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Abstract

In this paper, we gave some new explicit expressions and recurrence relations
for marginal and joint moment generating functions of dual generalized order sta-
tistics from exponentiated gamma distribution. The results for order statistics
and lower record values are deduced from the relation derived. Further, char-
acterizing result of this distribution on using a recurrence relation for marginal
moment generating functions dual generalized order statistics is discussed.

1 Introduction

The concept of generalized order statistics (gos) was introduced by Kamps [1] as a
general framework for models of ordered random variables. Moreover, many other
models of ordered random variables, such as, order statistics, k-th upper record values,
upper record values, progressively Type II censoring order statistics, Pfeifer records
and sequential order statistics are seen to be particular cases of gos. These models
can be effectively applied, e.g., in reliability theory. However, random variables that
are decreasingly ordered cannot be integrated into this framework. Consequently, this
model is inappropriate to study, e.g. reversed ordered order statistic and lower record
values models. Burkschat et al. [2] introduced the concept of dual generalized order
statistics (dgos). The dgos models enable us to study decreasingly ordered random
variables like reversed order statistics, lower k record values and lower Pfeirfer records,
through a common approach below: Suppose Xd(1, n,m, k), . . . , Xd(n, n,m, k), (k ≥ 1,
m is a real number), are n dgos from an absolutely continuous cumulative distribution
function cdf F (x) with probability density function pdf f(x), if their joint pdf is of the
form

k

n−1∏
j=1

γj

(n−1∏
i=1

[F (xi)]
mf(xi)

)
[F (xn)]k−1f(xn), (1)

for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0), where γj = k + (n− j)(m+ 1) > 0 for all
j, 1 ≤ j ≤ n, k is a positive integer and m ≥ −1. If m = 0 and k = 1, then this model
reduces to the (n − r + 1)-th order statistic, from the sample X1, X2, . . . , Xn and (1)
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106 The Exponentiated Gamma Distribution

will be the joint pdf of n order statistics. If k = 1 and m = −1, then (1) will be the
joint pdf of the first n record values of the identically and independently distributed
(iid) random variables with cdf F (x) and corresponding pdf f(x).
In view of (1), the marginal pdf of the r-th dgos, is given by

fXd(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1f(x)gr−1m (F (x)). (2)

The joint pdf of r-th and s-th dgos, is

fXd(r,n,m,k),Xd(s,n,m,k)(x, y)

=
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x)gr−1m (F (x))

× [hm(F (y))− hm(F (x))]
s−r−1

[F (y)]
γs−1 f(y), (3)

where

Cr−1 =

r∏
i=1

γi, hm(x) =

{
− 1
m+1x

m+1 for m 6= −1,

−lnx for m = −1,

and
gm(x) = hm(x)− hm(1),

for x ∈ [0, 1).
Ahsanullah and Raqab [3], Raqab and Ahsanullah [4, 5] have established recur-

rence relations for moment generating functions (mgf) of record values from Pareto
and Gumble, power function and extreme value distributions. Recurrence relations
for marginal and joint mgf of gos from power function distribution, Erlang-truncated
exponential distribution and extended type II generalized logistic distribution are de-
rived by Saran and Singh [6], Kulshrestha et al. [7] and Kumar [8] respectively. Kumar
[9, 10, 11] have established recurrence relations for marginal and joint mgf of dgos
from generalized logistic, Marshall-Olkin extended logistic and type I generalized lo-
gistic distribution respectively. Al-Hussaini et al. [12, 13] have established recurrence
relations for conditional and joint mgf of gos based on mixed population. Kumar [14]
have established explicit expressions and some recurrence relations for mgf of record
values from generalized logistic distribution. Recurrence relations for single and prod-
uct moments of dgos from the inverse Weibull distribution are derived by Pawlas and
Szynal [15]. Ahsanullah [16] and Mbah and Ahsanullah [17] characterized the uniform
and power function distributions based on distributional properties of dgos respec-
tively. Characterizations based on gos have been studied by some authors, Keseling
[18] characterized some continuous distributions based on conditional distributions of
gos. Bieniek and Szynal [19] characterized some distributions via linearity of regres-
sion of gos. Cramer et al. [20] gave a unifying approach on characterization via linear
regression of ordered random variables.
Rest of the paper is organized as follows: In Section 2 exact expressions and recur-

