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SOME OPTIMAL INEQUALITIES FOR SCREEN
CONFORMAL HALF-LIGHTLIKE SUBMANIFOLDS

MEHMET GÜLBAHAR AND EROL KILIÇ

Abstract. In this paper, some relations involving the main intrinsic and
extrinsic invariants for a half-lightlike submanifold of a Lorentzian manifold
are given. Some results for screen conformal half-lightlike submanifolds and
their leaves are obtained with the help of these relations.

1. Introduction

To establish relationships between intrinsic and extrinsic invariants of a sub-
manifold is one of the most fundamental problems in submanifolds theory.
Some principal inequalities for submanifolds of a real space form were initially
proved by B.-Y. Chen [5, 6, 7, 8]. Then, the study of this topic has attracted
a lot of attention during the last two decades. Related inequalities have been
established for different kinds of Riemannian submanifolds in ambient man-
ifolds endowed with different kinds of structures by various geometers (see
[2, 22, 24, 25, 26, 27, 29, 30] etc.).

Beside these facts, there exist also some useful relations involving cur-
vatures for submanifolds of a semi-Riemannian manifold. Recently, B.-Y.
Chen [9] showed very significant applications of these type inequalities to non-
degenerate submanifolds and the authors [21] proved some general inequalities
for r-lightlike submanifolds of a semi-Riemannaian manifold. Also, the authors
and S. Keleş [17, 18] give some relations involving the curvatures on lightlike
hypersurfaces of a Lorentzian manifold.

The main purpose of this paper is to show some relations involving the
intrinsic and extrinsic invariants for half-lightlike submanifolds of a Lorentzian
manifold. The paper is arranged as follows. In section 2, some basic facts
about half-lightlike submanifolds are mentioned. In section 3, curvatures on
half-lightlike submanifolds are investigated. In section 4, some inequalities for
screen conformal half-lightlike submanifolds are established. In section 5, some
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results related to screen conformal half-lightlike submanifolds and their leaves
are obtained.

2. Half-lightlike submanifolds

Let (M̃, g̃) be an (n + 3)-dimensional Lorentzian manifold with a non-
degenerate metric g̃ of constant index 1 and (M, g) be an (n+ 1)-dimensional

lightlike submanifold of (M̃, g̃), where g is the induced degenerate metric from
g̃. Then there exists a smooth distribution RadTpM , called radical space of
the tangent space TpM at p ∈M , defined by

RadTpM = {ξ ∈ TpM : gp(ξ,X) = 0 for all X ∈ TpM}.(2.1)

The complementary non-degenerate vector bundle S(TM) of RadTM in TM
is called screen bundle of M . Thus, we have

TM = RadTM ⊕orth S(TM),(2.2)

where⊕orth denotes the orthogonal direct sum. The submanifold (M, g, S(TM))
is called a half-lightlike submanifold if rank of the radical space is one [12, 14].

Let (M, g, S(TM)) be an (n + 1)-dimensional half-lightlike submanifold of

(M̃, g̃). Then there exist a one dimensional non-degenerate sub-bundle D
spanned by u and a one-dimensional degenerate sub-bundle ltr(TM) spanned
by N such that

g̃(ξ, u) = 0, g̃(N, ξ) = ∓1,(2.3)

g̃(N, u) = g̃(N,N) = 0, g̃(u, u) 6= 0.

Here, D is called screen transversal bundle and ltr(TM) is called lightlike
transversal bundle [13, 16]. From the equations (2.2) and (2.3), we have the
following decomposition:

TM̃ = S(TM)⊕orth D ⊕orth (RadTM ⊕ ltr(TM)) ,(2.4)

where ⊕ denotes the direct sum but it is not orthogonal.

