ON $N(k)$-MIXED-SUPER QUASI-EINSTEIN MANIFOLDS SATISFYING SOME CONDITIONS

SANTU DEY AND ARINDAM BHATTACHARYYA

Abstract

In this paper $N(k)$-mixed super quasi Einstein manifold $N(k)-$ $M S(Q E)_{n}$ has been introduced and the existence of such manifold is proved. Here, we have studied the nature of Ricci curvature, Ricci symmetric, Ricci recurrent, Generalized Ricci recurrent $N(k)-M S(Q E)_{n}$. Next we study when the curvature conditions $\tilde{C}(U, X) . S=0$ and $\tilde{P}(U, X) \cdot S=0$ hold in $N(k)-M S(Q E)_{n}$ where \tilde{C} and \tilde{P} are the concircular curvature tensor and Weyl projective curvature tensor. We also study the Ricci-pseudosymmetric $N(k)-M S(Q E)_{n}$. Finally, we give an example of $N(k)-M S(Q E)_{n}$.

1. Introduction

The notion of quasi-Einstein manifold was introduced by M. C. Chaki and R. K. Maity [3]. A non-flat Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is a quasiEinstein manifold if its Ricci tensor S satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y) \tag{1.1}
\end{equation*}
$$

and is not identically zero, where a, b are scalars, $b \neq 0$ and A is a non-zero 1 -form such that

$$
\begin{equation*}
g(X, U)=A(X), \forall X \in \chi(M), \tag{1.2}
\end{equation*}
$$

where $\chi(M)$ is the set of all differentiable vector fields on M and U being a unit vector field.

Here a and b are called the associated scalars, A is called the associated 1 -form and U is called the generator of the manifold. Such an n-dimensional manifold will be denoted by $(Q E)_{n}$.

[^0]In [4], Authors have defined generalized quasi-Einstein manifold. A nonflat Riemannian manifold is called generalized quasi-Einstein manifold if its Ricci-tensor is non-zero and satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \tag{1.3}
\end{equation*}
$$

where a, b and c are non-zero scalars and A, B are two 1-forms such that

$$
\begin{equation*}
g(X, U)=A(X) \text { and } g(X, V)=B(X) \tag{1.4}
\end{equation*}
$$

U and V being unit vectors which are orthogonal, i.e.,

$$
\begin{equation*}
g(U, V)=0 \tag{1.5}
\end{equation*}
$$

The vector fields U and V are called the generators of the manifold. This type of manifold will be denoted by $G(Q E)_{n}$.

In [2], Chaki introduced the super quasi-Einstein manifold, denoted by $S(Q E)_{n}$, where the Ricci tensor is not identically zero and satisfies the condition

$$
\begin{align*}
S(X, Y) & =a g(X, Y)+b A(X) A(Y)+c[A(X) B(Y) \\
& +A(Y) B(X)]+d D(X, Y) \tag{1.6}
\end{align*}
$$

where a, b, c and d are scalars such that b, c, d are nonzero, A, B are two nonzero 1 -forms defined as (1.4) and U, V are mutually orthogonal unit vector fields, D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
\begin{equation*}
D(X, U)=0 \forall X \in \chi(M) \tag{1.7}
\end{equation*}
$$

Here a, b, c, d are called the associated scalars, A, B are called the associated main and auxiliary 1 -forms respectively, U, V are called the main and the auxiliary generators and D is called the associated tensor of the manifold.

The k-nullity distribution $N(k)$ [11] of a Riemannian manifold M is defined by

$$
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p} M / R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y)\right\}
$$

for all $X, Y \in \chi(M)$ and k is a smooth function.
M. M. Tripathi and Jeong-Sik Kim [12] introduced the notion of $N(k)$-quasi Einstein manifold which is defined as follows: If the generator U belongs to the k-nullity distribution $N(k)$, then a quasi Einstein manifold $\left(M^{n}, g\right)$ is called $N(k)$-quasi Einstein manifold. In [9], Nagaraja introduced the notion of $N(k)$ mixed quasi Einstein manifold.

In [1], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion of $M S(Q E)_{n}$. So, we define $N(k)-M S(Q E)_{n}$ as follows:
Definition. Let $\left(M^{n}, g\right)$ be a non flat Riemannian manifold. If the Ricci tensor S of $\left(M^{n}, g\right)$ is non zero and satisfies

$$
\begin{align*}
S(X, Y) & =a g(X, Y)+b A(X) A(Y)+c B(X) B(Y)+d[A(X) B(Y) \\
& +A(Y) B(X)]+e D(X, Y), \tag{1.8}
\end{align*}
$$

where a, b, c, d, e are scalars of which $b \neq 0, c \neq 0, d \neq 0, e \neq 0$ and A, B are two non zero 1 -forms such that

$$
\begin{equation*}
g(X, U)=A(X) \text { and } g(X, V)=B(X) \forall X \in \chi(M), \tag{1.9}
\end{equation*}
$$

D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
\begin{equation*}
D(X, U)=0 \forall X \in \chi(M), \tag{1.10}
\end{equation*}
$$

U and V being the orthogonal unit vector fields called generators of the manifold belong to $N(k)$, then we say that $\left(M^{n}, g\right)$ is a $N(k)$-mixed super quasi Einstein manifold and is denoted by $N(k)-M S(Q E)_{n}$.