rence relations for marginal and joint mgf of dgos from exponentiated Gamma distri-
bution (EGD) are presented, while in Section 3, the exact expressions and recurrence
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relations for joint mgf for dgos from EGD are discussed In Section 4, a characteriza-
tion of EGD is obtained by using the recurrence relation for marginal mgf of dgos.
Some final comments in Section 5 conclude the paper.
Gupta et al. [21] introduced the EGD. This model is flexible enough to accommo-

date both monotonic as well as nonmonotonic failure rates. The cdf and pdf of EGD
are given, respectively by

F (x) = [1− e−x(x+ 1)]α, x > 0, α > 0, (4)

f(x) = αxe−x[1− e−x(x+ 1)]α−1, x > 0, α > 0. (5)

Note that for FGD,
αxF (x) = [e−x − (x+ 1)]f(x). (6)

For α = 1, the above distribution corresponds to the gamma distribution G(1, 2).

2 Relations forMarginal Moments Generating Func-
tions

In this Section the exact expressions and recurrence relations for marginal mgf of dgos
from EGD are considered. For the EGD when m 6= −1,

MXd(r,n,m,k)(t) =

∫ ∞
−∞

etxf(x)dx =
Cr−1

(r − 1)!

∫ ∞
−∞

etx[F (x)]γr−1f(x)gr−1m (F (x))dx.

(7)
On using (4) and (5) in (6) and simplification of the resulting equation we get

MXd(r,n,m,k)(t) =
αCr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

∞∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(q + 2)

(p+ 1− t)q+2 , (8)

and for m = −1

MXd(r,n,−1,k)(t) =
(αk)r

(r − 1)!

∞∑
p=0

∞∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
αk − 1
v

)

×
(
r − 1 + v + p

w

)
Γ(w + 2)

(r + v + p− t)w+2 , (9)

where φp(r − 1) is the coeffi cient of e−(r−1+p)x(x+ 1)r−1+p in the expansion of( ∞∑
p=1

e−px(x+ 1)p

p

)r−1
,

see Balakrishnan and Cohan [22].
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Differentiating both sides of (8) and (9) with respect to t, j times we get

M
(j)
Xd(r,n,m,k)

(t) =
αCr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

∞∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1− t)j+q+2 (10)

and

M
(j)
Xd(r,n,−1,k)(t) =

(αk)r

(r − 1)!

∞∑
p=0

∞∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
αk − 1
v

)

×
(
r − 1 + v + p

w

)
Γ(j + w + 2)

(r + v + p− t)j+w+2 . (11)

If α is a positive integer, the relations (10) and (11) then give

M
(j)
Xd(r,n,m,k)

(t) =
αCr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

αγr−u−1∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1− t)j+q+2 (12)

and

M
(j)
Xd(r,n,−1,k)(t) =

(αk)r

(r − 1)!

∞∑
p=0

αk−1∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
αk − 1
v

)

×
(
r − 1 + v + P

w

)
Γ(j + w + 2)

(r + v + p− t)j+w+2 . (13)

By differentiating both sides of equation (12) and (13) with respect to t and then setting
t = 0, we obtain the explicit expression for single moments of dgos and k record values
from EGD in the form

E[Xj
d(r, n,m, k)] =

αCr−1
(r − 1)!(m+ 1)r−1

r−1∑
u=0

αγr−u−1∑
p=0

p∑
q=0

(−1)u+p
(
r − 1
u

)

×
(
αγr−u − 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1)j+q+2
(14)

and

E[Xj
d(r, n,−1, k)] =

(αk)r

(r − 1)!