Let ∇̃ be the Levi-Civita connection of M̃ . The Gauss and Weingarten
formulas are given by

∇̃XY = ∇XY + h(X, Y ),(2.5)

∇̃XN = −ANX +∇t
XN,(2.6)

∇̃Xu = −AuX +∇t
Xu(2.7)

for all X, Y ∈ Γ(TM), where ∇XY,ANX,AuX ∈ Γ(TM) and h(X, Y ),∇t
XN,

∇t
Xu ∈ Γ(tr(TM)). Here, h and AN are called second fundamental form and

shape operator of M , respectively. From the equations (2.4), (2.5), (2.6) and
(2.7), we have

h(X, Y ) = B(X, Y )N +D(X, Y )u,(2.8)

∇t
XN = ρ1(X)N + ρ2(X)u(2.9)
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and

∇t
Xu = ε1(X)N + ε2(X)u.(2.10)

Thus, we write (2.5), (2.6) and (2.7) again as follows:

∇̃XY = ∇XY +B(X, Y )N +D(X, Y )u,(2.11)

∇̃XN = −ANX + ρ1(X)N + ρ2(X)u,(2.12)

∇̃Xu = −AuX + ε1(X)N + ε2(X)u.(2.13)

From (2.3) and (2.11), we see that B is symmetric, it is independent of choosing
screen distribution and it vanishes on RadTM .

Let P be the projection morphism of Γ(TM) to Γ(S(TM)). We also write
from (2.2) that

∇XPY = ∇∗XPY + h∗(X, Y ),(2.14)

∇Xξ = −A∗ξ(X)− ρ1(X)ξ,(2.15)

where ∇∗XPY,A∗ξ(X) ∈ Γ(S(TM)) and h∗(X, Y ) ∈ Γ(RadTM). Here, A∗ξ is
called local shape operator and h∗ is called local second fundamental form given
by

h∗(X, Y ) = C(X,PY )ξ.(2.16)

Using (2.3), (2.11), (2.12), (2.13), (2.14) and (2.15), we have the followings:

B(X, Y ) = g(A∗ξX, Y ),(2.17)

C(X,PY ) = g(ANX,PY ),(2.18)

D(X,PY ) = g(AuX,PY ),(2.19)

D(X, Y ) = g(AuX,PY )− ε1(X)η(Y ).(2.20)

The manifold (M, g, S(TM)) is called a totally geodesic half-lightlike sub-
manifold if

B(X, Y ) = D(X, Y ) = 0, ∀X, Y ∈ Γ(TM).(2.21)

Furthermore, (M, g, S(TM)) is called irrotational [23] if h vanishes on RadTM
and it is called totally geodesic if h vanishes on Γ(TM), identically [13]. If there
exists a smooth transversal vector field H such that

h(X, Y ) = g(X, Y )H(2.22)

for all X, Y ∈ Γ(TM), then the submanifold is called totally umbilical [15].
Furthermore, (M, g, S(TM)) is called minimal if it is irrotational and

traceS(TM)h = 0,(2.23)

where traceS(TM) denotes the trace restricted to S(TM) with respect to the
degenerate metric g [4].
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Let (M, g, S(TM)) be an (n+ 1)-dimensional half-lightlike submanifold and
{e1, . . . , en} be an orthonormal basis of Γ(S(TM)). Let us consider

µ1 =
1

n

n∑
j=1

B(ej, ej) and µ2 =
1

n

n∑
j=1

D(ej, ej).(2.24)

Then it is clear from (2.23) and (2.24) that M is minimal if and only if µ1 =
µ2 = 0.

Let ϕ be a non-zero function on a neigborhood U of M . Then M is called
screen locally conformal if AN and A∗ξ related by

AN = ϕA∗ξ ,(2.25)

i.e.,

C(X,PY ) = ϕB(X, Y )(2.26)

for all X, Y ∈ Γ(TM) [10].

3. Curvatures on half-lightlike submanifolds

Let (M, g, S(TM)) be an (n+1)-dimensional half-lightlike submanifold of an

(n+3)-dimensional Lorentzian manifold (M̃, g̃). Let us denote the Riemannian

curvature tensors of M̃ and M by R̃ and R, respectively. Then the following
relations between these tensors hold:

(3.1) g̃(R̃(X, Y )PZ, PW ) = g(R(X, Y )PZ, PW )

+B(X,PZ)C(Y, PW )−B(Y, PZ)C(X,PW )

+ [D(X,PZ)D(Y, PW )−D(Y, PZ)D(X,PW )],

(3.2) g̃(R̃(X, Y )PZ, ξ) = (∇XB)(Y, PZ)− (∇YB)(X,PZ)

+ ρ1(X)B(Y, PZ)− ρ1(Y )B(X,PZ)