2. Preliminaries

In $N(k)-M S(Q E) n$, we have

$$
\begin{equation*}
R(X, Y) U=k\{A(Y) X-A(X) Y)\} \tag{2.1}
\end{equation*}
$$

From (1.8), we have

$$
\begin{gather*}
S(U, U)=a+b \tag{2.2}\\
S(V, V)=a+c+e D(V, V) \tag{2.3}\\
S(U, V)=d=S(V, U) \tag{2.4}
\end{gather*}
$$

Now setting $X=Y=e_{i}$ in (1.8), where $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of vector fields in the manifold and taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{equation*}
r=n a+b+c, \tag{2.5}
\end{equation*}
$$

where r is the scalar curvature of the manifold.
If X is a unit vector field, then $S(X, X)$ is the Ricci-curvature in the direction of X. Hence from (2.2) and (2.3) we can state that $a+b$ and $a+c+e D(V, V)$ are the Ricci curvature in the directions of U and V respectively.

Let Q be the Ricci operator, i.e.,

$$
\begin{equation*}
g(Q X, Y)=S(X, Y) \forall X, Y \in \chi(M) \tag{2.6}
\end{equation*}
$$

Here, we consider

$$
\begin{equation*}
g(l X, Y)=D(X, Y) \tag{2.7}
\end{equation*}
$$

3. Existence theorem of a $N(k)$-mixed super quasi Einstein MANIFOLD $N(k)-M S(Q E)_{n}$

Theorem 3.1. If in a conformally flat Riemannian manifold $\left(M^{n}, g\right)$, the Ricci tensor S satisfies the relation

$$
\begin{aligned}
S(X, W) S(Y, Z)- & S(Y, W) S(X, Z)=\mu_{1}[S(Y, W) g(Z, X)+S(Z, X) \\
& g(Y, W)]+\beta_{1}[g(X, W) g(Y, Z)-g(Y, W) g(Z, X)] \\
+ & \gamma_{1}[g(Y, Z) D(X, W)-g(X, Z) D(Y, W) \\
+ & g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{aligned}
$$

where $\mu_{1}, \beta_{1}, \gamma_{1}$ are non-zero scalars and D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition $D(X, U)=0, \forall X$ then the manifold is $N(k)$-mixed super quasi-Einstein manifold.

Proof. Existence theorem of a mixed super quasi Einstein manifold was proved in [1]. Now, we will prove the Existence Theorem of a $N(k)$-mixed super quasi Einstein manifold.
If $\left(M^{n}, g\right)$ is conformally flat, then

$$
\begin{align*}
R(X, Y) Z & =\frac{1}{n-1}\{g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y\} \\
& -\frac{r}{(n-1)(n-2)}\{g(Y, Z) X-g(X, Z) Y\} . \tag{3.2}
\end{align*}
$$

Taking $Z=U$ in (3.2), we obtain

$$
\begin{align*}
R(X, Y) U & =\frac{1}{n-1}\{A(Y) Q X-A(X) Q Y+S(Y, U) X-S(X, U) Y\} \\
& -\frac{r}{(n-1)(n-2)}\{A(Y) X-A(X) Y\} \tag{3.3}
\end{align*}
$$

Now taking $\mu_{1}=\beta_{1}=\gamma_{1}$ and $Z=U$ in (3.1), we obtain

$$
\begin{aligned}
& S(X, W)[(a+b) A(Y)+d B(Y)]-S(Y, W)[(a+b) A(X)+d B(X)] \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline 4)
\end{aligned}
$$

Now taking $a+b=1$ and $d=1$ and using $S(X, W)=g(Q X, W)$ and $D(X, W)=g(l X, W)$ in (3.4), we get

$$
\begin{align*}
g((Q X) A(Y)+(Q X) B(Y) & -(Q Y) A(X)-(Q Y) B(X)-(Q Y) A(X) \\
& -A(X) Y-B(X) Y-A(Y) X+A(X) Y \\
& -A(Y) l X+A(X) l Y, W)=0 \tag{3.5}
\end{align*}
$$

$\forall W$, which implies

$$
\begin{align*}
(Q X) A(Y)+(Q X) B(Y) & -(Q Y) A(X)-(Q Y) B(X)-(Q Y) A(X) \\
& -A(X) Y-B(X) Y-A(Y) X+A(X) Y \\
& -A(Y) l X+A(X) l Y=0 \tag{3.6}
\end{align*}
$$

Or,

$$
\begin{align*}
(Q X) A(Y)-(Q Y) A(X) & +[A(Y)+B(Y)] X-[A(X)+B(X)] Y \\
& =A(Y) X-A(X) Y, \tag{3.7}
\end{align*}
$$

where

$$
\begin{align*}
{[A(Y)+B(Y)] X } & -[A(X)+B(X)] Y=[-A(Y) l X+B(Y) Q X] \\
& -[A(X)\{Q Y+Y-l Y\}+B(X)(Q Y+Y)] \tag{3.8}
\end{align*}
$$

Substituting (3.7) in (3.3), we get

$$
\begin{equation*}
R(X, Y) U=k[A(Y) X-A(X) Y] \tag{3.9}
\end{equation*}
$$

where, $k=\frac{n(1-a)-b-c-1}{(n-1)(n-2)}$.
Therefore, $U \in N_{p}(k)$ for $k=\frac{n(1-a)-b-c-1}{(n-1)(n-2)}$.
Hence $\left(M^{n}, g\right)$ is a $N(k)$-mixed super quasi Einstein manifold.
As it is well known that a 3 -dimensional Riemannian manifold is conformally flat.