∞∑
p=0

αk−1∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
αk − 1
v

)

×
(
r − 1 + v + p

w

)
Γ(j + w + 2)

(r + v + p)j+w+2
. (15)

Special Cases:
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(i) Putting m = 0, k = 1 in (12) and (14), relations for order statistics can be
obtained as

M
(j)
Xr:n

(t) = αCr:n

n−r∑
u=0

α(r+u)−1∑
p=0

p∑
q=0

(−1)u+p
(
n− r
u

)

×
(
α(r + u)− 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1− t)j+q+2

and

E[Xj
r;n] = αCr:n

n−r∑
u=0

α(r+u)−1∑
p=0

p∑
q=0

(−1)u+p
(
n− r
u

)

×
(
α(r + u)− 1

p

)(
p
q

)
Γ(j + q + 2)

(p+ 1)j+q+2
,

where

Cr:n =
n!

(r − 1)!(n− r)! .

(ii) Putting k = 1 in (13) and (15), relations for record values can be obtained as

M
(j)
XL(r)

(t) =
αr

(r − 1)!

∞∑
p=0

α−1∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
α− 1
v

)

×
(
r − 1 + v + p

w

)
Γ(j + w + 2)

(r + v + p− t)j+w+2

and

E[Xj
L(r)] =

αr

(r − 1)!

∞∑
p=0

α−1∑
v=0

r−1+v+p∑
w=0

(−1)vφp(r − 1)

(
α− 1
v

)

×
(
r − 1 + v + P

w

)
Γ(j + w + 2)

(r + v + p)j+w+2
.

A recurrence relation for mgf of dgos from cdf (4) can be obtained in the following
theorem.

THEOREM 1. For 2 ≤ r ≤ n n ≥ 2 and k = 1, 2, . . . ,(
1− t

αγr

)
M

(j)
Xd(r,n,m,k)

(t)

= M
(j)
Xd(r−1,n,m,k)(t) +

j

αγr
M

(j−1)
Xd(r,n,m,k)

(t)

− 1

αγr

{
tE[φ(Xd(r, n,m, k))] + E[ψ(Xd(r, n,m, k))]

}
, (16)
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where
φ(x) = xj−1

(
e(t+1)x − etx

)
and ψ(x) = xj−2

(
e(t+1)x − etx

)
.

PROOF. Integrating by parts of (7) and using (6), we get

MXd(r,n,m,k)(t)

= MXd(r−1,n,m,k)(t) +
j

αγr

{
MXd(r,n,m,k)(t)− E[h(Xd(r, n,m, k))]

}
, (17)

where

h(x) =

(
e(t+1)x

x
− etx

x

)
.

Differentiating both the sides of (17) j times with respect to t, we get the result given
in (16). By differentiating both sides of equation (17) with respect to t and then setting
t = 0, we obtain the recurrence relations for moments of dgos from EGD in the form

E[Xj
d(r, n,m, k)] = E[Xj

d(r − 1, n,m, k)] +
j

αγr
E[Xj−1

d (r, n,m, k)]

+
j

αγr

{
E[Xj−2

d (r, n,m, k)]− E[ξ(Xd(r, n,m, k))]
}
, (18)

where ξ(x) = xj−2ex.

REMARK 2.1. Putting m = 0, k = 1 in (16) and (18), relations for order statistics
can be obtained as

M
(j)
Xr:n

(t) =

(
1− t

α(r − 1)

)
M

(j)
Xr−1:n

(t)− j

α(r − 1)
M

(j−1)
Xr−1:n

(t)

+
1

α(r − 1)
{tE[φ(Xr−1:n)] + jE[ψ(Xr−1:n)]}

and

E(Xj
r:n) = E(Xj

r−1:n)− j

α(r − 1)

{
E(Xj−1

r−1:n) + E(Xj−2
r−1:n)− E(ξ(Xr−1;n))

}
.

