

A NOTE ON SOME WEIGHTED MAXIMAL OPERATORS OF PARTIAL SUMS OF WALSH-FOURIER SERIES

DAVID BARAMIDZE

ABSTRACT. In this paper we introduce some new weighted maximal operators of the partial sums of the Walsh-Fourier series. We prove that for some "optimal" weights these new operators indeed are bounded from the martingale Hardy space $H_1(G)$ to the space weak $-L_1(G)$, but is not bounded from $H_1(G)$ to the space $L_1(G)$.

1. INTRODUCTION

All symbols used in this introduction can be found in Section 2.

It is well-known that the Walsh system does not form a basis in the space L_1 (see e.g. [2]). Moreover, there exists a function in the dyadic Hardy space $H_1(G)$, such that the partial sums of f are not bounded in the L_1 -norm. Uniform and pointwise convergence and some approximation properties of partial sums in $L_1(G)$ norms were investigated by Avdispahić and Memić [1], Gát, Goginava and Tkebuchava [19, 20], Nagy [24, 25], Onneweer [26] and Persson, Schipp, Tephnadze and Weisz [29]. Fine [16] obtained sufficient conditions for the uniform convergence which are completely analogous to the Dini-Lipschits conditions. Gulicev [21] estimated the rate of uniform convergence of a Walsh-Fourier series by using Lebesgue constants and modulus of continuity. These problems for Vilenkin groups were investigated by Blahota, Nagy, Persson and Tephnadze [10] (see also [6, 7, 8, 9, 27]), Blahota and G. Tephnadze and Toledo [15] (see also [12, 13, 14]), Fridli [17], Gát [18] and Memić [23].

In study of convergence of subsequences of partial sums and their restricted maximal operators on the martingale Hardy spaces H_p for $0 , the central role is played by the fact that any natural number <math>n \in \mathbb{N}$ can be uniquely expressed as

$$n = \sum_{k=0}^{\infty} n_j 2^j, \quad n_j \in \mathbb{Z}_2 \ (j \in \mathbb{N}),$$

²⁰²⁰ Mathematics Subject Classification. 42C10.

Key words and phrases. Walsh-Fourier series, partial sums, martingale Hardy space, maximal operators, weighted maximal operators.

The research was supported by Shota Rustaveli National Science Foundation grant no. PHDF-21-1702.

where only a finite numbers of n_j differ from zero and their important characters [n], |n|, $\rho(n)$ and V(n) are defined by

$$[n] := \min\{j \in \mathbb{N}, n_j \neq 0\}, \ |n| := \max\{j \in \mathbb{N}, n_j \neq 0\}, \ \rho(n) = |n| - [n],$$
$$V(n) := n_0 + \sum_{k=1}^{\infty} |n_k - n_{k-1}|, \text{ for all } n \in \mathbb{N}$$

Moreover, every $n \in \mathbb{N}$ can be also represented as

$$n = \sum_{i=1}^{r} 2^{n_i}, n_1 > n_2 > \dots > n_r \ge 0$$

and for any $\{n_{s_j}\}, j = 1, 2, \dots, r$, satisfying

$$2^{s} \le n_{s_1} \le n_{s_2} \le \dots \le n_{s_r} < 2^{s+1}, \ s \in \mathbb{N},$$

we define numbers

(1)
$$s_{-} := \min\{[n_{s_{j}}]\}, \quad s_{+} := \max\{|n_{s_{j}}|\} = s, \quad \rho_{s}(n_{s_{j}}) := s_{+} - s_{-}.$$

In particular, (see [11], [22] and [30])

$$V(n) / 8 \le ||D_n||_1 \le V(n)$$

Hence, for any $f \in H_1$ (see [34])

$$\|S_n F\|_{H_1} \le cV(n) \|F\|_{H_1}.$$

For $0 in [32, 33] the weighted maximal operator <math>\tilde{S}^{*,p}$, defined by

(2)
$$\widetilde{S}^{*,p}F := \sup_{n \in \mathbb{N}} \frac{|S_n F|}{(n+1)^{1/p-1}}$$

was investigated and it was proved that the following inequalities hold:

$$\left\| \widetilde{S}^* F \right\|_p \le C_p \left\| F \right\|_{H_p}$$

Moreover, it was also proved that the rate of the sequence $\{(n+1)^{1/p-1}\}$ given in the denominator of (2) can not be improved.