Corollary. A 3-dimensional manifold is $N\left(\frac{2-3 a-b-c}{2}\right)$ mixed super quasi Einstein manifold provided (3.1) holds.
4. Ricci Curvature, Eigen Vectors and Associated Scalars of a $N(k)-M S(Q E)_{n}$

From (1.8), we have $S(U, U)=a+b, S(V, V)=a+c+e D(V, V), S(U, V)=d$, $S(X, X)$ is the Ricci curvature in the direction of X. Now,

$$
\begin{equation*}
1=g(X, X)=g(\alpha U+\beta V, \alpha U+\beta V)=\alpha^{2}+\beta^{2} . \tag{4.1}
\end{equation*}
$$

Since $g(U, V)=0$ and $g(U, U)=g(V, V)=1$.
Now,
(4.2) $S(X, X)=a+b\{A(X)\}^{2}+c\{B(X)\}^{2}+2 d A(X) B(X)+e D(X, X)$.

Thus, we can state the following theorem:
Theorem 4.1. In a $N(k)-M S(Q E)_{n}$ manifold, the Ricci curvature in the direction of U is $a+b$ and in the direction of V is $a+c+e D(V, V)$ and the Ricci curvature in all other directions of the section of U and V is $a+b\{A(X)\}^{2}+$ $c\{B(X)\}^{2}+2 d A(X) B(X)+e D(X, X)$.

Let $\left(M^{n}, g\right)$ be $N(k)-M S(Q E)_{n}$, then we get

$$
\begin{gathered}
S(U, U)=a+b, S(V, V)=a+c+e D(V, V), S(U, V)=d \\
g(Q U, U)=a+b, g(Q V, V)=a+c+e D(V, V)
\end{gathered}
$$

Since $U, V \in N_{p}(k)$, we have

$$
\begin{equation*}
g(R(X, Y) U, W)=k\{g(Y, U) g(X, W)-g(X, U) g(Y, W)\} \tag{4.3}
\end{equation*}
$$

From (1.9),

$$
\begin{equation*}
g(R(X, Y) U, W)=k\{A(Y) g(X, W)-A(X) g(Y, W)\} \tag{4.4}
\end{equation*}
$$

Putting $X=W=e_{i}$ in (4.4) where $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{equation*}
S(Y, U)=k(n-1) A(Y) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
S(Y, V)=k(n-1) B(Y) \tag{4.6}
\end{equation*}
$$

Again from (1.8), we get

$$
\begin{gather*}
S(Y, U)=(a+b) A(Y)+d B(Y) \tag{4.7}\\
S(Y, V)=(a+c) B(Y)+d A(Y)+e D(Y, V) \tag{4.8}
\end{gather*}
$$

Substracting (4.6) from (4.5), we obtain

$$
\begin{equation*}
S(Y, U)-S(Y, V)=k(n-1)[A(Y)-B(Y)] . \tag{4.9}
\end{equation*}
$$

Substracting (4.8) from (4.7), we obtain

$$
\begin{align*}
S(Y, U)-S(Y, V) & =(a+b) A(Y)+d B(Y)-(a+c) B(Y) \\
& -d A(Y)-e D(Y, V) \tag{4.10}
\end{align*}
$$

Equating (4.9) and (4.10), we get

$$
\begin{align*}
k(n-1)[A(Y)-B(Y)] & =(a+b-d) A(Y)+B(Y)(d-a-c) \\
& -e D(Y, V) . \tag{4.11}
\end{align*}
$$

Putting $Y=U$ in (4.11), we obtain

$$
\begin{equation*}
k=\frac{a+b-d}{n-1} . \tag{4.12}
\end{equation*}
$$

And also putting $Y=V$ in (4.11), we obtain

$$
\begin{equation*}
k=\frac{a+c+\tilde{m}-d}{n-1} \tag{4.13}
\end{equation*}
$$

where, $e D(V, V)=\tilde{m}$ (say). Equating (4.12) and (4.13), we get $b=c+\tilde{m}$. So, $k=\frac{a+b-d}{n-1}$. Now,

$$
\begin{equation*}
S(Y, U)=(a+b-d) g(Y, U), \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
S(Y, V)=(a+b-d) g(Y, V) . \tag{4.15}
\end{equation*}
$$

Therefore we can say that
Theorem 4.2. In a $N(k)-M S(Q E)_{n}$ manifold, the orthogonal vector fields U and V are the eigen vectors corresponding to the eigen value $(a+b-d)$.