REMARK 2.2. Putting k = −1 in (16) and (18), relations for k record values can
be obtained as(

1− t

αk

)
M

(j)
XL(r)

(t) = M
(j)
XL(r−1)

(t) +
j

αk
M

(j−1)
XL(r)

(t)

− 1

αk

{
tE[φ(XL(r))] + jE[ψ(XL(r))]

}
and

E[Xj
L(r)] = E[Xj

L(r−1)] +
j

αk

{
E[Xj−1

L(r)] + E[Xj−2
L(r)]− E[ξ(XL(r))]

}
.
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3 Relations for Joint Moment Generating Functions

In this Section exact moments and recurrence relations for joint mgf of dgos from
EGD are considered. For the EGD when m 6= −1,

MXd(r,n,m,k),Xd(s,n,m,k)(t1, t2)

=

∫ ∞
−∞

∫ x

−∞
et1x+t2yfXd(r,n,m,k)Xd(s,n,m,k)(x, y)dxdy.

=
Cs−1

(r − 1)!(s− r − 1)!

∫ ∞
−∞

∫ x

−∞
et1x+t2y[F (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dydx. (19)

On using (4) and (5) in (19) and simplification of the resulting equation we get

MXd(r,n,m,k),Xd(s,n,m,k)(t1, t2)

=
α2Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
a=0

a∑
b=0

r−1∑
u=0

×
s−r−1∑
v=0

∞∑
l=0

l∑
w=0

w+1∑
p=0

(−1)a+l+u+v
(
αγs−v − 1

a

)(
a
b

)(
r − 1
u

)

×
(
s− r − 1

v

)(
α(s− r − v + u)(m+ 1)− 1

l

)(
l
w

)
× Γ(w + 2)Γ(p+ a+ 2)

p!(l + 1− t2)w+2−p(a+ l + 2− t1 − t2)p+a+2
. (20)

For m = −1,

MXd(r,n,−1,k),Xd(s,n,−1,k)(t1, t2)

=
(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
c+1∑
d=0

∞∑
p=0

∞∑
q=0

∞∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
αk − 1
v

)(
a+ q + v

w

)
× Γ(c+ 2)Γ(w + d+ 2)

d!(s+ b+ p− 1− t2)c−d+2(s+ b+ p+ q + v − t1 − t2)w+d+2
. (21)
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Differentiating both side of (20) and (21) i times with respect to t1 and then j times
with respect to t2, we get

M
(i,j)
Xd(r,n,m,k),Xd(s,n,m,k)

(t1, t2)

=
α2Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
a=0

a∑
b=0

r−1∑
u=0

×
s−r−1∑
v=0

∞∑
l=0

l∑
w=0

i+w+1∑
p=0

(−1)a+l+u+v
(
αγs−v − 1

a

)(
a
b

)(
r − 1
u

)

×
(
s− r − 1

v

)(
α(s− r − v + u)(m+ 1)− 1

l

)(
l
w

)
× Γ(i+ w + 2)Γ(j + p+ a+ 2)

p!(l + 1− t2)i+w+2−p(a+ l + 2− t1 − t2)j+p+a+2
(22)

and

M
(i,j)
Xd(r,n,−1,k),Xd(s,n,−1,k)(t1, t2)

=
(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
i+c+1∑
d=0

∞∑
p=0

∞∑
q=0

∞∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
αk − 1
v

)(
a+ q + v

w

)
× Γ(i+ c+ 2)Γ(j + w + d+ 2)

d!(s+ b+ p− 1− t2)i+c−d+2(s+ b+ p+ q + v − t1 − t2)j+w+d+2
. (23)

If α is a positive integer, the relations (22) and (23) then give

M
(i,j)
Xd(r,n,m,k),Xd(s,n,m,k)

(t1, t2)

=
α2Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

αγs−v−1∑
a=0

a∑
b=0

r−1∑
u=0

×
s−r−1∑
v=0

α(s−r−v+u)(m+1)−1∑
l=0

l∑
w=0

i+w+1∑
p=0

(−1)a+l+u+v
(
αγs−v − 1

a

)(
a
b

)

×
(
r − 1
u

)(
s− r − 1

v

)(
α(s− r − v + u)(m+ 1)− 1

l

)(
l
w

)
× Γ(i+ w + 2)Γ(j + p+ a+ 2)

p!(l + 1− t2)i+w+2−p(a+ l + 2− t1 − t2)j+p+a+2
(24)
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and