+ ε1(X)D(Y, PZ)− ε1(Y )D(X,PZ),

(3.3) g̃(R̃(X, Y )PZ,N) = g(R(X, Y )PZ,N)

+ [ρ2(Y )D(X,PZ)− ρ2(X)D(Y, PZ)],

(3.4) g̃(R̃(X, Y )ξ,N) = g(R(X, Y )ξ,N) + ρ2(X)ε1(Y ) − ρ2(Y )ε1(X)

for all X, Y, Z, U ∈ Γ(TM) [16].
Now let us choose a 2-dimensional non-degenerate plane section

Π = Span{X, Y }
in TpM , p ∈M . Then the sectional curvature at p is expressed by [3]

K(Π) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
.(3.5)
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From the equations (3.1) and (3.5), we get the following lemma:

Lemma 3.1. Let (M, g, S(TM)) be a half-lightlike submanifold of a Lorentzian
manifold. Then we have

(3.6) K(Π) = K̃(Π) +B(Y, Y )C(X,X)−B(X, Y )C(Y,X)

+D(X,X)D(Y, Y )−D(X, Y )2

for any non-degenerate plane section Π = Span{X, Y } in TpM , p ∈M .

From the equation (2.18) and Lemma 3.1, it is clear that the sectional cur-
vature map defined on any half-lightlike submanifold doesn’t need to be sym-
metric and thus it hasn’t a geometric meaning which is different from the
Riemannian context.

Now, we recall the following result of K. L. Duggal and A. Bejancu [13]:

Theorem 3.2. Let (M, g, S(TM)) be an r-lightlike submanifold of a semi-

Riemannian manifold (M̃, g̃). Then the following assertions are equivalent:

i) S(TM) is integrable.
ii) h∗ is symmetric on Γ(S(TM)).

iii) AN is self-adjoint on Γ(S(TM)) with respect to g.

As a consequence of Theorem 3.2, we can state the following:

Corollary 3.3. Let (M, g, S(TM)) be a half-lightlike submanifold of a semi-

Riemannian manifold (M̃, g̃). The sectional curvature map is symmetric if
and only if S(TM) is integrable.

Remark 3.4. Taking into consideration Corollary 3.3, we see that the sectional
curvature of any half-lightlike submanifold includes important geometric mean-
ings as in the Riemannian context when its screen distribution is integrable.

The screen Ricci tensor, denoted by RicS(TM), is defined by

RicS(TM)(X, Y ) = trace|S(TM){Z → R(X,Z)Y }(3.7)

for any X, Y, Z ∈ Γ(S(TM)) [17, 22]. The screen Ricci curvature at a unit
vector field X in Γ(S(TM)) is given by

RicS(TM)(X) =
n∑
j=1

g(R(X, ej)ej, X),(3.8)

where {e1, . . . , en} is an orthonormal basis of Γ(S(TM)).
The screen scalar curvature at a point p ∈ M , denoted by rS(TM)(p), is

defined by

rS(TM)(p) =
1

2

n∑
i,j=1

g(R(ei, ej)ej, ei) =
1

2

n∑
i,j=1

Kij.(3.9)

Using Lemma 3.1 and the equation (3.9), we have the following lemma:
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Lemma 3.5. Let (M, g, S(TM)) be an (n+ 1)-dimensional half-lightlike sub-

manifold (M̃, g̃) with integrable screen distribution S(TM). Suppose {e1, . . . , en}
is an orthonormal basis of Γ(S(TM)). Then we have

(3.10) 2rS(TM)(p) = 2r̃S(TM)(p) +
n∑

i,j=1

[B(ei, ei)C(ej, ej)−B(ei, ej)C(ej, ei)]

+
n∑

i,j=1

[D(ei, ei)D(ej, ej)−D(ei, ej)
2],

where r̃S(TM)(p) is the scalar curvature of screen distribution of M̃ (See the
equation (2.3) in [19]) defined by

r̃S(TM)(p) =
1

2

n∑
i,j=1

g̃(R̃(ei, ej)ej, ei).(3.11)

Putting (2.24) and (2.26) in Lemma 3.5, we obtain the following corollary:

Corollary 3.6. If (M, g, S(TM)) be an (n+ 1)-dimensional screen conformal

half-lightlike submanifold of a Lorentzian manifold (M̃, g̃), then we have

2rS(TM)(p) = 2r̃S(TM)(p) + ϕn2µ2
1 + n2µ2

2(3.12)

−
n∑

i,j=1

[ϕB(ei, ej)
2 +D(ei, ej)

2].