In [34] and [35] it was proved that if $F \in H_p$, then there exists an absolute constant c_p , depending only on p, such that

$$||S_n F||_{H_p} \le C_p 2^{\rho(n)(1/p-1)} ||F||_{H_p}.$$

In [5] it was proved that the maximal operator

(3)
$$\sup_{n \in \mathbb{N}} \frac{|S_n F|}{2^{\rho(n)(1/p-1)}}$$

PARTIAL SUMS

is bounded from H_p to weak $-L_p$. Moreover, it was also proved that the rate of the sequence $\{2^{\rho(n)(1/p-1)}\}$ given in the denominator of (2) can not be improved.

In [5] it was also proved that the weighted maximal operator (3) is not bounded from $H_p(G)$ to the Lebesgue space $L_p(G)$, for 0 .

In [3] it was proved that if $0 , <math>f \in H_p$, $\{n_k : k \ge 0\}$ is a sequence of positive integers and $\{n_{s_i} : 1 \le i \le r\} \subset \{n_k : k \ge 0\}$ are integers such that $2^s \le n_{s_1} \le n_{s_2} \le \dots \le n_{s_r} \le 2^{s+1}, s \in \mathbb{N}$, then the weighted maximal operator $\widetilde{S}^{*,\nabla,1}$, defined by

$$\widetilde{S}^{*,\nabla,1}F := \sup_{s \in \mathbb{N}} \sup_{2^s \le n_{s_i} < 2^{s+1}} \frac{|S_n F|}{2^{\rho_s \left(n_{s_i}\right)(1/p-1)}},$$

where $\rho_s(n_{s_i})$ are defined by (1), is bounded from the Hardy space H_p to the Lebesgue space L_p . Moreover, if $0 , <math>\{n_k : k \ge 0\}$ is a sequence of positive numbers and $\{n_{s_i}: 1 \le i \le r\} \subset \{n_k: k \ge 0\}$ is a subsequence satisfying the condition

$$2^{s} \le n_{s_1} \le n_{s_2} \le \dots \le n_{s_r} \le 2^{s+1}, \ s \in \mathbb{N}$$

then, for any nonnegative, nondecreasing function $\varphi: \mathbb{N}_+ \to \mathbb{R}$ satisfying condition

$$\sup_{s\in\mathbb{N}}\sup_{2^s\leq n_{s_i}<2^{s+1}}\frac{2^{\rho_s(n_{s_i})(1/p-1)}}{\varphi(n_{s_i})}=\infty,$$

the maximal operator, defined by

$$\sup_{s \in \mathbb{N}} \sup_{2^{s} \le n_{s_{i}} < 2^{s+1}} \frac{|S_{n}F|}{\varphi(n_{s_{i}})},$$

is not bounded from the Hardy space H_p to the Lebesgue space L_p .

In [4] it was proved that if $0 , <math>F \in H_p(G)$ and $\varphi : \mathbb{N}_+ \to \mathbb{R}_+$ be any nonnegative and nondecreasing function satisfying the condition

$$\sum_{n=1}^{\infty} \frac{1}{\varphi^p(n)} < c < \infty,$$

then, for any sequence $\{n_k : k \ge 0\}$ of positive integers, the weighted maximal operator $\widetilde{S}^{*,\nabla,2}$, defined by