M
(i,j)
Xd(r,n,−1,k),Xd(s,n,−1,k)(t1, t2)

=
(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
i+c+1∑
d=0

∞∑
p=0

∞∑
q=0

αk−1∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
αk − 1
v

)(
a+ q + v

w

)
× Γ(i+ c+ 2)Γ(j + w + d+ 2)

d!(s+ b+ p− 1− t2)i+c−d+2(s+ b+ p+ q + v − t1 − t2)j+w+d+2
. (25)

By differentiating both sides of equation (24) and (25) with respect to t1, t2 and then
setting t1 = t2 = 0, we obtain the explicit expression for product moments of dgos and
k record values from EGD in the form

E[Xi
d(r, n,m, k), Xj

d(s, n,m, k)]

=
α2Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

αγs−v−1∑
a=0

a∑
b=0

r−1∑
u=0

×
s−r−1∑
v=0

α(s−r−v+u)(m+1)−1∑
l=0

l∑
w=0

i+w+1∑
p=0

(−1)a+l+u+v
(
αγs−v − 1

a

)(
a
b

)

×
(
r − 1
u

)(
s− r − 1

v

)(
α(s− r − v + u)(m+ 1)− 1

l

)(
l
w

)
× Γ(i+ w + 2)Γ(j + p+ a+ 2)

p!(l + 1)i+w+2−p(a+ l + 2)j+p+a+2
(26)

and

E[Xi
d(r, n,−1, k), Xj

d(s, n,−1, k)]

=
(αk)s

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
i+c+1∑
d=0

∞∑
p=0

∞∑
q=0

αk−1∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
αk − 1
v

)(
a+ q + v

w

)
× Γ(i+ c+ 2)Γ(j + w + d+ 2)

d!(s+ b+ p− 1)i+c−d+2(s+ b+ p+ q + v)j+w+d+2
. (27)

Special Cases:
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(i) Putting m = 0, k = 1 in (24) and (26), relations for order statistics can be
obtained as

M
(i,j)
Xr:n,Xs:n

(t1, t2)

= α2Cr,s:n

α(r+v)−1∑
a=0

a∑
b=0

n−s∑
u=0

s−r−1∑
v=0

α(s−r−v+u)−1∑
l=0

×
l∑

w=0

i+w+1∑
p=0

(−1)a+l+u+v
(
α(r + v)− 1

a

)(
a
b

)

×
(
n− s
u

)(
s− r − 1

v

)(
α(s− r − v + u)− 1

l

)(
l
w

)
× Γ(i+ w + 2)Γ(j + p+ a+ 2)

p!(l + 1− t2)i+w+2−p(a+ l + 2− t1 − t2)j+p+a+2

and

E[Xi
r:n, X

j
s:n] = α2Cr,s:n

α(r+v)−1∑
a=0

a∑
b=0

s−r−1∑
v=0

α(s−r−v+u)−1∑
l=0

i+w+1∑
p=0

n−s∑
u=0

×
l∑

w=0

(−1)a+l+u+v
(
α(r + v)− 1

a

)(
a
b

)(
n− s
u

)
×
(
s− r − 1

v

)(
α(s− r − v + u)− 1

l

)(
l
w

)
× Γ(i+ w + 2)Γ(j + p+ a+ 2)

p!(l + 1)i+w+2−p(a+ l + 2)j+p+a+2
,

where

Cr,s;n =
n!

(r − 1)!(s− r − 1)!(n− s)! .

(ii) Putting k = 1 in (25) and (27), relations for record values in the form

M
(i,j)
XL(r),XL(s)

(t1, t2)

=
αs

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
i+c+1∑
d=0

∞∑
p=0

∞∑
q=0

α−1∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
α− 1
v

)(
a+ q + v

w

)
× Γ(i+ c+ 2)Γ(j + w + d+ 2)

d!(s+ b+ p− 1− t2)i+c−d+2(s+ b+ p+ q + v − t1 − t2)j+w+d+2
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and

E[Xi
L(r), X

j
L(s)]

=
αs

(r − 1)!(s− r − 1)!