Now, we shall mention the other curvatures, namely the null sectional cur-
vature, the Ricci type tensor and the scalar curvature for a half-lightlike sub-
manifold.

Let ξ be a null vector of TpM . A plane Π is called a null plane if it contains
ξ and ei such that g̃(ξ, ei) = 0 and g̃(ei, ei) 6= 0. The null sectional curvature
of Π is defined by

Knull(Π) ≡ Knull(ei) =
g(Rp(ei, ξ)ξ, ei)

gp(ei, ei)
.(3.13)

We note that the null sectional curvature measures differences in length
of two spacelike geodesic constructed from the degenerate plane section Π
and it is independent of the choice of the spacelike vector ei but it depends
quadratically on the null vector ξ. For more details, we refer to [1] and [3].

Proposition 3.7. [16] Let (M, g, S(TM)) be a screen conformal half lightlike

submanifold of a Lorentzian space form M̃(c) of constant curvature c. The
null sectional curvature of M is given by

Knull(ei) = D(ξ, ξ)D(ei, ei)−D(ei, ξ)D(ξ, ei).(3.14)
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From Proposition 3.7, it is clear that the null sectional curvature vanishes
on irrotational screen locally conformal half-lightlike submanifolds of a semi-
Riemannian space form.

The Ricci type tensor, denoted by R(0,2), defined by

R(0,2)(X, Y ) =
n∑
j=1

g(R(ej, X)Y, ej) + g̃(R(ξ,X)Y,N)(3.15)

for any X, Y ∈ Γ(TM).
From the equations (3.1)-(3.4), it can be shown that the Ricci type tensor

doesn’t need to be symmetric as the sectional curvature map. This tensor is
called Ricci tensor if it is symmetric.

Taking the trace in the equation (3.15), it can be obtained a scalar at p ∈M
such that

τ(p) =
n∑

i,j=1

Kij +
n∑
i=1

(
Knull(ei) +KN(ei)

)
,(3.16)

where KN(ei) = g̃(R(ξ, ei)ei, N) for i ∈ {1, . . . , n}.

Remark 3.8. The scalar τ(p) is called scalar curvature at p ∈ M if the tensor
R(0,2) is symmetric. Otherwise, τ(p) can’t be called scalar curvature since it is
not possible to calculate it from a tensor quantity R(0,2) (See [11]).

4. Some optimal inequalities for half-lightlike submanifolds

We begin this section with the following algebraic lemma:

Lemma 4.1. [28] If a1, . . . , an are n-real numbers (n > 1), then

1

n
(
n∑
i=1

ai)
2 ≤

n∑
i=1

a2i ,(4.1)

with equality if and only if a1 = . . . = an.

Now, we are going to establish an inequality involving the intrinsic and ex-
trinsic invariants for screen conformal half-lightlike submanifolds of a Lorentzian
manifold.

Theorem 4.2. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal

half-lightlike submanifold of an (n+3)-dimensional Lorentzian manifold M̃ with
ϕ > 0. Then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n(n− 1)(ϕµ2
1 + µ2

2).(4.2)

The equality case of (4.2) holds for all p ∈ M if and only if S(TM) is totally
umbilical in M .
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Proof. Let {e1, . . . , en} be an orthonormal basis of Γ(S(TM)). Then we have
from Corollary 3.6 that

(4.3) 2rS(TM)(p) = 2r̃S(TM)(p) + ϕn2µ2
1 − ϕ

n∑
i 6=j=1

B(ei, ej)
2 − ϕ

n∑
i=1

B(ei, ei)
2

+ n2µ2
2 −

n∑
i 6=j=1

D(ei, ej)
2 −

n∑
i=1

D(ei, ei)
2.