(4)
$$\widetilde{S}^{*,\nabla,2}F = \sup_{k \in \mathbb{N}} \frac{|S_{n_k}F|}{2^{\rho(n_k)(1/p-1)}\varphi(\rho(n_k))},$$

is bounded from the Hardy space H_p to the Lebesgue space L_p . Moreover, for any $0 and any sequence <math>\{n_k : k \ge 0\}$ of positive numbers and $\varphi : \mathbb{N}_+ \to \mathbb{R}_+$ be any nonnegative and nondecreasing function satisfying the condition

$$\sum_{n=1}^{\infty} \frac{1}{\varphi^p(n)} = \infty,$$

the weighted maximal operator $\widetilde{S}^{*,\nabla,2}$, defined by (4), is not bounded from the Hardy space $H_p(G)$ to the Lebesgue space $L_p(G)$. Hence, we get that if $0 and <math>F \in H_p(G)$, then the weighted maximal operator $\widetilde{S}^{*,\nabla,\varepsilon,2}$, defined by

$$\widetilde{S}^{*,\nabla,\varepsilon,2}F := \sup_{n \in \mathbb{N}} \frac{|S_n F|}{2^{\rho(n)(1/p-1)} \left(\rho(n) \log^{1+\varepsilon} \rho(n)\right)^{1/p}}, \quad \varepsilon > 0$$

is bounded from the Hardy space $H_p(G)$ to the Lebesgue space $L_p(G)$ for $\varepsilon > 0$ and is not bounded from the Hardy space $H_p(G)$ to the Lebesgue space $L_p(G)$ for $\varepsilon = 0$.

In this paper we introduce some new weighted maximal operators of the partial sums of the Walsh-Fourier series. We prove that for some "optimal" weights these new operators indeed are bounded from the martingale Hardy space $H_1(G)$ to the space weak $-L_1(G)$, but is not bounded from $H_1(G)$ to the space $L_1(G)$.

2. Preliminaries

Let \mathbb{N}_+ denote the set of the positive integers, $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Denote by Z_2 the discrete cyclic group of order 2, that is $Z_2 := \{0, 1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_2 is given so that the measure of a singleton is 1/2. Define the group G as the complete direct product of the group Z_2 , with the product of the discrete topologies of Z_2 's. The elements of G are represented by sequences $x := (x_0, x_1, \dots, x_j, \dots)$, where $x_j = 0 \vee 1$.

It is easy to give a base for the neighborhood of $x \in G$:

$$I_0(x) := G, \quad I_n(x) := \{ y \in G : y_0 = x_0, ..., y_{n-1} = x_{n-1} \} \ (n \in \mathbb{N}).$$

Denote $I_n := I_n(0)$, $\overline{I_n} := G \setminus I_n$. Then, it is easy to prove that

(5)
$$\overline{I_M} = \bigcup_{s=0}^{M-1} I_s \backslash I_{s+1}$$

Let define the Walsh system $w := (w_n : n \in \mathbb{N})$ on G by

$$w_n(x) := \prod_{k=0}^{\infty} r_k^{n_k}(x) = (-1)^{\sum_{k=0}^{|n|} n_k x_k} \qquad (n \in \mathbb{N}).$$

The Walsh system is orthonormal and complete in $L_2(G)$ (see e.g. [30] and [36, 28]). If $f \in L_1$ we define Fourier coefficients, partial sums of the Fourier series, Dirichlet kernels with respect to the Walsh system by

$$\widehat{f}(k) := \int_{G} f w_{k} d\mu \ (k \in \mathbb{N}), \ S_{n} f := \sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \ D_{n} := \sum_{k=0}^{n-1} w_{k} \ (n \in \mathbb{N}_{+})$$

Recall that (see [28] and [30])

(6)
$$D_{2^n}(x) = \begin{cases} 2^n, & \text{if } x \in I_n, \\ 0, & \text{if } x \notin I_n, \end{cases}$$

and

(7)
$$D_n = w_n \sum_{k=0}^{\infty} n_k r_k D_{2^k} = w_n \sum_{k=0}^{\infty} n_k \left(D_{2^{k+1}} - D_{2^k} \right), \text{ for } n = \sum_{i=0}^{\infty} n_i 2^i.$$

The σ -algebra generated by the intervals $\{I_n(x) : x \in G\}$ will be denoted by $\zeta_n (n \in \mathbb{N})$. Denote by $F = (F_n, n \in \mathbb{N})$ martingale with respect to $\zeta_n (n \in \mathbb{N})$ (see e.g. [36, 37]). The maximal function F^* of a martingale F is defined by

$$F^* := \sup_{n \in \mathbb{N}} |F_n| \,.$$

For $0 the Hardy martingale spaces <math>H_p(G)$ consists of all martingales for which

$$||F||_{H_p} := ||F^*||_p < \infty.$$

It is easy to prove that for every martingale $F = (F_n, n \in \mathbb{N})$ and every $k \in \mathbb{N}$ the limit $\widehat{F}(k) := \lim_{n \to \infty} \int_G F_n(x) w_k(x) d\mu(x)$ exists and it is called the k-th Walsh-Fourier coefficients of F.