s−r−1∑
a=0

∞∑
b=0

s+b+p−a−2∑
c=0

×
i+c+1∑
d=0

∞∑
p=0

∞∑
q=0

α−1∑
v=0

a+q+v∑
w=0

(−1)s−r−1+a+vφp(s− a− 2)φq(a)

×
(
s− r − 1

a

)(
s+ b+ p− a− 2

c

)(
α− 1
v

)(
a+ q + v

w

)
× Γ(i+ c+ 2)Γ(j + w + d+ 2)

d!(s+ b+ p− 1)i+c−d+2(s+ b+ p+ q + v)j+w+d+2
.

Making use of (6), we can derive recurrence relations for joint mgf of dgos.

THEOREM 2. For 1 ≤ r < s ≤ n n ≥ 2 and k = 1, 2, . . . ,(
1− t2

αγs

)
M

(i,j)
Xd(r,n,m,k)Xd(s,n,m,k)

(t1, t2)

= M
(i,j)
Xd(r,n,m,k)Xd(s−1,n,m,k)(t1, t2) +

j

αγs
M

(i,j−1)
Xd(r,n,m,k)Xd(s,n,m,k)

(t1, t2)

− 1

αγs

{
t2E[φ(Xd(r, n,m, k)Xd(s, n,m, k))]

+jE[ψ(Xd(r, n,m, k)Xd(s, n,m, k))]

}
, (28)

where
φ(x, y) = xiyj−1

(
et1x+(t2+1)y − et1x+t2y

)
and

ψ(x) = xiyj−2
(
et1x+(t2+1)y − et1x+t2y

)
.

PROOF. Integrating by parts of (19) and using (6), we get

MXd(r,n,m,k)Xd(s,n,m,k)(t1, t2)

= MXd(r,n,m,k)Xd(s−1,n,m,k)(t1, t2) +
t2
αγs

{
MXd(r,n,m,k)Xd(s,n,m,k)(t1, t2)

−E[h(Xd(r, n,m, k)Xd(s, n,m, k))]

}
(29)

and

h(x, y) =

(
et1x+(t2+1)y

y
− et1x+t2y

y

)
.
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Differentiating both the sides of above equation i times with respect to t1 and then
j times with respect to t2 and simplifying the resulting expression, we get the result
given in (28). By differentiating both sides of equation (28) with respect to t1, t2 and
then setting t1 = t2 = 0 , we obtain the recurrence relations for product moments of
dgos from EGD in the form

E[Xi
d(r, n,m, k)Xj

d(s, n,m, k)]

= E[Xi
d(r, n,m, k)Xj

d(s− 1, n,m, k)]

+
j

αγs

{
E[Xi

d(r, n,m, k)Xj−1
d (s, n,m, k)] + E[Xi

d(r, n,m, k)Xj−2
d (s, n,m, k)]

}
− j

αγs
E[ξ(Xd(r, n,m, k)(Xd(s, n,m, k)], (30)

where
ξ(x, y) = xiyj−2ey.

REMARK 3.1. Putting m = 0, k = 1 in (28) and (30), we obtain relations for order
statistics

M
(i,j)
Xr:nXs:n

(t1, t2)

=

(
1− tt1

α(r − 1)

)
M

(i,j)
Xr−1:nXs:n

(t1, t2)−
i

α(r − 1)
M

(i,j)
Xr−1:nXs:n

(t1, t2)

+
1

α(r − 1)

{
t1E[φ(Xr−1:nXs:n)] + jE[ψ(Xr−1:nXs:n)]

}
and

E(Xi
r:nX

j
s:n) = E(Xi

r−1:nX
j
s:n)− i

α(r − 1)

{
E(Xi−1

r−1:nX
j
s:n) + E(Xi−2

r−1:nX
j
s:n)

−E(φ(Xr−1;nXs;n))

}
.

