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Abstract. In this paper, we expose to estimate the measure theoretic
entropy of the geodesic flows for compact Finsler manifolds of nonpositive
flag curvature.

Introduction

Since the notion of Finsler manifolds is a generalization of Riemannian man-
ifolds, it seems natural to consider the problem: To what extent can one extend
results in Riemannian geometry to Finsler manifolds? The work of Foulon [6]
is one of the first to extend the ideas of Hopf and Green to Finsler mani-
folds without conjugate points. Notably Foulon has developped the existence
of a Riccati equation associated to the Jacobi equation and its connection to
Lyapunov exponents and measure theoretic entropy. The measure theoretic en-
tropy of a measure preserving flow is an asymptotic quantity associated with
the flow. In this note we discuss an estimate of Foulon [6] for the measure
theoretic entropy hµ of the geodesic flows for compact Finsler manifolds with
nonpositive flag curvature.

Theorem. Let M be a compact Finsler manifold with nonpositive flag curva-
ture K. Then we have

hµ ≥
∫
SM

tr
√
−K(v) dµ(v),

where SM is the unit tangent bundle of M and µ is the normalized Liouville
measure on SM. Equality holds if and only if the flag curvature is parallel
along the geodesic flows.
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A smooth Finsler metric is said to be parallel if the flag curvature is parallel
along the geodesic flows. A Finsler manifold is locally symmetric if the geodesic
reflection is a local isometry. It is well-known that a locally symmetric Finsler
metric is parallel. In contrast to the Riemannian case, the converse is not true
in general.

Our proof of main theorem is simplification of the proof of Foulon and it
works under the weaker assumption of nonpositive flag curvature. We will be
achieved by approximation of the flag curvature bounded above by a strictly
negative constant, which does not mean that of the Finsler metric on M. This
theorem was proved for the geodesic flows on Riemannian manifolds by Ball-
mann and Wojtkovski [1] and the Hamiltonian flows on symplectic manifolds
by Chittaro [2].

1. Manifolds without conjugate points

In this section, we give a brief description of fundamental formulas in Finsler
geometry, for more details the reader is referred to see [9]. A Finsler manifold
M is a smooth manifold for which a norm F is prescribed on every tangent
space TM. The unit sphere of this norm is assumed to be strictly convex in
the sense that the Hessian

gv(u,w) =
1

2

∂2

∂s∂t

[
F 2(v + s · u+ t · w)

]∣∣∣
s=t=0

is positive definite. For a tangent vector v of M, denote by γv(t) the geodesic
with initial velocity v. The geodesic flow ϕt of M is defined ϕt(v) = γ′v(t).
The geodesic flow acts on the unit tangent bundle SM of M, and it leaves the
normalized Liouville measure µ of SM invariant (see [4]). Along the geodesic
γv(t), we have the osculating Riemannian metrics gγ′v(t)(·, ·) on Tγv(t)M. Define
the flag curvature

K(γ′v(t)) : Tγv(t)M → Tγv(t)M

by

K(γ′v(t))(w) := R(w, γ′v(t))γ
′
v(t),

where R is the Riemann curvature.
A Finsler manifold M does not have conjugate points if for each pair of

points in the universal covering space of M there is a unique geodesic passing
through the give pair of points. Finsler manifolds with nonpositive flag cur-
vature are well-known examples such manifolds. We have the stable Jacobi
tensors of Finsler manifolds without conjugate points as in the case of Rie-
mannian manifolds (see [6]). There are stable Jacobi tensors, J(ϕt(v)), which
satisfies the Jacobi equations

J ′′(ϕt(v)) +K(ϕt(v)) · J(ϕt(v)) = 0.

Making the change of variables

U(ϕt(v)) :=
(

ln J(ϕt(v))
)′

= J ′(ϕt(v)) · J−1(ϕt(v))
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for t values for which det J(ϕt(v)) 6= 0. In fact, if γv(t) has no points conjugate
to γ(0) on (0,∞), then J(ϕt(v)) is defined for all t ∈ (0,∞). Then the tensor
U(v) defined on the unit tangent bundle SM such that for every v ∈ SM,
U(ϕt(v)) is a self-adjoint linear operator on

γ′v(t)
⊥ := {w ∈ Tγv(t)M | gγ′v(t)(γ

′
v(t), w) = 0}

and satisfies the Riccati equation

U ′(ϕt(v)) + U2(ϕt(v)) +K(ϕt(v)) = 0.

It is also known that U(v) is the second fundamental form of the stable horo-
sphere through v in the universal covering space. We are in the position to
state the result which is required to prove the main theorem.

Theorem 1.1. ([6, Théorème 2.5]) The measure theoretic entropy hµ of a
compact Finsler manifold M without conjugate points satisfies the following
equality

hµ =

∫
SM

tr
(
U(v)

)
dµ(v).

This theorem was proved for Riemannian metrics by Friere and Mañé [7],
mechanical Lagrangians by Innami [8], and convex Hamiltonians by Contreras
and Iturriaga [3]. Using Theorem 1.1 we can obtain an interesting upper bound
for measure theoretic entropy hµ.

Corollary. The measure theoretic entropy hµ of the an n-dimensional compact
Finsler manifold M without conjugate points satisfies the following inequality

hµ ≤ (n− 1)
(
−
∫
SM

Ric(v) dµ(v)
)1/2

,

and equality holds if and only if the flag curvature is constant.