If $F := (S_{2^n} f : n \in \mathbb{N})$ is a regular martingale, generated by $f \in L_1$, then $\widehat{F}(k) = \widehat{f}(k), k \in \mathbb{N}$.

A bounded measurable function a is called p-atom, if there exists a dyadic interval I, such that

$$\int_{I} a d\mu = 0, \quad \left\|a\right\|_{\infty} \le \mu\left(I\right)^{-1/p}, \quad \operatorname{supp}\left(a\right) \subset I.$$

The dyadic Hardy martingale spaces $H_p(G)$ for 0 have an atomic characterization. Namely, the following holds (see [28], [36, 37]):

Lemma 1. A martingale $F = (F_n, n \in \mathbb{N})$ belongs to $H_p(G)$ (0 if and only if $there exists a sequence <math>(a_k, k \in \mathbb{N})$ of p-atoms and a sequence $(\mu_k, k \in \mathbb{N})$ of real numbers such that for every $n \in \mathbb{N}$,

(8)
$$\sum_{k=0}^{\infty} \mu_k S_{2^n} a_k = F_n, \qquad \sum_{k=0}^{\infty} |\mu_k|^p < \infty,$$

Moreover, $\|F\|_{H_p} \sim \inf \left(\sum_{k=0}^{\infty} |\mu_k|^p\right)^{1/p}$, where the infimum is taken over all decomposition of F of the form (8).

3. The main result

Our main result reads:

Theorem 2. a) Let $F \in H_1$. Then the weighted maximal operator $\widetilde{S}^{*,\nabla}$, defined by

(9)
$$\widetilde{S}^{*,\nabla}F := \sup_{n \in \mathbb{N}} \frac{|S_n F|}{V(n)}$$

is bounded from the Hardy space H_1 to the space weak $-L_1$.

b) Let $F \in H_1$. Then the weighted maximal operator $\widetilde{S}^{*,\nabla}$, defined by (9) is not bounded from the Hardy space H_1 to the space L_1 .

Proof. Since $S_n/V(n)$ is bounded from L_{∞} to L_{∞} , by Lemma 1, the proof of Theorem 2 will be complete, if we prove that

(10)
$$t\mu\left\{x\in\overline{I_M}:\widetilde{S}^{*,\nabla}a(x)\ge t\right\}\le C<\infty, \quad t\ge 0$$

for every 1-atom a. In this paper C denotes a positive constant but which can be different in different places.

We may assume that a is an arbitrary 1-atom, with support I, $\mu(I) = 2^{-M}$ and $I = I_M$. It is easy to see that $S_n a(x) = 0$, when $n < 2^M$. Therefore, we can suppose that $n \ge 2^M$. Since $||a||_{\infty} \le 2^M$, we obtain that

$$\frac{|S_n a(x)|}{V(n)} \leq \frac{1}{V(n)} \|a\|_{\infty} \int_{I_M} |D_n(x+t)| \, \mu(t) \leq 2^M \int_{I_M} |D_n(x+t)| \, \mu(t) \, .$$

Let $x \in I_s \setminus I_{s+1}$. Then, it is easy to see that $x + t \in I_s \setminus I_{s+1}$ for $t \in I_M$ and if we again combine (6) and (7) we find that $D_n(x+t) \leq c2^s$, for $t \in I_M$ and

(11)
$$\frac{|S_n a(x)|}{V(n)} \le C2^M 2^{s-M} \le C2^s.$$

By applying (11) for any $x \in I_s \setminus I_{s+1}$, $0 \le s < M$, we find that