REMARK 3.2. Putting m = −1 and k ≥ 1in (28) and (30), we obtain relations for
k record values in the form(

1− t2
αγs

)
M

(i,j)
Xd(r,n,−1,k)Xd(s,n,−1,k)(t1, t2)

= M
(i,j)
Xd(r,n,−1,k)Xd(s−1,n,−1,k)(t1, t2) +

j

αγs
M

(i,j−1)
Xd(r,n,−1,k)Xd(s,n,−1,k)(t1, t2)

− 1

αγs

{
t2E[φ(Xd(r, n,−1, k)Xd(s, n,−1, k))]

+jE[ψ(Xd(r, n,−1, k)Xd(s, n,−1, k))]

}
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and

E[Xi
d(r, n,−1, k)Xj

d(s, n,−1, k)]

= E[Xi
d(r, n,−1, k)Xj

d(s− 1, n,−1, k)]

+
j

αγs

{
E[Xi

d(r, n,−1, k)Xj−1
d (s, n,−1, k)] + E[Xi

d(r, n,−1, k)Xj−2
d (s, n,−1, k)]

}
− j

αγs
E[ξ(Xd(r, n,−1, k)Xd(s, n,−1, k))].

4 Characterization

This Section contains characterization of EGD by using the recurrence relation for
mgf of dgos. Let L(a, b) stand for the space of all integrable functions on (a, b) . A
sequence (fn) ⊂ L(a, b) is called complete on L(a, b) if for all functions g ∈ L(a, b)
the condition ∫ b

a

g(x)fn(x)dx = 0, n ∈ N,

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin [23].

PROPOSITION 1. Let n0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞
and g(x) ≥ 0 an absolutely continuous function with g′(x) 6= 0 a.e. on (a, b). Then
the sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete in L(a, b) iff g(x) is
strictly monotone on (a, b).

Using the above Proposition we get a stronger version of Theorem 1.

THEOREM 3. A necessary and suffi cient conditions for a random variable X to be
distributed with pdf given by (5) is that

M
(j)
Xd(r,n,m,k)

(t)

= M
(j)
Xd(r−1,n,m,k)(t) +

j

αγr

{
M

(j−1)
Xd(r,n,m,k)

(t)− E[h(Xd(r, n,m, k))]
}
. (31)

PROOF. The necessary part follows immediately from equation (17). On the other
hand if the recurrence relation in equation (31) is satisfied, then on using equation (2),
we have

Cr−1
(r − 1)!

∫ ∞
0

etx[F (x)]γr−1f(x)gr−1m (F (x))dx

=
Cr−1

γr(r − 2)!

∫ ∞
0

etx[F (x)]γr+mf(x)gr−2m (F (x))dx

− tCr−1
αγr(r − 1)!

∫ ∞
0

e(t+1)x

x
[F (x)]γr−1f(x)gr−1m (F (x))dx

+
tCr−1

αγr(r − 1)!

∫ ∞
0

xj−1[F (x)]γr−1f(x)gr−1m (F (x))dx
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and
tCr−1

αγr(r − 1)!

∫ ∞1
0

etx

x
[F (x)]γr−1f(x)gr−1m (F (x))dx. (32)

Integrating the first integral on the right-hand side of the above equation by parts and
simplifying the resulting expression, we get

tCr−1
(r − 1)!

∫ ∞
0

etx[F (x)]γr−1gr−1m (F (x))

{
F (x)− etx − (x+ 1)

αx
f(x)

}
dx = 0. (33)

It now follows from Proposition 1, that

αxF (x) = [etx − (x+ 1)]f(x)

which proves that f(x) has the form (4).

5 Concluding Remarks

(i) In this paper, we proposed new explicit expressions and recurrence relations for
marginal and joint moment generating functions of dgos from EGD. Further,
characterization of this distribution has also been obtained on using recurrence
relation for marginal moment generating functions of dgos. Special cases are also
deduced.

(ii) The recurrence relations for moments of ordered random variables are important
because they reduce the amount of direct computations for moments, evaluate
the higher moments in terms of the lower moments and they can be used to
characterize distributions.

(iii) The recurrence relations of higher joint moments enable us to derive single, prod-
uct, triple and quadruple moments which can be used in Edgeworth approximate
inference.
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