If we use Lemma 4.1 in (4.3), we obtain (4.2).
The equality case of (4.2) is true if and only if

B11 = · · · = Bnn, Bij = 0, for i 6= j ∈ {1, . . . , n},
D11 = · · · = Dnn, Dij = 0, for i 6= j ∈ {1, . . . , n},

which imply that S(TM) is totally umbilical in M . �

Considering Theorem 4.2, we get the following corollaries:

Corollary 4.3. Let (M, g, S(TM)) be an (n + 1)-dimensional irrotational
screen conformal half-lightlike submanifold of an (n+3)-dimensional Lorentzian

manifold M̃ with ϕ > 0. Then we have

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n(n− 1)(ϕµ2
1 + µ2

2).(4.4)

The equality case of (4.4) holds for all p ∈ M if and only if M is totally
umbilical.

Corollary 4.4. Let (M, g, S(TM)) be an (n + 1)-dimensional screen confor-
mal half-lightlike submanifold of an (n+ 3)-dimensional Lorentzian space form
Rn+3

1 (c) of constant curvature c. If ϕ > 0, then we have

2rS(TM)(p) ≤ n(n− 1)(c+ ϕµ2
1 + µ2

2).(4.5)

The equality case of (4.5) holds for all p ∈ M if and only if M is totally
umbilical.

Corollary 4.5. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal
half-lightlike submanifold of an (n+3)-dimensional semi-Euclidean space En+3

1 .
If ϕ > 0, then we gave

2rS(TM)(p) ≤ n(n− 1)(ϕµ2
1 + µ2

2).(4.6)

The equality case of (4.6) holds for all p ∈ M if and only if M is totally
umbilical.

Now, we recall the following theorem of D. H. Jin in [20]:

Theorem 4.6. Let (M, g, S(TM)) be a half-lightlike submanifold of semi-

Riemannian manifold M̃ . If the coscreen distribution D is a conformal Killing

on M̃ , then there exists a smooth function δ such that

D(X, Y ) = δg(X, Y )(4.7)



SOME OPTIMAL INEQUALITIES . . . 323

for all X, Y ∈ TM .

From Theorem 4.2 and Theorem 4.6, we obtain the following corollary:

Corollary 4.7. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal

half-lightlike submanifold of an (n+3)-dimensional Lorentzian manifold M̃ . If
the equality case of (4.2) holds for all p ∈ M , then D is a homothetic Killing

on M̃ with δ = 1.

If we put (3.3), (3.12) and (3.14) in (3.16), we have the following lemma:

Lemma 4.8. Let (M, g, S(TM)) be an (n + 1)-dimensional screen confor-
mal half-lightlike submanifold of an (n+ 3)-dimensional Lorentzian space form
Rn+3

1 (c). Suppose {e1 . . . , en} is an orthonormal basis of Γ(S(TM)). Then we
have

(4.8) τ(p) =
(
c+ ϕµ2

1 + µ2
2

)
n2 −

n∑
i=1

D(ei, ξ) [D(ei, ξ) + ρ2(ei)]

+ nµ2 (D(ξ, ξ) + ρ2(ξ))−
n∑

i,j=1

[
ϕB(ei, ej)

2 +D(ei, ej)
2
]
.

Using Lemma 4.8, we get the followings:

Theorem 4.9. Let (M, g, S(TM)) be an (n + 1)-dimensional screen confor-
mal half-lightlike submanifold of an (n+ 3)-dimensional Lorentzian space form
Rn+3

1 (c). Then we have

(4.9) τ(p) ≤
(
c+ ϕµ2

1 + µ2
2

)
n2+nµ2 (D(ξ, ξ) + ρ2(ξ))−

n∑
i=1

[D(ei, ξ)ρ2(ei)] .

If the equality case of (4.9) holds for all p ∈M , then S(TM) is totally geodesic.

Corollary 4.10. If (M, g, S(TM)) is an (n+1)-dimensional irrotational screen
conformal half-lightlike submanifold of an (n+ 3)-dimensional semi-Euclidean
space En+3

1 . Then we have

τ(p) ≤
(
ϕµ2

1 + µ2
2

)
n2 + nµ2ρ2(ξ).(4.10)

The equality case of (4.10) holds for all p ∈ M if and only if M is totally
geodesic.