(12)
$$\widetilde{S}^{*,\nabla}a\left(x\right) \le C2^{s}.$$

It immediately follows that for $s \leq M$ we have the following estimate

$$\widetilde{S}^{*,\nabla}a(x) \le C2^{M}$$
 for any $x \in I_s \setminus I_{s+1}, s = 0, 1, \cdots, M$

and also that

(13)
$$\mu \left\{ x \in I_s \setminus I_{s+1} : \tilde{S}^{*,\nabla} a(x) > C2^k \right\} = 0, \quad k = M, M+1, \dots$$

By combining (5) and (12) we get that

$$\left\{x \in \overline{I_N} : \widetilde{S}^{*,\nabla}a\left(x\right) \ge C2^k\right\} \subset \bigcup_{s=k}^{M-1} \left\{x \in I_s \setminus I_{s+1} : \widetilde{S}^{*,\nabla}a\left(x\right) \ge C2^k\right\}$$

and

(14)
$$\mu\left\{x\in\overline{I_M}:\widetilde{S}^{*,\nabla}a\left(x\right)\ge C2^k\right\}\le\sum_{s=k}^{M-1}\frac{1}{2^s}\le\frac{2}{2^k}$$

In view of (13) and (14) we can conclude that

$$2^{k}\mu\left\{x\in\overline{I_{N}}:\widetilde{S}^{*,\nabla}a\left(x\right)\geq C2^{k}\right\}< C<\infty,$$

which shows that (10) holds and the proof of part a) is complete. Set

$$f_n(x) = D_{2^{n+1}}(x) - D_{2^n}(x), \qquad n \ge 3$$

In [5] it was proved that $||f_n||_{H_1} \leq 1$ and $|S_{2^n+2^s}f_n(x)| \geq C2^s$, for $x \in I_{s+1}(e_s)$, $s = 0, \dots, n-1$. Hence,

$$\int_{G} \sup_{n \in \mathbb{N}} \frac{|S_n f_n|}{V(n)} d\mu \ge \sum_{s=0}^{n_k - 1} \int_{I_{s+1}(e_s)} \frac{|S_{2^n + 2^s} f_n|}{V(2^n + 2^s)} d\mu \ge C \sum_{s=0}^{n - 1} \frac{1}{2^s} 2^s \ge Cn$$

Finally, we get that

$$\frac{\int_{G} \left(\sup_{n \in \mathbb{N}} \frac{|S_n f_n(x)|}{V(n)} \right) d\mu(x)}{\|f_n\|_{H_1}} \ge Cn \to \infty, \quad \text{as} \quad n \to \infty$$

so also part b) is proved and the proof is complete.

4. Further results

We finalize this paper with another natural conjecture related to Theorem 2. For this we need some new characterization of $n \in \mathbb{N}$.

Let

$$2^s \le n_{s_1} \le n_{s_2} \le \dots \le n_{s_r} \le 2^{s+1}, \ s \in \mathbb{N}.$$

For such n_{s_j} , which can be written as $n_{s_j} = \sum_{i=1}^{r_{s_j}} \sum_{k=l_i^{s_j}}^{t_i^{s_j}} 2^k$, where

$$0 \le l_1^{s_j} \le t_1^{s_j} \le l_2^{s_j} - 2 < l_2^{s_j} \le t_2^{s_j} \le \dots \le l_{r_{s_j}}^{s_j} - 2 < l_{r_{s_j}}^{s_j} \le t_{r_{s_j}}^{s_j},$$

we define

$$A_s := \left\{ l_1^s, l_2^s, ..., l_{r_s^1}^s \right\} \bigcup \left\{ t_1^s, t_2^s, ..., t_{r_s^2}^s \right\} = \left\{ u_1^s, u_2^s, ..., u_{r_s^3}^s \right\},$$

where $u_1^s < u_2^s < ... < u_{r_s^3}^s$. We note that $t_{r_{s_j}}^{s_j} = s \in A_s$, for j = 1, 2, ..., r.