5. Ricci semi-symmetric $N(k)-M S(Q E)_{n}$

A $N(k)-M S(Q E)_{n}$ is said to be Ricci semi symmetric manifold [7] if it satisfy $R(X, Y) . S=0, \forall X, Y$ where $R(X, Y)$ denotes the curvature operator. Then we have,

$$
\begin{equation*}
S(R(X, Y) Z, W)+S(Z, R(X, Y) W)=0 \tag{5.1}
\end{equation*}
$$

Putting $X=U$ in (5.1),

$$
\begin{align*}
k[g(Y, Z) S(U, W) & -A(Z) S(Y, W)+g(Y, W) S(Z, U) \\
& -A(W) S(Z, Y)]=0 \tag{5.2}
\end{align*}
$$

Putting $\mathrm{W}=\mathrm{U}$ in (5.2), we get

$$
\begin{align*}
k[g(Y, Z) S(U, U) & -A(Z) S(Y, U)+g(Y, U) S(Z, U) \\
& -A(U) S(Z, Y)]=0 \tag{5.3}
\end{align*}
$$

That is,

$$
\begin{aligned}
& k[(a+b) g(Y, Z)-A(Z)\{a g(Y, U)+b A(Y) A(U)+c B(Y)(U) \\
& +d(A(Y) B(U)+A(U) B(Y))+e D(Y, U)\}+A(Y)\{a g(Z, U) \\
& +b A(Z) A(U)+c B(Z)(U)+d(A(Z) B(U)+A(U) B(Z)) \\
& +e D(Z, U)\}-S(Y, Z)]=0
\end{aligned}
$$

From the above equation, we obtain

$$
\begin{equation*}
k[(a+b) g(Y, Z)+d\{A(Y) B(Z)-A(Z) B(Y)\}-S(Y, Z)]=0 \tag{5.5}
\end{equation*}
$$

If $k \neq 0$, then $\left(M^{n}, g\right)$ becomes $M(Q E)_{n}$. Therefore, we must have $k=0$.
Conversely suppose $k=0$. Then we obtain $R(U, X) Y=0$ which implies $R(U, X) . S=0$. Thus we have,
Theorem 5.1. $A N(k)-M S(Q E)_{n}$ manifold satisfies $R(U, X) . S=0$ if and only if $a+b-d=0$.

6. Ricci recurrent $N(k)-M S(Q E)_{n}$

A $N(k)-M S(Q E)_{n}$ manifold is called Ricci recurrent if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=T(X) S(Y, Z) \tag{6.1}
\end{equation*}
$$

where $T(X)$ is a non-zero 1-form. But,

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)--S\left(Y, \nabla_{X} Z\right) \tag{6.2}
\end{equation*}
$$

That is,

$$
\begin{equation*}
T(X) S(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right) \tag{6.3}
\end{equation*}
$$

Putting $Y=Z=U$ in (6.3), we get

$$
\begin{equation*}
(a+b) T(X)=X(a+b)-S\left(\nabla_{X} U, U\right)-S\left(U, \nabla_{X} U\right) \tag{6.4}
\end{equation*}
$$

or,

$$
\begin{equation*}
(a+b) T(X)=X(a+b)-2\left[b A\left(\nabla_{X} U\right)+d B\left(\nabla_{X} U\right)\right], \tag{6.5}
\end{equation*}
$$

or,

$$
\begin{equation*}
(a+b) T(X)=X(a+b)-2\left[d B\left(\nabla_{X} U\right)\right] . \tag{6.6}
\end{equation*}
$$

So,

$$
(a+b) T(X)=X(a+b) \Longleftrightarrow B\left(\nabla_{X} U\right)=0
$$

But, $B\left(\nabla_{X} U\right)=0$ implies either $\nabla_{X} U \perp V$ or U is a parallel vector field.
Similarly, if we put $Y=Z=V$ in (6.3), we obtain

$$
\begin{align*}
(a+b+e D(V, V)) T(X) & =X(a+b+e D(V, V))-S\left(\nabla_{X} V, V\right) \\
& -S\left(V, \nabla_{X} V\right) \tag{6.7}
\end{align*}
$$

or,

$$
\begin{align*}
(a+b+e D(V, V)) T(X) & =X(a+b+e D(V, V))-2\left[c B\left(\nabla_{X} V\right)\right. \\
& \left.+A\left(\nabla_{X} V\right)+e D\left(\nabla_{X} V, V\right)\right] . \tag{6.8}
\end{align*}
$$

So, $(a+b+\tilde{m}) T(X)=X(a+b+\tilde{m})-2 e D\left(\nabla_{X} V, V\right)$ iff $A\left(\nabla_{X} V\right)=0$.
But, $A\left(\nabla_{X} V\right)=0$ implies either $\nabla_{X} V \perp U$ or V is a parallel vector field, where, $e D(V, V)=\tilde{m}$.

Thus, we can say that
Theorem 6.1. $A N(k)-M S(Q E)_{n}$ manifold is Ricci recurrent, then either the vector field U (or V) is parallel or $\nabla_{X} U \perp V$ (or $\nabla_{X} V \perp U$).