If we consider Lemma 4.1 in Lemma 4.8 and use similar arguments as in the
proof of Theorem 4.2, we obtain the following theorem:

Theorem 4.11. Let (M, g, S(TM)) be an (n+ 1)-dimensional screen confor-
mal half-lightlike submanifold of Rn+3

1 (c). Then we have

τ(p) ≤ n2c+ n(n− 1)(ϕµ2
1 + µ2

2) + nµ2 (D(ξ, ξ) + ρ2(ξ))(4.11)

−
n∑
i=1

[D(ei, ξ)ρ2(ei)] .
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The equality case of (4.11) holds for all p ∈ M if and only if M is totally
umbilical.

Corollary 4.12. Let (M, g, S(TM)) be an (n + 1)-dimensional irrotational
screen conformal half-lightlike submanifold of Rn+3

1 (c). Then

τ(p) ≤ n2c+ n(n− 1)
(
ϕµ2

1 + µ2
2

)
+ nµ2ρ2(ξ).(4.12)

The equality case of (4.12) holds for all p ∈ M if and only if M is totally
umbilical.

5. Some results on leaves of half-lightlike submanifolds

Let (M, g, S(TM)) be an (n+1)-dimensional half-lightlike submanifold of an

(n+3)-dimensional Lorentzian manifold (M̃, g̃). Suppose S(TM) is integrable

and (M ′, g′) is an n-dimensional leaf of S(TM) immersed in M̃ as a codimen-
sion 2 with the non-degenerate metric g′. Denote the induced connection of
M ′ by ∇′. Using the equations (2.11) and (2.16), we can write

∇̃XY = ∇′XY +B(X, Y )N + C(X, Y )ξ +D(X, Y )u(5.1)

for all X, Y ∈ Γ(S(TM)). It follows that the second fundamental form of M ′,
denoted by h′, is given by

h′(X, Y ) = B(X, Y )N + C(X, Y )ξ +D(X, Y )u(5.2)

for all X, Y ∈ Γ(S(TM)). Hence, we have

‖h′(X, Y )‖2 = 2B(X, Y )C(X, Y ) +D(X, Y )2.(5.3)

The mean curvature vector H ′(p) at p ∈M ′ is a vector field satisfying

(5.4) H ′(p) =
1

n

(
trace|S(TM)(h

′)
)

=
1

n

(
n∑
i=1

[B(ei, ei)N + C(ei, ei)ξ +D(ei, ei)u]

)
= µ1N+µ2u+

n∑
i=1

C(ei, ei)ξ.

If M is screen conformal, from the equations (2.26) and (5.4), we get

‖H ′(p)‖2 = 2ϕµ2
1 + µ2

2.(5.5)

Now, we recall the following Theorem and Corollary of K. Duggal and B.
Sahin (See Theorem 4.4.6 and Corollary 4.4.8 in [16]).

Theorem 5.1. Let (M, g, S(TM)) be a screen conformal half-lightlike sub-

manifold of a semi-Riemannian manifold M̃ with a leaf M ′ of S(TM). Then

a) M is totally geodesic,
b) M is totally umbilical,
c) M is minimal

if and only if M ′ is so immersed as a submanifold of M̃ and ε1 vanishes on
M .
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Corollary 5.2. Let (M, g, S(TM)) be an irrotational screen conformal half-

lightlike submanifold of a semi-Riemannian manifold M̃ with a leaf M ′ of
S(TM). Then

a) M is totally geodesic,
b) M is totally umbilical,
c) M is minimal

if and only if M ′ is so immersed as a submanifold of M̃ .

Corollary 5.3. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal
half-lightlike submanifold and M ′ be an n-dimensional leaf of S(TM) immersed
in Rn+3

1 (c). Then we have

2rS(TM)(p) ≤ n(n− 1)
(
c+ ‖H ′(p)‖2 − ϕµ2

1

)
.(5.6)

The equality case of (5.6) holds for all p ∈ M ′ if and only if both M ′ and M
are totally umbilical.

Proof. If we put (5.5) in (4.5), we easily obtain (5.6). The rest part of proof
is clear from Theorem 5.1. �

Corollary 5.4. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal
half-lightlike submanifold and M ′ be an n-dimensional leaf of S(TM) immersed
in En+3

1 . Then we have

2rS(TM)(p) ≤ n(n− 1)
(
‖H ′(p)‖2 − ϕµ2

1

)
.(5.7)

The equality case of (5.7) holds for all p ∈ M ′ if and only if both M ′ and M
are totally umbilical.