We denote the cardinality of the set A_s by $|A_s|$, that is

$$\operatorname{card}(A_s) := |A_s|.$$

By this definition we can conclude that

$$|A_s| = r_s^3 \le r_s^1 + r_s^2.$$

It is evident that $\sup_{s \in \mathbb{N}} |A_s| < \infty$ if and only if the sets $\{n_{s_1}, n_{s_2}, ..., n_{s_r}\}$ are uniformly finite for all $s \in \mathbb{N}_+$ and each n_{s_i} has bounded variation

$$V(n_{s_i}) < c < \infty$$
, for each $j = 1, 2, ..., r$.

Conjecture 3. a) Let $f \in H_1$ and $\{n_k : k \ge 0\}$ is a sequence of positive numbers. Then the weighted maximal operator $\widetilde{S}^{*,\nabla}$, defined by

$$S^{*,\nabla,3}F := \sup_{k \in \mathbb{N}} \frac{|S_{n_k}F|}{A_{|n_k|}},$$

is bounded from the Hardy space H_1 to the Lebesgue space L_1 .

b) (Sharpness) Let

$$\sup_{k\in\mathbb{N}}|A_{n_k}|=\infty$$

and $\{\varphi_n\}$ is a nondecreasing sequence satisfying the condition

$$\overline{\lim}_{k\to\infty} \left(A_{|n_k|} / \varphi_{|n_k|} \right) = \infty.$$

Then there exists a martingale $f \in H_1$, such that the maximal operator, defined by

$$\sup_{k\in\mathbb{N}}\frac{|S_{n_k}F|}{\varphi_{|n_k|}}$$

is not bounded from the Hardy space H_1 to the Lebesgue space L_1 .

References

- M. Avdispahić and N. Memić, On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups, Acta Math. Hungar. 129(4) (2010), 381–392.
- [2] N. K. Bary, Trigonometric series, Gos. Izd. Fiz. Mat. Lit. Moscow 1961, (Russian).
- [3] D. Baramidze, Martingale Hardy spaces and some new weighted maximal operators of partial sums of Walsh-Fourier series, Georgian Math. J. (to appear).
- [4] D. Baramidze, L.-E. Persson and G. Tephnadze, Some new $(H_p L_p)$ type inequalities for weighted maximal operators of partial sums of Walsh-Fourier series, Positivity 27(3) 38, (2023), 14 pp.
- [5] D. Baramidze, L.-E. Persson, H. Singh and G. Tephnadze, Some new weak (H_p L_p) type inequality for weighted maximal operators of partial sums of Walsh-Fourier series, Mediterr. J. Math. 20(5) 28 (2023), 13 pp.
- [6] D. Baramidze, L.-E. Persson, H. Singh and G. Tephnadze, Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh-Fourier series, J. Inequal. Appl. 30 (2022), 13 pp.
- [7] I. Blahota, Approximation by Vilenkin-Fourier sums in $L_p(G_m)$, Acta Math. Acad. Paedag. Nyíregyh. 13 (1992), 35–39.
- [8] I. Blahota and K. Nagy, Approximation by θ-means of Walsh-Fourier series, Anal. Math., 44 (2018), 57–71.
- [9] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz θ-means of double Walsh-Fourier series, Math. Inequal. Appl., 22(3) (2019), 837–853.