7. Generalized Ricci recurrent $N(k)-M S(Q E)_{n}$

A $N(k)-M S(Q E)_{n}$ manifold is called generalized Ricci recurrent [5] if its Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\alpha(X) S(Y, Z)+\beta(X) g(Y, Z) \tag{7.1}
\end{equation*}
$$

where $\alpha(X)$ and $\beta(X)$ are two nowhere vanishing 1-forms such that $\alpha(X)=$ $g(X, \rho)$ and $\beta(X)=g(X, \mu) ; \rho$ and μ being associated vector fields of the 1 -forms α and β, respectively.

Definition. A Riemannian manifold is said to admit cyclic parallel Ricci tensor if

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{7.2}
\end{equation*}
$$

Now, we prove the following:

Theorem 7.1. On a generalized Ricci recurrent $N(k)-M S(Q E)_{n}$ with cyclic parallel Ricci tensor, the Ricci tensor is of the form

$$
\begin{align*}
\alpha(U) S(X, Y) & =-\beta(U) g(X, Y)-(a+b)[\alpha(X) A(Y)+\alpha(Y) A(X)] \\
& -d[\alpha(X) \beta(Y)+\alpha(Y) \beta(X)] \\
& -[A(X) \beta(Y)+A(Y) \beta(X)] . \tag{7.3}
\end{align*}
$$

Proof. Suppose that M is a generalized Ricci recurrent $N(k)-M S(Q E)_{n}$ admitting cyclic parallel Ricci tensor. Then using (7.1) in (7.2), we get

$$
\begin{align*}
& \alpha(X) S(Y, Z)+\beta(X) g(Y, Z)+\alpha(Y) S(Z, X) \\
& +\beta(Y) g(Z, X)+\alpha(Z) S(X, Y) \\
& +\beta(Z) g(X, Y)=0 \tag{7.4}
\end{align*}
$$

Setting $Z=U$ in (7.4), Using (1.9) and (4.7), we get the relation (7.3).
Contracting (7.3) over X and Y, we get

$$
\begin{align*}
\alpha(U) r & =-n \beta(U)-2(a+b) \alpha(U)-2 \beta(U) \\
& -2 d \alpha(V) . \tag{7.5}
\end{align*}
$$

This leads to the following:
Corollary. On a generalized Ricci recurrent $N(k)$-mixed super quasi Einstein manifold with cyclic parallel Ricci tensor, the scalar curvature is of the form (7.5).

We now consider a generalized Ricci recurrent $N(k)-M S(Q E)_{n}$ whose Ricci tensor is of Codazzi type. Then we have ([8], [10])

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Z} S\right)(X, Y) \tag{7.6}
\end{equation*}
$$

Using (7.1) in (7.6), we obtain

$$
\begin{equation*}
\alpha(X) S(Y, Z)+\beta(X) g(Y, Z)=\alpha(Z) S(X, Y)+\beta(Z) g(X, Y) \tag{7.7}
\end{equation*}
$$

Setting $Z=U$ in (7.7), using (1.9) and (4.7), we get the relation

$$
\begin{align*}
\alpha(U) S(X, Y) & =\beta(U) g(X, Y)-d \alpha(X) \beta(Y) \\
& +[\alpha(X)(a+b)+\beta(X)] A(Y) . \tag{7.8}
\end{align*}
$$

This leads to the following:
Theorem 7.2. On a generalized Ricci recurrent $N(k)-M S(Q E)_{n}$ whose Ricci tensor is of Codazzi type, the Ricci tensor is of the form (7.8).

Also from (7.8), we can state the following:
Corollary. On a generalized Ricci recurrent $N(k)-M S(Q E)_{n}$ whose Ricci tensor is of Codazzi type, the scalar curvature is given by

$$
\begin{equation*}
\alpha(U) r=-(n-1) \beta(U)-d \alpha(V)+\alpha(U)(a+b) . \tag{7.9}
\end{equation*}
$$

8. $N(k)-M S(Q E)_{n}$ SATISFYing the CONDition $\tilde{C}(U, X) \cdot S=0$

The concircular curvature tensor \tilde{C} of type $(1,3)$ of n-dimentional Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is defined by [13]

$$
\begin{equation*}
\tilde{C}(X, Y) W=R(X, Y) W-\frac{r}{n(n-1)}[g(Y, W) X-g(X, W) Y] \tag{8.1}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$. Let us consider a $N(k)-M S(Q E)_{n}$ $(n \geq 3)$ satisfying the condition $(\tilde{C}(U, X) \cdot S)(Y, Z)=0$.