Corollary 5.5. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal
half-lightlike submanifold and M ′ be an n-dimensional leaf of S(TM) immersed
in Rn+3

1 (c). Then we have

τ(p) ≤ n2c+ n(n− 1)
(
‖H ′(p)‖2 − ϕµ2

1

)
+ nµ2 (D(ξ, ξ) + ρ2(ξ))(5.8)

−
n∑
i=1

[D(ei, ξ)ρ2(ei)] .

The equality case of (5.8) holds for all p ∈ M ′ if and only if both M ′ and M
are totally umbilical.

Proof. If we put (5.5) in (4.11), the proof of this theorem is straightforward. �

Corollary 5.6. Let (M, g, S(TM)) be an (n + 1)-dimensional irrotational
screen conformal half-lightlike submanifold and M ′ be an n-dimensional leaf
of S(TM) immersed in En+3

1 . Then we have

τ(p) ≤ n(n− 1)
(
‖H ′(p)‖2 − ϕµ2

1

)
+ nµ2ρ2(ξ).(5.9)

The equality case of (5.9) holds for all p ∈ M ′ if and only if both M ′ and M
are totally umbilical.
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Corollary 5.7. Let (M, g, S(TM)) be an (n+1)-dimensional screen conformal
half-lightlike submanifold and M ′ be an n-dimensional leaf of S(TM) immersed
in Rn+3

1 (c). Then we have

τ(p) ≤ n2c+ n2
(
‖H ′(p)‖2 − ϕµ2

1

)
+ nµ2 (D(ξ, ξ) + ρ2(ξ))(5.10)

−
n∑
i=1

[D(ei, ξ)ρ2(ei)] .

If the equality case of (5.10) holds for all p ∈ M ′, then both M ′ and M are
totally geodesic.

Proof. If we put (5.5) in (4.9), the proof of this theorem is straightforward. �

Corollary 5.8. Let (M, g, S(TM)) be an (n + 1)-dimensional irrotational
screen conformal half-lightlike submanifold and M ′ be an n-dimensional leaf
of S(TM) immersed in En+3

1 . Then we have

τ(p) ≤ n2
(
‖H ′(p)‖2 − ϕµ2

1

)
+ nµ2ρ2(ξ).(5.11)

The equality case of (5.11) holds for all p ∈ M ′ if and only if both M ′ and M
are totally geodesic.

Example 5.9. Consider in R7
1 with signature (−,+,+,+,+,+,+) a submani-

fold M given by the equations

x4 = (x21 − x22)
1
2 , x3 = (1− x25)

1
2 , x6 = (1− x27)

1
2 , x2, x5, x7 > 0.(5.12)

Then we have

RadTM = Span{ξ = x1∂x1 + x2∂x2 + x4∂x4},
S(TM) = Span{Z1 = x4∂x1 + x1∂x4, Z2 = −x5∂x3 + x3∂x5,

Z3 = −x6∂x7 + x7∂x6, Z4 = x6∂x7 + x7∂x6},
and

D = Span{u = x3∂x3 + x5∂x5}.
Hence, M is a half lightlike submanifold ofR7

1 with S(TM) = Span{U1, U2, U3, U4}.
Also, the lightlike transversal bundle ltr(TM) is spanned by

N =
1

2
{−x1∂x1 + x2∂x2 + x4∂x4}.

Thus, we have

∇̃Z1ξ = Z1, ∇̃Z2ξ = ∇̃Z3ξ = ∇̃Z4ξ = 0, ∇̃ξξ = ξ,

∇̃Z1N =
1

2x1
Z1, ∇̃Z2N = ∇̃Z3N = ∇̃Z4N = 0, ∇̃ξN = −N

and (M, g, S(TM) is screen conformal with ϕ = 1
2x1

. From (2.5), (2.6) and

(2.7), we get

B(Z1, Z1) = −x22, D(Z2, Z2) = −1(5.13)
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and the other components of B and D vanishes.
Consider M ′ to be a 4-dimensional leaf of S(TM). Then it follows that

TM ′ = Span{Z1, Z2, Z3, Z4}.
By a straightforward computation, it can be obtained that the M ′ satisfies
corollaries of this section.
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