58

PARTIAL SUMS

- [10] I. Blahota, K. Nagy, L. E. Persson and G. Tephnadze, A sharp boundedness result concerning maximal operators of Vilenkin-Fourier series on martingale Hardy spaces, Georgian Math. J. 26(3) (2019), 351–360.
- [11] I. Blahota, L. E. Persson and G. Tephnadze, Two-sided estimates of the Lebesgue constants with respect to Vilenkin systems and applications, Glasg. Math. J. 60 (1) (2018), 17–34.
- [12] I. Blahota, L.E. Persson and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Czech. Math J. 65 (4) (2015), 983–1002.
- [13] I. Blahota and G. Tephnadze, On the (C, α) -means with respect to the Walsh system, Anal. Math. 40 (2014), 161–174.
- [14] I. Blahota and G. Tephnadze, Strong convergence theorem for Vilenkin-Fejér means, Publ. Math. Debrecen 85 (1-2) (2014), 181–196.
- [15] I. Blahota, G. Tephnadze, R. Toledo, Strong convergence theorem of (C, α) -means with respect to the Walsh system, Tohoku Math. J. **67**(4) (2015), 573–584.
- [16] N. I. Fine, On Walsh function, Trans. Amer. Math. Soc. 65 (1949), 372–414.
- [17] S. Fridli, Approximation by Vilenkin-Fourier series, Acta Math. Hung. 47(1-2) (1986), 33-44.
- [18] G. Gát, Best approximation by Vilenkin-like systems, Acta Acad. Paed. Nyireg. 17 (2001), 161–169.
- [19] G. Gát, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series, J. Math. Appl. 323(1) (2006), 535–549.
- [20] U. Goginava and G. Tkebuchava, Convergence of subsequence of partial sums and logarithmic means of Walsh-Fourier series, Acta Sci. Math. 72 (2006), 159–177.
- [21] N. V. Gulićev, Approximation to continuous functions by Walsh-Fourier series, Anal. Math. 6 (1980), 269–280.
- [22] S. F. Lukomskii, Lebesgue constants for characters of the compact zero-dimensional Abelian groups, East J. Approx. 15(2) (2009), 219–231.
- [23] N. Memić, I. Simon and G. Tephnadze, Strong convergence of two-dimensional Vilenkin-Fourier series, Math. Nachr. 289(4) (2016) 485–500.
- [24] K. Nagy, Approximation by Cesáro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx. 16(3) (2010), 297–311.
- [25] K. Nagy and G. Tephnadze, The Walsh-Kaczmarz-Marcinkiewicz means and Hardy spaces, Acta Math. Hung. 149(2) (2016), 346–374.
- [26] C.W. Onneweer, On L-convergence of Walsh-Fourier series, Internat. J. Math. Sci. 1 (1978), 47–56.
- [27] L. E. Persson, G. Tephnadze and P. Wall, On an approximation of 2-dimensional Walsh-Fourier series in the martingale Hardy spaces, Ann. Funct. Anal. 9(1) (2018), 137–150.
- [28] L. E. Persson, G. Tephnadze and F. Weisz, Martingale Hardy Spaces and Summability of Onedimensional Vilenkin-Fourier Series, Birkhäuser/Springer, 2022.
- [29] L.-E. Persson, F. Schipp, G. Tephnadze and F. Weisz, An analogy of the Carleson-Hunt theorem with respect to Vilenkin systems, J. Fourier Anal. Appl. 28(48) (2022), 1–29.
- [30] F. Schipp, W. Wade, P. Simon and J. Pál, Walsh series, An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest-Adam-Hilger, Bristol-New-York, 1990.
- [31] P. Simon, A note on the of the Sunouchi operator with respect to Vilenkin systems, Ann. Univ. Sci. Budapest. Eötvos. Sect. Math. 43 (2001), 101–116.
- [32] G. Tephnadze, On the Vilenkin-Fourier coefficients, Georgian Math. J. 20(1) (2013), 169–177.
- [33] G. Tephnadze, On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal. 49(1) (2014), 23–32.
- [34] G. Tephnadze, On the partial sums of Walsh-Fourier series, Colloq. Math. 141(2) (2015), 227–242.
- [35] G. Tephnadze, On the convergence of partial sums with respect to Vilenkin system on the martingale Hardy spaces, J. Contemp. Math. Anal. 53(5) (2018), 294–306.
- [36] F. Weisz, Martingale Hardy spaces and their applications in Fourier Analysis, Springer, Berlin-Heideiberg-New York, 1994.

[37] F. Weisz, Hardy spaces and Cesáro means of two-dimensional Fourier series, Bolyai Soc. Math. Studies 5 (1996), 353–367.

Received November 2, 2023.

D. BARAMIDZE, THE UNIVERSITY OF GEORGIA, SCHOOL OF SCIENCE AND TECHNOLOGY, 77A MERAB KOSTAVA ST, TBILISI 0128, GEORGIA AND DEPARTMENT OF COMPUTER SCIENCE AND COM-PUTATIONAL ENGINEERING, UIT - THE ARCTIC UNIVERSITY OF NORWAY, P.O. BOX 385, N-8505, NARVIK, NORWAY.

Email address: davit.baramidze@ug.edu.ge

60