Putting $Z=U$, we have

$$
\begin{equation*}
S(\tilde{C}(U, X) Y, U)+S(Y, \tilde{C}(U, X) U)=0 \tag{8.2}
\end{equation*}
$$

Now using the definition of k-nullity distribution in (8.1), we obtain

$$
\begin{equation*}
\tilde{C}(U, X) Y=\left[k-\frac{r}{n(n-1)}\right][g(X, Y) U-A(Y) X] \tag{8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{C}(U, X) U=\left[k-\frac{r}{n(n-1)}\right][A(X) U-X] . \tag{8.4}
\end{equation*}
$$

Now,

$$
\begin{align*}
S(\tilde{C}(U, X) Y, U) & =\left[k-\frac{r}{n(n-1)}\right][g(X, Y)(a+b)-(a+b) A(X) A(Y) \\
& -d B(X) A(Y)] \tag{8.5}
\end{align*}
$$

and

$$
\begin{align*}
S(Y, \tilde{C}(U, X) U) & =\left[k-\frac{r}{n(n-1)}\right][(a+b) A(X) A(Y)+d A(X) B(Y) \\
& -S(X, Y)] \tag{8.6}
\end{align*}
$$

From (8.2), we get

$$
\begin{align*}
{\left[k-\frac{r}{n(n-1)}\right][g(X, Y)(a+b)} & +d\{A(X) B(Y)-B(X) A(Y)\} \\
& -S(X, Y)]=0 . \tag{8.7}
\end{align*}
$$

So, either scalar curvature $r=k n(n-1)$ or $\left(M^{n}, g\right)$ becomes $M(Q E)_{n}$. But $\left(M^{n}, g\right)$ is not $M(Q E)_{n}$. So, we can state the following:
Theorem 8.1. The $N(k)-M S(Q E)_{n}$ satisfying the condition $\tilde{C}(U, X) . S=0$, i.e., concircularly Ricci symmetric iff its scalar curvature is $n(a+b-d)$.
9. $N(k)-M S(Q E)_{n}$ SATISFYing the condition $\tilde{P}(U, X) \cdot S=0$

The Weyl projective curvature tensor \tilde{P} of type $(1,3)$ of n-dimentional Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is defined by [13]

$$
\begin{equation*}
\tilde{P}(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{9.1}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$. Let us consider a $M S(Q E)_{n}(n \geq 3)$ satisfying the condition $(\tilde{P}(U, X) \cdot S)(Y, Z)=0$.

Putting $Z=U$, we have

$$
\begin{equation*}
S(\tilde{P}(U, X) Y, U)+S(Y, \tilde{P}(U, X) U)=0 \tag{9.2}
\end{equation*}
$$

Now using the definition of k-nullity distribution in (9.1), we obtain

$$
\begin{aligned}
S(\tilde{P}(U, X) Y, U) & =k[g(X, Y)(a+b)-A(Y)\{(a+b) A(X)+d B(X)\}] \\
& -\frac{1}{n-1}[S(X, Y)(a+b)-S(Y, U) S(X, U)]
\end{aligned}
$$

and

$$
\begin{align*}
S(Y, \tilde{P}(U, X) U) & =k[A(X)\{(a+b) A(Y)+d B(Y)\}-S(X, Y)] \\
& -\frac{1}{n-1}[S(X, U) S(Y, U)-(a+b) S(X, Y)] \tag{9.4}
\end{align*}
$$

From (9.2),

$$
\begin{align*}
k[g(X, Y)(a+b) & +d\{A(X) B(Y)-B(X) A(Y)\} \\
& -S(X, Y)]=0 . \tag{9.5}
\end{align*}
$$

So, $k=0$, otherwise $\left(M^{n}, g\right)$ becomes $M(Q E)_{n}$. Thus we have
Theorem 9.1. The $N(k)-M S(Q E)_{n}$ satisfying the condition $\tilde{P}(U, X) . S=0$, i.e., Weyl projectively Ricci symmetric iff $k=0$.

$$
\text { 10. Ricci-PSEUDOSYMMETRIC } N(k)-M S(Q E)_{n}
$$

An n-dimensional Riemannian manifold (M^{n}, g) is called Ricci-pseudosymmetric [6] if the tensors $R . S$ and $Q(g, S)$ are linearly dependent, where

$$
\begin{equation*}
(R(X, Y) \cdot S)(Z, W)=-S(R(X, Y) Z, W)-S(Z, R(X, Y) W) \tag{10.1}
\end{equation*}
$$

$$
\begin{equation*}
Q(g, S)(Z, W ; X, Y)=-S((X \wedge Y) Z, W)-S(Z,(X \wedge Y) W) \tag{10.2}
\end{equation*}
$$

and

$$
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y
$$

for vector fields $X Y, Z, W$ on M^{n}, R denotes the curvature tensor of M^{n}. The condition of Ricci-pseudosymmetry is equivalent to the relation

$$
\begin{equation*}
(R(X, Y) \cdot S)(Z, W)=L_{S} Q(g, S)(Z, W ; X, Y) \tag{10.3}
\end{equation*}
$$

holding on the set

$$
\begin{equation*}
U_{S}=\left\{x \in M: S \neq \frac{r}{n} g \text { at } x\right\} \tag{10.4}
\end{equation*}
$$

where L_{S} is some function on U_{S}. If $R . S=0$ then M^{n} is called Riccisemisymmetric. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric but the converse is not true [6].