Proof. The Cauchy-Schwarz’s inequality implies∫
SM

tr
(
U(v) · Id

)
dµ(v) ≤

(∫
SM

tr
(
U2(v)

)
dµ(v)

)1/2(∫
SM

tr(Id2) dµ(v)
)1/2

and equality holds if and only if U(v) is a scalar multiple of Id . If equality holds,
then by the Riccati equation, K(v) = −U2(v), and hence the flag curvature is
constant.

The Riccati equation and Theorem 1.1 implies

hµ ≤
(∫

SM

tr
(
U2(v)

)
dµ(v)

)1/2
· (n− 1)1/2.

The ϕt-invariant of the normalized Liouville measure µ implies∫
SM

tr
(
U ′(v)

)
dµ(v) = 0.
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Then, integration of the Riccati equation with respect to µ yields∫
SM

tr
(
U2(v)

)
dµ(v) = −

∫
SM

tr
(
K(v)

)
dµ(v).

But tr
(
K(v)

)
/(n−1) is the Ricci tensor Ric(v), and hence, we have proved. �

2. Manifolds with nonpositive flag curvature

Our proof of the main theorem is based on the following result.

Lemma 2.1. Let M be a compact Finsler manifold without conjugate points.
If U(v) is invertible for all v ∈ SM, then we have

hµ = −
∫
SM

tr
(
K(v) · U−1(v)

)
dµ(v).

Proof. Since U(v) is invertible for all v ∈ SM, we consider the trace of the
Riccati equation

U ′(ϕt(v)) · U−1(ϕt(v)) + U(ϕt(v)) +K(ϕt(v)) · U−1(ϕt(v)) = 0.

Since trace and derivative commute, we have(
ln | detU(ϕt(v))|

)′
+ trU(ϕt(v)) + tr

(
K(ϕt(v)) · U−1(ϕt(v))

)
= 0.

Integrating it over SM × [0, s]. First∫
SM

∫ s

0

(
ln | detU(ϕt(v))|

)′
dt dµ(v)

=

∫
SM

ln | detU(ϕs(v))| dµ(v)−
∫
SM

ln | detU(ϕ0(v))| dµ(v)

=

∫
SM

ln | detU(ϕs(v))| dµ(v)−
∫
SM

ln | detU(v)| dµ(v)

= 0

by Lioville’s theorem. Applying Birkhoff’s Ergodic Theorem to the trace of
the Riccati equation,

hµ =

∫
SM

trU(v) dµ(v)

= lim
T→∞

1

T

∫ T

0

∫
SM

trU(ϕt(v)) dµ(v) dt

= − lim
T→∞

1

T

∫ T

0

∫
SM

tr
(
K(ϕt(v))) · U−1(ϕt(v))

)
dµ(v) dt

= −
∫
SM

tr
(
K(v) · U−1(v)

)
dµ(v),

again, we have used the Liouville’s theorem. �

The following lemma is the final ingredient needed for the main theorem.
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Lemma 2.2. ([1, Lemma 3.5]) For all linear symmetric linear operators A,B,
and C on a Euclidean space such that B and C are nonnegative definite and
A is strictly positive definite, we obtain that

1

2
tr(B · A+ C · A−1) ≥ tr

√
B
√
C,

where the equality holds if and only if
√
B · A =

√
C.

The lower bound for hµ is an improvement of Théorème 3.5 of Foulon ([6]),
and is an immediate consequence of Lemma 2.1 and Lemma 2.2.

Theorem. The measure theoretic entropy hµ of the a compact Finsler manifold
M with nonpositive flag curvature K satisfies the following inequality

hµ ≥
∫
SM

tr
√
−K(v)dµ(v),

and equality holds if and only if the flag curvature is parallel along the geodesic
flows.

Proof. The main difficulty in extending Foulon argument lie in the fact that
U is not necessarily invertible. We consider that Kε(v) = K(v) − ε · Id for
v ∈ SM, ε > 0. Since Kε(v) ≤ −ε · Id, the second fundamental form Uε(v) is
invertible and Uε(v)→ U(v) as ε→ 0. This proposition is due to Eschenburg
and Heintze [5]. We can apply the Lemma 2.2 with A = Uε(v), B = Id, and
C = −Kε(v), obtaining

1

2
tr
(
Uε(v)−Kε(v) · U−1ε (v)

)
≥ tr
√

Id
√
−Kε(v).

Taking ε to zero we have

1

2
tr
(
U(v)−K(v) · U−1(v)

)
≥ tr
√

Id
√
−K(v).

By Lemma 2.1, the measure theoretic entropy

hµ ≥
∫
SM

tr
√
−K(v) dµ(v).

The estimate is sharp(i.e., we have equality) if and only if Uε(v) =
√
−Kε(v)

for almost all v ∈ SM, which implies that Uε(ϕt(v)) =
√
−Kε(ϕt(v)) almost

everywhere v on SM and all t. Then Uε(ϕt(v)) =
√
−Kε(ϕt(v)) convergence

to U(ϕt(v)) =
√
−K(ϕt(v)) as ε → 0. Hence, by continuity of U(ϕt(v)) on

each geodesic flow, for every v ∈ SM,

U2(ϕt(v)) +K(ϕt(v)) = 0.

The Riccati equation implies that U ′(ϕt(v)) = 0 on v ∈ SM, and hence we
conclude that

K ′(ϕt(v)) = − d

dt

(
U2(ϕt(v))

)
= −2U ′(ϕt(v)) · U(ϕt(v)) = 0.

Therefore the flag curvature K is parallel along the geodesic flows. �
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