{4.8}\\
& -\tilde{k} \tilde{\tau} \phi^{3} \operatorname{grad} \beta
\end{align*}
$$

If the curves are locally ϕ-symmetric, then $\tilde{k} \tilde{\tau} \phi^{3} \operatorname{grad} \beta=0$.
Let $\tilde{k} \neq 0$ and β is not constant. Then $\tilde{\tau}=0$. So, the torsion with respect to semi-symmetric connection of a locally ϕ-symmetric Legendre curve on a three-dimensional quasi-Sasakian manifold is zero.

Theorem 4.1. A non-geodesic locally ϕ-symmetric Legendre curve with respect to semi-symmetric metric connection on a three-dimensional quasi-Sasakian manifold with non-constant structure function is a plane curve.

References

[1] C. Baikoussis and D. E. Blair. On Legendre curves in contact 3-manifolds. Geom. Dedicata, 49: 135-142, 1994.
[2] D. Biswas. Legendre curves on three-dimensional quasi-Sasakian manifolds. J. Rajasthan Acad. Phys. Sci., 13: 251-255, 2014.
[3] D. E. Blair. Contact manifolds in Riemannian geometry. Lecture notes in Math., 509. Springer-Verlag, Berlin-New York, 1976.
[4] D. E. Blair. The theory of quasi-Sasakian structure. J. Differential Geom.,1: 331-345, 1967.
[5] J. T. Cho and J. E. Lee. Slant curves in contact Pseudo-Hermitian manifolds. Bull.Aust. Math. Soc., 78: 383-396, 2008.
[6] U. C. De and A. Sarkar. On three-dimensional quasi-Sasakian manifolds. SUT J. Math., 45: 59-71, 2009.
[7] A. Friedmann and Schouten. $̈$ Über die Geometric der halbsymmetrischen \ddot{U} bertragung. Math. Z, 21: 211-223, 1924.
[8] H. A. Hayden. Subspaces of space with torsion. Proc. London Math. Soc., 34: 27-50, 1932.
[9] Z. Olszak. Normal almost contact metric manifolds of dimension three. Ann. Polon. Math., 47: 41-50, 1986.
[10] Z. Olszak. On three dimensional con-formally flat quasi-Sasakian manifolds. Period, Math. Hungar., 33: 105-113, 1996.
[11] A. Sarkar and D. Biswas. Legendre curves on three-dimensional Heisenberg Groups. Facta Univ. Ser. Math. Inform., 28: 241-248, 2013.
[12] A. Sarkar, S. K. Hui and Matilal Sen., A study on Legendre curves in 3-dimensional Trans-Sasakian manifolds. Lobachevskii J. Math., 35: 11-18, 2014.
[13] A. Sharfuddin and S. I. Hussain. Semi symmetric metric connections in almost contact manifolds. Tensor, N. S., 30: 133-139, 1976.
[14] K. Yano. On semi symmetric connection. Rev. Roumaine Math. Pures Appl., 15: 15701586, 1970.

Department of Mathematics,
University of Kalyani,
Kalyani, Nadia, WB-741235
E-mail address: avjaj@yahoo.co.in
Department of Mathematics,
University of Kalyani,
Kalyani, Nadia, WB-741235
E-mail address: amitsil666@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C15, 53D25.
 Key words and phrases. Legendre curves, quasi-Sasakian manifolds, Semi-symmetric metric connection.