Assume that M^{n} is Ricci-pseudosymmetric. Then by the use of (10.1) to (10.4), we can obtain

$$
\begin{align*}
S(R(X, Y) Z, W) & +S(Z, R(X, Y) W)=L_{S}\{g(Y, Z) S(X, W) \\
& -g(X, Z) S(Y, W)+g(Y, W) S(X, Z) \\
& -g(X, W) S(Y, Z)\} . \tag{10.5}
\end{align*}
$$

Since M^{n} is also $N(k)-M S(Q E)_{n}$, using the properties of the curvature tensor R we get

$$
\begin{aligned}
& b[A(R(X, Y) Z) A(W)+A(Z) A(R(X, Y) W)]+c[B(R(X, Y) Z) B(W) \\
& +B(Z) B(R(X, Y) W)]+d[A(R(X, Y) Z) B(W)+A(W) B(R(X, Y) Z) \\
& +A(Z) B(R(X, Y) W)+A(R(X, Y) W) B(Z)]+e[D(R(X, Y) Z, W) \\
& +D(Z, R(X, Y) W)]=L_{S}\{b[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W) \\
& +g(Y, W) A(X) A(Z)-g(X, W) A(Y) A(Z)]+c[g(Y, Z) B(X) B(W) \\
& -g(X, Z) B(Y) B(W)+g(Y, W) B(X) B(Z)-g(X, W) B(Y) B(Z)] \\
& +d[g(Y, Z) A(X) B(W)+g(Y, Z) A(W) B(X)-g(X, Z) A(Y) B(W) \\
& -g(X, Z) A(W) B(Y)+g(Y, W) A(X) B(Z)+g(Y, W) A(Z) B(X) \\
& -g(X, W) A(Y) B(Z)-g(X, W) A(Z) B(Y)]+e[g(Y, Z) D(X, W)
\end{aligned}
$$

$(10.6+g(X, Z) D(Y, W)+g(Y, W) D(X, Z)-g(X, W) D(Y, Z)]\}$.
Putting $Y=Z=U$ in (10.6), we get

$$
\begin{align*}
k b[A(X) A(W) & -g(X, W)]+k c[B(X) B(W)]+2 k d[A(W) B(X)] \\
& +k e[D(X, W)]=L_{S}\{b[A(X) A(W)-g(X, W)] \\
& +c[B(X) B(W)]+2 d[A(W) B(X)]+e D(X, W)\} . \tag{10.7}
\end{align*}
$$

Putting $X=W=e_{i}$ in (10.7) where $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{equation*}
L_{S}=k=\frac{a+b-d}{n-1} . \tag{10.8}
\end{equation*}
$$

Thus we can state the following:
Theorem 10.1. The Ricci-pseudosymmetric $N(k)-M S(Q E)_{n}$ is Ricci semi symmetric manifold iff $a+b-d=0$.

11. Example of a 4-dimensional $N(k)-M S(Q E)_{n}$

Here we construct a nontrivial concrete example of a $N(k)-M S(Q E)_{n}$. Let us consider a Riemannian metric g on the 4-dimensional real number space M^{4} by
(11.1) $d s^{2}=g_{i j} d x^{i} d x^{j}=\left(e^{x^{2}}\right)\left(d x^{1}\right)^{2}+\left(x^{1} x^{3}\right)^{2}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}$,
where $i, j=1,2,3,4$ and $x^{1}, x^{2}, x^{3}, x^{4}$ are the standard coordinates of M^{4}. Then the only non vanishing components of the Christoffel symbols, the curvature tensors and the Ricci tensor are

$$
\begin{gather*}
{[12,1]=\frac{e^{x^{2}}}{2},[21,2]=x^{1}\left(x^{3}\right)^{2},[23,2]=\left(x^{1}\right)^{2} x^{3}} \tag{11.2}\\
R_{1223}=R_{3221}=x^{1} x^{3}, R_{1221}=\frac{e^{x^{2}}}{4}, R_{2113}=R_{3112}=-\frac{e^{x^{2}}}{2 x^{3}} \tag{11.3}\\
R_{11}=\frac{e^{x^{2}}}{4\left(x^{1} x^{3}\right)^{2}}, \quad R_{22}=\frac{1}{4}, \quad R_{13}=\frac{1}{x^{1} x^{3}}, \quad R_{23}=-\frac{1}{2 x^{3}} \tag{11.4}
\end{gather*}
$$

and the components which can be obtained from these by symmetric properties. So, M^{4} is a Riemannian manifold of non-vanishing scalar curvature. We shall now show that this manifold is an $N(k)-M S(Q E)_{4}$. Let us now define

$$
a=\frac{1}{8\left(x^{1} x^{3}\right)^{2}}, b=\frac{1}{\left(x^{1} x^{3}\right)^{2}}, c=\frac{1}{4\left(x^{1} x^{3}\right)^{2}}, d=-\frac{\sqrt{ } e^{x^{2}}}{\left(x^{1}\right)^{3}\left(x^{3}\right)^{4}}, e=-\frac{1}{\left(x^{1} x^{3}\right)^{2}}
$$

and the 1 -forms are

$$
A_{i}(x)= \begin{cases}\frac{\left(x^{1} x^{3}\right)^{2}}{8}, & \text { if } i=1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
B_{i}(x)= \begin{cases}\sqrt{ } e^{x^{2}}, & \text { if } i=1 \\ \frac{\left(x^{1} x^{3}\right)^{2}}{8}, & \text { if } i=3 \\ 0, & \text { otherwise }\end{cases}
$$

and the associated tensor as

$$
D_{i j}(x)= \begin{cases}\frac{e^{x^{2}}}{4}, & \text { if } i=j=1 \\ 0, & \text { otherwise }\end{cases}
$$

then we have
(i) $R_{11}=a g_{11}+b A_{1} A_{1}+c B_{1} B_{1}+2 d A_{1} B_{1}+e D_{11}$,
(ii) $R_{22}=a g_{22}+b A_{2} A_{2}+c B_{2} B_{2}+2 d A_{2} B_{2}+e D_{22}$,
(iii) $R_{13}=a g_{13}+b A_{1} A_{3}+c B_{1} B_{3}+d\left(A_{1} B_{3}+A_{3} B_{1}\right)+e D_{13}$,
(iv) $R_{23}=a g_{23}+b A_{2} A_{3}+c B_{2} B_{3}+d\left(A_{2} B_{3}+A_{3} B_{2}\right)+e D_{23}$.

Since all the cases other than $(i)-(i v)$ are trivial, we can say

$$
R_{i j}=a g_{i j}+b A_{i} A_{j}+c B_{i} B_{j}+d\left(A_{i} B_{j}+A_{j} B_{i}\right)+e D_{i j}, \text { for } i, j=1,2,3,4 .
$$

So, we can say that the manifold under consideration is an $N(k)-M S(Q E)_{4}$, where $k=\frac{9 x^{1}\left(x^{3}\right)^{2}+8 \sqrt{ } \mathrm{~V}^{2}}{24\left(x^{1}\right)^{3}\left(x^{3}\right)^{4}}$. Thus if $\left(M^{4}, g\right)$ is a Riemannian manifold endowed with the metric given by

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(e^{x^{2}}\right)\left(d x^{1}\right)^{2}+\left(x^{1} x^{3}\right)^{2}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2},
$$

where $i, j=1,2,3,4$ and $x^{1}, x^{2}, x^{3}, x^{4}$ are the standard coordinates of M^{4}, then it is an $N(k)-M S(Q E)_{4}$ with nonzero and nonconstant scalar curvature.

References

[1] A. Bhattacharyya, M. Tarafdar, and D. Debnath. On mixed super quasi-Einstein manifolds. Differ. Geom. Dyn. Syst, 10:44-57, 2008.
[2] M. C. Chaki. On super quasi Einstein manifolds. Publ. Math. Debrecen, 64(3-4):481488, 2004.
[3] M. C. Chaki and R. K. Maity. On quasi-Einstein manifolds. Publ. Math. Debrecen, 57:297-306, 2000.
[4] U. C. De and G. C. Ghosh. On generalized quasi-Einstein manifolds. Kyungpook Math. J, 44:607-615, 2004.
[5] U. C. De, N. Guha, and D. Kamilya. On generalized Ricci-recurrent manifolds. Tensor. New series, 56(3):312-317, 1995.
[6] R. Deszcz. On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A, 44(1):1-34, 1992.
[7] R. Deszcz and M. Hotlos. Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor. Prace Nauk. Pol. Szczec, 11:23-34, 1989.
[8] D. Ferus. A remark on codazzi tensors in constant curvature spaces. In Global differential geometry and global analysis, pages 257-257. Springer, 1981.
[9] H. Nagaraja. On $\mathrm{N}(\mathrm{k})$-mixed quasi Einstein manifolds. European Journal of Pure and Applied Mathematics, 3(1):16-25, 2009.
[10] J. A. Schouten. Ricci-calculus: An introduction to tensor analysis and its geometrical applications. Verlag Berlin Heidelberg Gmbh, Springer, 1954.
[11] S. Tanno. Ricci curvatures of contact Riemannian manifolds. Tohoku Mathematical Journal, Second Series, 40(3):441-448, 1988.
[12] M. M. Tripathi and J. Kim. On N(k)-quasi Einstein manifolds. Communications-Korean Mathematical Society, 22(3):411, 2007.
[13] K. Yano and M. Kon. Structures on manifolds, volume 3. World scientific, 1985.
Received November 9, 2015.

Department of Mathematics,
Jadavpur University,
Kolkata-700032, India
E-mail address: santu.mathju@gmail.com
E-mail address: bhattachar1968@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 53C25, 53B30, 53C15.
 Key words and phrases. $N(k)$-Mixed super quasi-Einstein manifold $N(k)-M S(Q E)_{n}$, $N(k)$-mixed quasi constant curvature, Ricci-pseudosymmetric manifold, concircular curvature tensor, Ricci curvature, Ricci symmetric manifold, Ricci recurrent manifold, generalized Ricci recurrent manifold, projective curvature tensor.

 The first author is supported by DST/INSPIRE Fellowship/2013/1041, Govt. of India.

